Kinematics and Controlling Factors of Slow-Moving Landslides in Central Texas: A Multisource Data Fusion Approach
Abstract
:1. Introduction
2. The Study Area
Climatic and Geologic Settings
3. Materials and Methods
3.1. Detecting Slow-Moving Landslides
3.1.1. Small Baseline Subset (SBAS) Interferometric Technique
3.1.2. Calibration Using GNSS Data
3.2. Identifying Processes and Factors That Induce Slow-Moving Landslides
3.2.1. Thematic Datasets
3.2.2. Ancillary Data and Methods–3D Model from Unmanned Aerial Vehicle (UAV) Data
4. Results and Discussion
4.1. Active Slow-Moving Displacement
Landslide Activity at Shoal Creek
4.2. Slope and Tectonic Features
4.3. Landslide Type, Geometry, Kinematics, and Driving Factors
- The role of tectonic features: it is hypothesized that tectonic features of the Balcones Fault System and other faults cutting through the Buda Limestone acted as channels for infiltrating water/precipitation from the surface to the Del Rio Clay. The delineated lineament (dashed pink line in Figure 4) and other tectonic structures (discussed below) in the Pease Park area may have served as preferential pathways for water to infiltrate through the Buda Limestone.
- The role of local geology: water percolating through the fractured Buda and interacting with the montmorillonite-, smectite-, and kaolinite-rich Del Rio Formation induced clay swelling. This swelling translated to stress buildup at the landslide failure plane. Due to the brittle nature of the overlying Buda Limestone, the added stress resulted in the breaking up/fracturing of the Buda, subsequently leading to a decline in shear strength.
- Mechanisms of slope failure and driving factors: the Del Rio acted as a sliding surface, causing slow vertical and lateral displacement of the Buda Limestone. We believe that the area around Shoal Creek, which has undergone active deformation due to landslide activity, is experiencing ongoing mass movement. This movement is slow to very slow (creep), both vertically and laterally, with the Del Rio Formation acting as the sliding surface and the overlying shallow and weakened Buda Limestone sliding slowly downslope. The driving force and shear strength imbalance of the slope material induced by extreme rainfall episodes triggered movements that initiated the transition to rotational slumping on steep slopes. This scenario is supported by studies that show that intense rainfall episodes can further compound stress buildup through added pore pressure, leading to a decline in shear strength. In addition, changes in the saturation level of the landslide material, particularly in loose soil and weathered geologic units, compound the added stress applied to the slope material. These processes, in tandem, contribute to the driving force acting on the slope to exceed the shear strength of the material and, consequently, trigger landslides [81,82,83].
- Impact of anthropogenic land use–land cover changes: the loss of vegetation, that could anchor the landslide material, due to anthropogenic land use-land cover changes in the surrounding environment of Pease Park over the past few decades may have worsened the conditions that led to occurrence of landslides. Such changes may continue to have negative impacts on the detected susceptible areas and could contribute to the occurrence of landslides in the future.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Glade, T.; Anderson, M.G.; Crozier, M.J. Landslide Hazard and Risk; Wiley: Hoboken, NJ, USA, 2005; Volume 807, ISBN 9780471486633. [Google Scholar]
- Hungr, O.; Leroueil, S.; Picarelli, L. The Varnes Classification of Landslide Types, an Update. Landslides 2014, 11, 167–194. [Google Scholar] [CrossRef]
- Varnes, D.J. Landslide Types and Processes. In Landslides and Engineering Practice; Highway Research Board Special Report: Washington, DC, USA, 1958; Volume 24, pp. 20–47. [Google Scholar]
- Yilmaz, C.; Topal, T.; Süzen, M.L. GIS-Based Landslide Susceptibility Mapping Using Bivariate Statistical Analysis in Devrek (Zonguldak-Turkey). Environ. Earth Sci. 2012, 65, 2161–2178. [Google Scholar] [CrossRef]
- Lacroix, P.; Handwerger, A.L.; Bièvre, G. Life and Death of Slow-Moving Landslides. Nat. Rev. Earth Environ. 2020, 1, 404–419. [Google Scholar] [CrossRef]
- Zerathe, S.; Lacroix, P.; Jongmans, D.; Marino, J.; Taipe, E.; Wathelet, M.; Pari, W.; Smoll, L.F.; Norabuena, E.; Guillier, B.; et al. Morphology, Structure and Kinematics of a Rainfall Controlled Slow-Moving Andean Landslide, Peru. Earth Surf. Process Landf. 2016, 41, 1477–1493. [Google Scholar] [CrossRef]
- Highland, L.M.; Bobrowsky, P. The Landslide Handbook—A Guide to Understanding Landslides; US Geological Survey: Reston, VA, USA, 2008.
- Bayer, B.; Simoni, A.; Mulas, M.; Corsini, A.; Schmidt, D. Deformation Responses of Slow Moving Landslides to Seasonal Rainfall in the Northern Apennines, Measured by InSAR. Geomorphology 2018, 308, 293–306. [Google Scholar] [CrossRef]
- Lacroix, P.; Perfettini, H.; Taipe, E.; Guillier, B. Coseismic and Postseismic Motion of a Landslide: Observations, Modeling, and Analogy with Tectonic Faults. Geophys. Res. Lett. 2014, 41, 6676–6680. [Google Scholar] [CrossRef]
- Coe, J.A. Regional Moisture Balance Control of Landslide Motion: Implications for Landslide Forecasting in a Changing Climate. Geology 2012, 40, 323–326. [Google Scholar] [CrossRef]
- Intrieri, E.; Gigli, G. Landslide Forecasting and Factors Influencing Predictability. Nat. Hazards Earth Syst. Sci. 2016, 16, 2501–2510. [Google Scholar] [CrossRef]
- Guzzetti, F. Landslide Hazard and Risk Assessment; Universitäts-und Landesbibliothek Bonn: Bonn, Germany, 2006. [Google Scholar]
- Yang, Z.; Liu, C.; Nie, R.; Zhang, W.; Zhang, L.; Zhang, Z.; Li, W.; Liu, G.; Dai, X.; Zhang, D.; et al. Research on Uncertainty of Landslide Susceptibility Prediction—Bibliometrics and Knowledge Graph Analysis. Remote Sens. 2022, 14, 3879. [Google Scholar] [CrossRef]
- Aleotti, P.; Chowdhury, R. Landslide Hazard Assessment: Summary Review and New Perspectives. Bull. Eng. Geol. Environ. 1999, 58, 21–44. [Google Scholar] [CrossRef]
- Guzzetti, F.; Carrara, A.; Cardinali, M.; Reichenbach, P. Landslide Hazard Evaluation: A Review of Current Techniques and Their Application in a Multi-Scale Study, Central Italy. Geomorphology 1999, 31, 181–216. [Google Scholar] [CrossRef]
- Kanungo, D.P.; Arora, M.K.; Sarkar, S.; Gupta, R.P. A Comparative Study of Conventional, ANN Black Box, Fuzzy and Combined Neural and Fuzzy Weighting Procedures for Landslide Susceptibility Zonation in Darjeeling Himalayas. Eng. Geol. 2006, 85, 347–366. [Google Scholar] [CrossRef]
- Raghuvanshi, T.K.; Negassa, L.; Kala, P.M. GIS Based Grid Overlay Method versus Modeling Approach—A Comparative Study for Landslide Hazard Zonation (LHZ) in Meta Robi District of West Showa Zone in Ethiopia. Egypt. J. Remote Sens. Space Sci. 2015, 18, 235–250. [Google Scholar] [CrossRef]
- Reichenbach, P.; Rossi, M.; Malamud, B.D.; Mihir, M.; Guzzetti, F. A Review of Statistically-Based Landslide Susceptibility Models. Earth Sci. Rev. 2018, 180, 60–91. [Google Scholar] [CrossRef]
- Fleuchaus, P.; Blum, P.; Wilde, M.; Terhorst, B.; Butscher, C. Retrospective Evaluation of Landslide Susceptibility Maps and Review of Validation Practice. Environ. Earth Sci. 2021, 80, 485. [Google Scholar] [CrossRef]
- Korup, O.; Stolle, A. Landslide Prediction from Machine Learning. Geol. Today 2014, 30, 26–33. [Google Scholar] [CrossRef]
- Bordoni, M.; Vivaldi, V.; Bonì, R.; Spanò, S.; Tararbra, M.; Lanteri, L.; Parnigoni, M.; Grossi, A.; Figini, S.; Meisina, C. A Methodology for the Analysis of Continuous Time-Series of Automatic Inclinometers for Slow-Moving Landslides Monitoring in Piemonte Region, Northern Italy. Nat. Hazards 2023, 115, 1115–1142. [Google Scholar] [CrossRef]
- Wang, G.Q. Kinematics of the Cerca Del Cielo, Puerto Rico Landslide Derived from GPS Observations. Landslides 2012, 9, 117–130. [Google Scholar] [CrossRef]
- Jiang, Y.; Luo, H.; Xu, Q.; Lu, Z.; Liao, L.; Li, H.; Hao, L. A Graph Convolutional Incorporating GRU Network for Landslide Displacement Forecasting Based on Spatiotemporal Analysis of GNSS Observations. Remote Sens. 2022, 14, 1016. [Google Scholar] [CrossRef]
- Schulz, W.H.; McKenna, J.P.; Kibler, J.D.; Biavati, G. Relations between Hydrology and Velocity of a Continuously Moving Landslide-Evidence of Pore-Pressure Feedback Regulating Landslide Motion? Landslides 2009, 6, 181–190. [Google Scholar] [CrossRef]
- Wang, J.; Nie, G.; Gao, S.; Wu, S.; Li, H.; Ren, X. Landslide Deformation Prediction Based on a GNSS Time Series Analysis and Recurrent Neural Network Model. Remote Sens. 2021, 13, 1055. [Google Scholar] [CrossRef]
- Van Westen, C.J.; van Asch, T.W.J.; Soeters, R. Landslide Hazard and Risk Zonation—Why Is It Still so Difficult? Bull. Eng. Geol. Environ. 2006, 65, 167–184. [Google Scholar] [CrossRef]
- Chen, T.H.K.; Prishchepov, A.V.; Fensholt, R.; Sabel, C.E. Detecting and Monitoring Long-Term Landslides in Urbanized Areas with Nighttime Light Data and Multi-Seasonal Landsat Imagery across Taiwan from 1998 to 2017. Remote Sens. Environ. 2019, 225, 317–327. [Google Scholar] [CrossRef]
- Gebremichael, E.; Seyoum, W.M.; Ishimwe, B.; Sataer, G. Lake Surface Area Expansion: Insights into the Role of Volcano-Tectonic Processes, Lake Beseka, East Africa. J. Hydrol. Reg. Stud. 2022, 41, 101093. [Google Scholar] [CrossRef]
- Bardi, F.; Raspini, F.; Ciampalini, A.; Kristensen, L.; Rouyet, L.; Lauknes, T.R.; Frauenfelder, R.; Casagli, N. Space-Borne and Ground-Based InSAR Data Integration: The Åknes Test Site. Remote Sens. 2016, 8, 237. [Google Scholar] [CrossRef]
- Bianchini, S.; Cigna, F.; Righini, G.; Proietti, C.; Casagli, N. Landslide HotSpot Mapping by Means of Persistent Scatterer Interferometry. Environ. Earth Sci. 2012, 67, 1155–1172. [Google Scholar] [CrossRef]
- Hu, X.; Bürgmann, R.; Fielding, E.J.; Lee, H. Internal Kinematics of the Slumgullion Landslide (USA) from High-Resolution UAVSAR InSAR Data. Remote Sens. Environ. 2020, 251. [Google Scholar] [CrossRef]
- Intrieri, E.; Raspini, F.; Fumagalli, A.; Lu, P.; Del Conte, S.; Farina, P.; Allievi, J.; Ferretti, A.; Casagli, N. The Maoxian Landslide as Seen from Space: Detecting Precursors of Failure with Sentinel-1 Data. Landslides 2018, 15, 123–133. [Google Scholar] [CrossRef]
- Jiao, Q.; Jiang, W.; Qian, H.; Li, Q. Research on Characteristics and Failure Mechanism of Guizhou Shuicheng Landslide Based on InSAR and UAV Data. Nat. Hazards Res. 2022, 2, 17–24. [Google Scholar] [CrossRef]
- Carlà, T.; Tofani, V.; Lombardi, L.; Raspini, F.; Bianchini, S.; Bertolo, D.; Thuegaz, P.; Casagli, N. Combination of GNSS, Satellite InSAR, and GBInSAR Remote Sensing Monitoring to Improve the Understanding of a Large Landslide in High Alpine Environment. Geomorphology 2019, 335, 62–75. [Google Scholar] [CrossRef]
- Casagli, N.; Frodella, W.; Morelli, S.; Tofani, V.; Ciampalini, A.; Intrieri, E.; Raspini, F.; Rossi, G.; Tanteri, L.; Lu, P. Spaceborne, UAV and Ground-Based Remote Sensing Techniques for Landslide Mapping, Monitoring and Early Warning. Geoenvironmental Disasters 2017, 4, 9. [Google Scholar] [CrossRef]
- Bixler, R.P.; Yang, E.; Richter, S.M.; Coudert, M. Boundary Crossing for Urban Community Resilience: A Social Vulnerability and Multi-Hazard Approach in Austin, Texas, USA. Int. J. Disaster Risk Reduct. 2021, 66. [Google Scholar] [CrossRef]
- Klimeš, J.; Escobar, V.R. A Landslide Susceptibility Assessment in Urban Areas Based on Existing Data: An Example from the Iguaná Valley, Medellín City, Colombia. Nat. Hazards Earth Syst. Sci. 2010, 10, 2067–2079. [Google Scholar] [CrossRef]
- Lee, D.; Jung, J. The Growth of Low-Income Population in Floodplains: A Case Study of Austin, TX. KSCE J. Civ. Eng. 2014, 18, 683–693. [Google Scholar] [CrossRef]
- Findell, E. City Council to Weigh Costly Shoal Creek Fix. Austin American Statesman. 2019. Available online: https://www.statesman.com/story/news/politics/county/2019/06/18/costly-fix-to-shoal-creek-slope-to-come-before-city-council/4818786007/ (accessed on 20 November 2022).
- Patil, V.; Bizcarguenaga, M.; Lieberknecht, K.; Felkner, J. Retrofitting Solutions for a Campus Building to Mitigate Urban Heat Island in a Hot Humid Climate. J. Phys. Conf. Ser. 2021, 2042. [Google Scholar] [CrossRef]
- Brune, G.; Duffin, G.L. Occurrence, Availability, and Quality of Ground Water in Travis County, Texas; Texas Department of Water Resources: Austin, TX, USA, 1983. [Google Scholar]
- Barnes, V.E.; Shell Oil, Co.; Humble Oil and Refining, Co.; Mobile Oil, Co.; Proctor, C.V.; Brown, T.E.; McGowen, J.H.; Waechter, N.B.; Eargle, D.H.; Baker, E.T.; et al. Geologic Atlas of Texas: Austin Sheet; University of Texas at Austin, Bureau of Economic Geology: Austin, TX, USA, 1981. [Google Scholar]
- Clark, A.K.; Morris, R.E.; Pedraza, D.E. Geologic Framework and Hydrostratigraphy of the Edwards and Trinity Aquifers within Northern Medina County, Texas. U.S. Geol. Surv. Sci. Investig. Map 2020, 2020, 1–13. [Google Scholar] [CrossRef]
- Young, K. Guidebook to the Geology of Travis County; Walter Geology Library: Austin, TX, USA, 1977. [Google Scholar]
- Waechter, N.B.; Lozo, F.E.; Barnes, V.E. Geological Atlas of Texas, Del Rio Sheet. Scale 1: 250000; University of Texas at Austin, Bureau of Economic Geology: Austin, TX, USA, 1977. [Google Scholar]
- Garner, L.E.; Young, K.P. Environmental Geology of the Austin Area: An Aid to Urban Planning; The University of Texas at Austin: Austin, TX, USA, 1976. [Google Scholar]
- Kuniansky, E.L.; Ardis, A.F. Hydrogeology and Ground-Water Flow in the Edwards-Trinity Aquifer System, West-Central Texas; US Geological Survey: Reston, VA, USA, 2004.
- Yalcin, A. The Effects of Clay on Landslides: A Case Study. Appl. Clay Sci. 2007, 38, 77–85. [Google Scholar] [CrossRef]
- Davis, G.; Wilcox, G.; Arnone, M.; Bruington, S. Rejuvenating the Buda Limestone Reservoir in Texas by Using Crude Oil and Nitrogen Injection in Underbalanced Regime: Case History. In Proceedings of Society of Petroleum Engineers (SPE)/International Association of Drilling Contractors (IADC) 2016: Managed Pressure Drilling and Underbalanced Operations —Proceedings of the 2016 SPE/IADC Conference and Exhibition, Galveston, TX, USA, 12–13 April 2016. [Google Scholar]
- Rodda, P.U. Geologic Map of the Austin West Quadrangle, Travis County, Texas. In Virtual Landscapes of Texas; University of Texas, Bureauof Economic Geology: Austin, TX, USA, 1970. [Google Scholar] [CrossRef]
- Small, T.A.; Hanson, J.A.; Hauwert, N.M. Geologic Framework and Hydrogeologic Characteristics of the Edwards Aquifer Outcrop (Barton Springs Segment), Northeastern Hays and Southwestern Travis Counties, Texas; US Department of the Interior, US Geological Survey: Reston, VA, USA, 1996; Volume 96.
- Valencia, F.L.; Laya, J.C.; Buatois, L.A.; Mángano, M.G.; Valencia, G.L. Sedimentology and Stratigraphy of the Cenomanian Buda Limestone in Central Texas, U.S.A.: Implications on Regional and Global Depositional Controls. Cretac. Res. 2022, 137. [Google Scholar] [CrossRef]
- Dawson, W.C. Shale Microfacies-Eagle Ford Group (Cenomanian-Turonian) North-Central Texas Outcrops and Subsurface Equivalents. Am. Assoc. Pet. Geol. Bull 2000, 84. [Google Scholar] [CrossRef]
- Lanari, R.; Casu, F.; Manzo, M.; Zeni, G.; Berardino, P.; Manunta, M.; Pepe, A. An Overview of the Small BAseline Subset Algorithm: A DInSAR Technique for Surface Deformation Analysis. Pure Appl. Geophys. 2007, 164, 637–661. [Google Scholar] [CrossRef]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A New Algorithm for Surface Deformation Monitoring Based on Small Baseline Differential SAR Interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef]
- Crosetto, M.; Monserrat, O.; Cuevas-González, M.; Devanthéry, N.; Crippa, B. Persistent Scatterer Interferometry: A Review. ISPRS J. Photogramm. Remote Sens. 2016, 115, 78–89. [Google Scholar] [CrossRef]
- Zhou, X.; Chang, N.-B.; Li, S. Applications of SAR Interferometry in Earth and Environmental Science Research. Sensors 2009, 9, 1876–1912. [Google Scholar] [CrossRef]
- Sataer, G.; Sultan, M.; Emil, M.K.; Yellich, J.A.; Palaseanu-Lovejoy, M.; Becker, R.; Gebremichael, E.; Abdelmohsen, K. Remote Sensing Application for Landslide Detection, Monitoring along Eastern Lake Michigan (Miami Park, MI). Remote Sens. 2022, 14, 3474. [Google Scholar] [CrossRef]
- Blewitt, G.; Hammond, W.; Kreemer, C. Harnessing the GPS Data Explosion for Interdisciplinary Science. Eos 2018, 99. [Google Scholar] [CrossRef]
- Emil, M.K.; Sultan, M.; Alakhras, K.; Sataer, G.; Gozi, S.; Al-Marri, M.; Gebremichael, E. Countrywide Monitoring of Ground Deformation Using InSAR Time Series: A Case Study from Qatar. Remote Sens. 2021, 13, 702. [Google Scholar] [CrossRef]
- Haley, M.; Ahmed, M.; Gebremichael, E.; Murgulet, D.; Starek, M. Land Subsidence in the Texas Coastal Bend: Locations, Rates, Triggers, and Consequences. Remote Sens. 2022, 14, 192. [Google Scholar] [CrossRef]
- Rawat, M.; Joshi, V. Landslide Movement Monitoring Using GPS Technology: A Case Study of Bakthang Landslide, Gangtok, East Sikkim, India. J. Dev. Agric. Econ. 2011, 3, 194–200. [Google Scholar]
- Borrelli, L.; Antronico, L.; Gullà, G.; Sorriso-Valvo, G.M. Geology, Geomorphology and Dynamics of the 15 February 2010 Maierato Landslide (Calabria, Italy). Geomorphology 2014, 208, 50–73. [Google Scholar] [CrossRef]
- Conforti, M.; Ietto, F. An Integrated Approach to Investigate Slope Instability Affecting Infrastructures. Bull. Eng. Geol. Environ. 2019, 78, 2355–2375. [Google Scholar] [CrossRef]
- Abedini, M.; Tulabi, S. Assessing LNRF, FR, and AHP Models in Landslide Susceptibility Mapping Index: A Comparative Study of Nojian Watershed in Lorestan Province, Iran. Environ. Earth Sci. 2018, 77, 405. [Google Scholar] [CrossRef]
- Sidle, R.C.; Bogaard, T.A. Dynamic Earth System and Ecological Controls of Rainfall-Initiated Landslides. Earth Sci. Rev. 2016, 159, 275–291. [Google Scholar] [CrossRef]
- Psomiadis, E.; Papazachariou, A.; Soulis, K.X.; Alexiou, D.S.; Charalampopoulos, I. Landslide Mapping and Susceptibility Assessment Using Geospatial Analysis and Earth Observation Data. Land 2020, 9, 133. [Google Scholar] [CrossRef]
- Tagnon, B.O.; Assoma, V.T.; Mangoua, J.M.O.; Douagui, A.G.; Kouamé, F.K.; Savané, I. Contribution of SAR/RADARSAT-1 and ASAR/ENVISAT Images to Geological Structural Mapping and Assessment of Lineaments Density in Divo-Oume Area (Côte d’Ivoire). Egypt. J. Remote Sens. Space Sci. 2020, 23, 231–241. [Google Scholar] [CrossRef]
- Yan, Y.; Doin, M.P.; López-Quiroz, P.; Tupin, F.; Fruneau, B.; Pinel, V.; Trouvé, E. Mexico City Subsidence Measured by InSAR Time Series: Joint Analysis Using PS and SBAS Approaches. IEEE J. Sel. Top Appl. Earth Obs. Remote Sens. 2012, 5, 1312–1326. [Google Scholar] [CrossRef]
- Gido, N.A.A.; Bagherbandi, M.; Nilfouroushan, F. Localized Subsidence Zones in Gävle City Detected by Sentinel-1 PSI and Leveling Data. Remote Sens. 2020, 12, 2629. [Google Scholar] [CrossRef]
- Fabio, I.; Massimo, C.; Cristiano, T.; Giuseppe, C. Village Relocation as Solution of the Landslide Risk, Is It Always the Right Choice? The Case Study of Cavallerizzo Ghost Village (Calabria, Southern Italy). Int. J. Disaster Risk Reduct. 2022, 81. [Google Scholar] [CrossRef]
- Del Ventisette, C.; Righini, G.; Moretti, S.; Casagli, N. Multitemporal Landslides Inventory Map Updating Using Spaceborne SAR Analysis. Int. J. Appl. Earth Obs. Geoinf. 2014, 30, 238–246. [Google Scholar] [CrossRef]
- Rosi, A.; Tofani, V.; Tanteri, L.; Tacconi Stefanelli, C.; Agostini, A.; Catani, F.; Casagli, N. The New Landslide Inventory of Tuscany (Italy) Updated with PS-InSAR: Geomorphological Features and Landslide Distribution. Landslides 2018, 15, 5–19. [Google Scholar] [CrossRef]
- Trejo, R. Shoal Creek Landslide Area Still Eroding after 2018 Storms. Available online: https://www.kvue.com/article/news/shoal-creek-landslide-area-further-eroding/269-aa60d787-4b72-41f7-9d7a-47d100596428 (accessed on 1 March 2024).
- Cho, Y. Shoal Creek Landslide Area Damaged Even More after This Week’s Rain. Available online: https://www.kxan.com/news/local/austin/shoal-creek-landslide-area-damaged-even-more-after-this-weeks-rain/ (accessed on 2 March 2024).
- Garner, L.E.; Baker, V.R.; Turk, L.J.; Young, K. Others Urban Flooding and Slope Stability, Austin, Texas; Austin Geological Society (Texas): Austin, TX, USA, 1973. [Google Scholar]
- Shi, X.; Jiang, H.; Zhang, L.; Liao, M. Landslide Displacement Monitoring with Split-Bandwidth Interferometry: A Case Study of the Shuping Landslide in the Three Gorges Area. Remote Sens. 2017, 9, 937. [Google Scholar] [CrossRef]
- Cruden, D.M.; Varnes, D.J. Landslides: Investigation and Mitigation. Chapter 3—Landslide Types and Processes. 1996. Available online: https://www.scirp.org/reference/referencespapers?referenceid=2624226 (accessed on 20 November 2022).
- Hordyniec, P.; Kapłon, J.; Rohm, W.; Kryza, M. Residuals of Tropospheric Delays from GNSS Data and Ray-Tracing as a Potential Indicator of Rain and Clouds. Remote Sens. 2018, 10, 1917. [Google Scholar] [CrossRef]
- Zhang, F.; Chen, W.; Liu, G.; Liang, S.; Kang, C.; He, F. Relationships between Landslide Types and Topographic Attributes in a Loess Catchment, China. J. Mt. Sci. 2012, 9, 742–751. [Google Scholar] [CrossRef]
- Dille, A.; Kervyn, F.; Handwerger, A.L.; D’Oreye, N.; Derauw, D.; Mugaruka Bibentyo, T.; Samsonov, S.; Malet, J.P.; Kervyn, M.; Dewitte, O. When Image Correlation Is Needed: Unravelling the Complex Dynamics of a Slow-Moving Landslide in the Tropics with Dense Radar and Optical Time Series. Remote Sens. Environ. 2021, 258. [Google Scholar] [CrossRef]
- Massey, C.I.; Petley, D.N.; McSaveney, M.J. Patterns of Movement in Reactivated Landslides. Eng. Geol. 2013, 159, 1–19. [Google Scholar] [CrossRef]
- Wang, G.; Suemine, A.; Schulz, W.H. Shear-Rate-Dependent Strength Control on the Dynamics of Rainfall-Triggered Landslides, Tokushima Prefecture, Japan. Earth Surf. Process Landf. 2010, 35, 407–416. [Google Scholar] [CrossRef]
- Chang, K.T.; Ge, L.; Lin, H.H. Slope Creep Behavior: Observations and Simulations. Environ. Earth Sci 2015, 73, 275–287. [Google Scholar] [CrossRef]
- Hammons, A. Several Central Austin Homes near Edge of New Cliff after Shoal Creek Landslide|WOAI. Available online: https://news4sanantonio.com/news/local/four-central-austin-homes-near-edge-of-new-cliff-after-shoal-creek-landslide (accessed on 12 June 2022).
- Federico, A.; Popescu, M.; Elia, G.; Fidelibus, C.; Internò, G.; Murianni, A. Prediction of Time to Slope Failure: A General Framework. Environ. Earth Sci. 2012, 66, 245–256. [Google Scholar] [CrossRef]
- Abrams, T.G.; Wright, S.G. A Survey of Earth Slope Failures and Remedial Measures in Texas. 1972. Available online: https://oa.mg/work/622524357 (accessed on 20 November 2022).
- Hsu, S.C.; Nelson, P.P. Characterization of Eagle Ford Shale. Eng. Geol. 2002, 67, 169–183. [Google Scholar] [CrossRef]
- Wilkerson, M.; Larson, J.; Gaughan, M.; Marshall, D. A Unique Engineering Geology Approach to Aid in Design and Construction of a Pipeline Project in Texas. In Proceedings of the Pipelines 2013: Pipelines and Trenchless Construction and Renewals—A Global Perspective—Proceedings of the Pipelines 2013 Conference, Fort Worth, TX, USA, 23–26 June 2013. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gebremichael, E.; Hernandez, R.; Alsleben, H.; Ahmed, M.; Denne, R.; Harvey, O. Kinematics and Controlling Factors of Slow-Moving Landslides in Central Texas: A Multisource Data Fusion Approach. Geosciences 2024, 14, 133. https://doi.org/10.3390/geosciences14050133
Gebremichael E, Hernandez R, Alsleben H, Ahmed M, Denne R, Harvey O. Kinematics and Controlling Factors of Slow-Moving Landslides in Central Texas: A Multisource Data Fusion Approach. Geosciences. 2024; 14(5):133. https://doi.org/10.3390/geosciences14050133
Chicago/Turabian StyleGebremichael, Esayas, Rosbeidy Hernandez, Helge Alsleben, Mohamed Ahmed, Richard Denne, and Omar Harvey. 2024. "Kinematics and Controlling Factors of Slow-Moving Landslides in Central Texas: A Multisource Data Fusion Approach" Geosciences 14, no. 5: 133. https://doi.org/10.3390/geosciences14050133
APA StyleGebremichael, E., Hernandez, R., Alsleben, H., Ahmed, M., Denne, R., & Harvey, O. (2024). Kinematics and Controlling Factors of Slow-Moving Landslides in Central Texas: A Multisource Data Fusion Approach. Geosciences, 14(5), 133. https://doi.org/10.3390/geosciences14050133