Towards Enhanced Understanding and Experience of Landforms, Geohazards, and Geoheritage through Virtual Reality Technologies in Education: Lessons from the GeoVT Project
Abstract
:1. Introduction
2. Virtual Reality in Geoscience–Education and Interpretation
2.1. Virtual Reality in Education
2.1.1. The Role of Virtual Field Trips
2.1.2. Virtual Reality and Geohazards
2.2. Virtual Reality in Geoheritage-Oriented Tourism
3. Approach, Materials, and Methods
3.1. Rationale
3.2. The GeoVT Platform
- An online content repository accessible from any web browser [113];
- GeoVT authoring applications for Windows and Mac devices;
- GeoVT player for Meta Quest VR headsets.
4. Results—Virtual Field Trips in Practice
4.1. Fundamentals of Geomorphology
4.1.1. Fluvial Geomorphology
4.1.2. Coastal Landforms
4.1.3. Palaeoglaciology and Glacial Landscapes
4.2. Geohazards
4.2.1. Coastal Instability
4.2.2. Surface Runoff Effects
4.3. Geoheritage
4.3.1. Mud Volcanoes
4.3.2. Coastal Cliffs and Coastal Landslides
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Anderson, A.; Boppana, A.; Wall, R.; Acemyan, C.Z.; Adolf, J.; Klaus, D. Framework for Developing Alternative Reality Environments to Engineer Large, Complex Systems. Virtual Real. 2021, 25, 147–163. [Google Scholar] [CrossRef]
- Khanal, S.; Medasetti, U.S.; Mashal, M.; Savage, B.; Khadka, R. Virtual and Augmented Reality in the Disaster Management Technology: A Literature Review of the Past 11 Years. Front. Virtual Real. 2022, 3, 843195. [Google Scholar] [CrossRef]
- Hilde, T.W.C.; Carlson, R.L.; Devall, P.; Moore, J.; Alleman, P.; Sonnier, C.J.; Lee, M.C.; Herrick, C.N.; Dwan, F.; Kue, C.W. TAMU—Texas A&M University Topography and Acoustic Mapping Undersea System. In Proceedings of the OCEANS 91, Honolulu, HI, USA, 1 October 1991; Volume 2, pp. 750–755. [Google Scholar]
- Coffey, J.; Beard, D.J.; Ryan, D.A. Visualising Coastal Seabed Characteristics: Using VRML Models to Present Three Dimensional Spacial Data via the Web. J. Spat. Sci. 2007, 52, 133–143. [Google Scholar] [CrossRef]
- Kim, J.-R.; Lin, S.-Y.; Hong, J.-W.; Kim, Y.-H.; Park, C.-K. Implementation of Martian Virtual Reality Environment Using Very High-Resolution Stereo Topographic Data. Comput. Geosci. 2012, 44, 184–195. [Google Scholar] [CrossRef]
- Giordano, E.; Magagna, A.; Ghiraldi, L.; Bertok, C.; Lozar, F.; d’Atri, A.; Dela Pierre, F.; Giardino, M.; Natalicchio, M.; Martire, L.; et al. Multimedia and Virtual Reality for Imaging the Climate and Environment Changes Through Earth History: Examples from the Piemonte (NW Italy) Geoheritage (PROGEO-Piemonte Project). In Engineering Geology for Society and Territory—Volume 8; Lollino, G., Giordan, D., Marunteanu, C., Christaras, B., Yoshinori, I., Margottini, C., Eds.; Springer International Publishing: Cham, Switerland, 2015; pp. 257–260. ISBN 978-3-319-09407-6. [Google Scholar]
- Tibaldi, A.; Bonali, F.L.; Vitello, F.; Delage, E.; Nomikou, P.; Antoniou, V.; Becciani, U.; de Vries, B.V.W.; Krokos, M.; Whitworth, M. Real World–Based Immersive Virtual Reality for Research, Teaching and Communication in Volcanology. Bull. Volcanol. 2020, 82, 38. [Google Scholar] [CrossRef]
- Tibaldi, A.; Corti, N.; De Beni, E.; Bonali, F.L.; Falsaperla, S.; Langer, H.; Neri, M.; Cantarero, M.; Reitano, D.; Fallati, L. Mapping and Evaluating Kinematics and the Stress and Strain Field at Active Faults and Fissures: A Comparison between Field and Drone Data at the NE Rift, Mt Etna (Italy). Solid Earth 2021, 12, 801–816. [Google Scholar] [CrossRef]
- Young, G.; Stehle, S.; Walsh, B.; Tiri, E. Exploring Virtual Reality in the Higher Education Classroom: Using VR to Build Knowledge and Understanding. JUCS—J. Univers. Comput. Sci. 2020, 26, 904–928. [Google Scholar] [CrossRef]
- Pellas, N.; Mystakidis, S.; Kazanidis, I. Immersive Virtual Reality in K-12 and Higher Education: A Systematic Review of the Last Decade Scientific Literature. Virtual Real. 2021, 25, 835–861. [Google Scholar] [CrossRef]
- Jitmahantakul, S.; Chenrai, P. Applying Virtual Reality Technology to Geoscience Classrooms. Rev. Int. Geogr. Educ. Online 2019, 9, 577–590. [Google Scholar] [CrossRef]
- Mergili, M.; Pfeffer, H.; Köstner, J.; Gosch, L.; Kellerer-Pirklbauer, A.; Eulenstein, J.; Gulas, O. Immersive Virtual Reality Gaming for Geoeducation: Proof-of-Concept for the Prehistoric Wildalpen Rock Avalanche. In Proceedings of the EGU23, the 25th EGU General Assembly, Vienna, Austria, 23–28 April 2023. [Google Scholar]
- Oguchi, T.; Yamauchi, H.; Song, J.; Ogura, T.; Hayakawa, Y.; Tsuruoka, K.; Iizuka, K. Applications of GIS, Internet Technology, Close-Range Remote Sensing, and Virtual Reality to Develop Geomorphological Education. In Proceedings of the 10th International Conference on Geomorphology, ICG2022-389, Coimbra, Portugal, 12–16 September 2022. [Google Scholar]
- Wang, N.; Li, S.; Hu, R.; Xu, Y.; Wang, X. Geomorphology of the Underwater Caldera of the Changbaishan Tianchi Volcano Using 3D Virtual Visualization. Geol. J. 2020, 55, 5186–5196. [Google Scholar] [CrossRef]
- Bonali, F.L.; Russo, E.; Vitello, F.; Antoniou, V.; Marchese, F.; Fallati, L.; Bracchi, V.; Corti, N.; Savini, A.; Whitworth, M.; et al. How Academics and the Public Experienced Immersive Virtual Reality for Geo-Education. Geosciences 2022, 12, 9. [Google Scholar] [CrossRef]
- Caravaca, G. Using Virtual Reality to Replicate “in Situ” Field Work on Mars. In Proceedings of the 4th Virtual Geoscience Conference, Virtual, 29 September–1 October 2021. [Google Scholar]
- Hincapie, M.; Cifuentes, L.M.; Valencia-Arias, A.; Quiroz-Fabra, J. Geoheritage and Immersive Technologies: Bibliometric Analysis and Literature Review. Episodes 2023, 46, 101–115. [Google Scholar] [CrossRef]
- Pasquaré Mariotto, F.; Bonali, F.L. Virtual Geosites as Innovative Tools for Geoheritage Popularization: A Case Study from Eastern Iceland. Geosciences 2021, 11, 149. [Google Scholar] [CrossRef]
- Pasquaré Mariotto, F.; Antoniou, V.; Drymoni, K.; Bonali, F.L.; Nomikou, P.; Fallati, L.; Karatzaferis, O.; Vlasopoulos, O. Virtual Geosite Communication through a WebGIS Platform: A Case Study from Santorini Island (Greece). Appl. Sci. 2021, 11, 5466. [Google Scholar] [CrossRef]
- Martínez-Graña, A.; González-Delgado, J.A.; Nieto, C.; Villalba, V.; Cabero, T. Geodiversity and Geoheritage to Promote Geotourism Using Augmented Reality and 3D Virtual Flights in the Arosa Estuary (NW Spain). Land 2023, 12, 1068. [Google Scholar] [CrossRef]
- Melelli, L.; Silvani, F.; Ercoli, M.; Pauselli, C.; Tosi, G.; Radicioni, F. Urban Geology for the Enhancement of the Hypogean Geosites: The Perugia Underground (Central Italy). Geoheritage 2021, 13, 18. [Google Scholar] [CrossRef]
- Faggiano, M.P.; Fasanella, A. Lessons for a Digital Future from the School of the Pandemic: From Distance Learning to Virtual Reality. Front. Sociol. 2022, 7, 1101124. [Google Scholar] [CrossRef] [PubMed]
- Fowler, C. Virtual Reality and Learning: Where Is the Pedagogy? Br. J. Educ. Technol. 2015, 46, 412–422. [Google Scholar] [CrossRef]
- Dalgarno, B.; Lee, M.J.W. What Are the Learning Affordances of 3D Virtual Environments? Br. J. Educ. Technol. 2010, 41, 10–32. [Google Scholar] [CrossRef]
- Baban, S.M.J. An Analysis of Remote Sensing, GIS, and World Wide Web Utilization in Geoscience Education in the U.K. Surv. Land Inf. Sci. 2002, 62, 243–250. [Google Scholar]
- Stieff, M.; Bateman, R.C.; Uttal, D.H. Teaching and Learning with Three-Dimensional Representations. In Visualization in Science Education; Gilbert, J.K., Ed.; Springer: Dordrecht, The Netherlands, 2005; pp. 93–120. ISBN 978-1-4020-3612-5. [Google Scholar]
- Whitmeyer, S.; Feely, M.; De Paor, D.; Hennessy, R.; Whitmeyer, S.; Nicoletti, J.; Santangelo, B.; Daniels, J.; Rivera, M. Visualization Techniques in Field Geology Education: A Case Study from Western Ireland. In Field Geology Education: Historical Perspectives and Modern Approaches; Whitmeyer, S.J., Mogk, D.W., Pyle, E.J., Eds.; Geological Society of America Special Paper; Geological Society of America: Boulder, CO, USA, 2009; Volume 461, pp. 105–115. ISBN 978-0-8137-2461-4. [Google Scholar]
- Kastens, K. Object and Spatial Visualization in Geosciences. J. Geosci. Educ. 2010, 58, 52–57. [Google Scholar] [CrossRef]
- Semken, S.; Ward, E.G.; Moosavi, S.; Chinn, P.W.U. Place-Based Education in Geoscience: Theory, Research, Practice, and Assessment. J. Geosci. Educ. 2017, 65, 542–562. [Google Scholar] [CrossRef]
- Geikie, J. Structural And Field Geology; Oliver & Boyd: Edinburgh, UK, 1912. [Google Scholar]
- Gold, J.R. Fieldwork. In Teaching Geography in Higher Education: A Manual of Good Practice; Gold, J.R., Ed.; Institute of British Geographers Special Publications; Blackwell: Oxford, UK, 1991; pp. 21–35. ISBN 978-0-631-15726-7. [Google Scholar]
- Kent, M.; Gilbertson, D.D.; Hunt, C.O. Fieldwork in Geography Teaching: A Critical Review of the Literature and Approaches. J. Geogr. High. Educ. 1997, 21, 313–332. [Google Scholar] [CrossRef]
- Boyle, A.; Maguire, S.; Martin, A.; Milsom, C.; Nash, R.; Rawlinson, S.; Turner, A.; Wurthmann, S.; Conchie, S. Fieldwork Is Good: The Student Perception and the Affective Domain. J. Geogr. High. Educ. 2007, 31, 299–317. [Google Scholar] [CrossRef]
- Elkins, J.T.; Elkins, N.M.L. Teaching Geology in the Field: Significant Geoscience Concept Gains in Entirely Field-Based Introductory Geology Courses. J. Geosci. Educ. 2007, 55, 126–132. [Google Scholar] [CrossRef]
- King, C. Geoscience Education: An Overview. Stud. Sci. Educ. 2008, 44, 187–222. [Google Scholar] [CrossRef]
- Esteves, H.; Ferreira, P.; Vasconcelos, C.; Fernandes, I. Geological Fieldwork: A Study Carried out with Portuguese Secondary School Students. J. Geosci. Educ. 2013, 61, 318–325. [Google Scholar]
- Martínez-Graña, A.; González-Delgado, J.; Pallarés, S.; Goy, J.; Llovera, J. 3D Virtual Itinerary for Education Using Google Earth as a Tool for the Recovery of the Geological Heritage of Natural Areas: Application in the “Las Batuecas Valley” Nature Park (Salamanca, Spain). Sustainability 2014, 6, 8567–8591. [Google Scholar] [CrossRef]
- Schiappa, T.A.; Smith, L. Field Experiences in Geosciences: A Case Study from a Multidisciplinary Geology and Geography Course. J. Geosci. Educ. 2019, 67, 100–113. [Google Scholar] [CrossRef]
- Evelpidou, N.; Karkani, A.; Saitis, G.; Spyrou, E. Virtual Field Trips as a Tool for Indirect Geomorphological Experience: A Case Study from the Southeastern Part of the Gulf of Corinth, Greece. Geosci. Commun. 2021, 4, 351–360. [Google Scholar] [CrossRef]
- Evelpidou, N.; Karkani, A.; Komi, A.; Giannikopoulou, A.; Tzouxanioti, M.; Saitis, G.; Spyrou, E.; Gatou, M.-A. GIS-Based Virtual Field Trip as a Tool for Remote Education. Geosciences 2022, 12, 327. [Google Scholar] [CrossRef]
- Welsh, K.; France, D. Smartphones and Fieldwork. Geography 2012, 97, 47–51. [Google Scholar] [CrossRef]
- Leydon, J.; Turner, S. The Challenges and Rewards of Introducing Field Trips Into a Large Introductory Geography Class. J. Geogr. 2013, 112, 248–261. [Google Scholar] [CrossRef]
- Dolphin, G.; Dutchak, A.; Karchewski, B.; Cooper, J. Virtual Field Experiences in Introductory Geology: Addressing a Capacity Problem, but Finding a Pedagogical One. J. Geosci. Educ. 2019, 67, 114–130. [Google Scholar] [CrossRef]
- Mol, L.; Atchison, C. Image Is Everything: Educator Awareness of Perceived Barriers for Students with Physical Disabilities in Geoscience Degree Programs. J. Geogr. High. Educ. 2019, 43, 544–567. [Google Scholar] [CrossRef]
- Hurst, S.D. Use of “Virtual” Field Trips in Teaching Introductory Geology. Comput. Geosci. 1998, 24, 653–658. [Google Scholar] [CrossRef]
- Stainfield, J.; Fisher, P.; Ford, B.; Solem, M. International Virtual Field Trips: A New Direction? J. Geogr. High. Educ. 2000, 24, 255–262. [Google Scholar] [CrossRef]
- Gilley, B.; Atchison, C.; Feig, A.; Stokes, A. Impact of Inclusive Field Trips. Nat. Geosci. 2015, 8, 579–580. [Google Scholar] [CrossRef]
- Marín-Spiotta, E.; Barnes, R.T.; Berhe, A.A.; Hastings, M.G.; Mattheis, A.; Schneider, B.; Williams, B.M. Hostile Climates Are Barriers to Diversifying the Geosciences. Adv. Geosci. 2020, 53, 117–127. [Google Scholar] [CrossRef]
- Anderson, D.M. Seafloor Mapping, Imaging and Characterization from [TAMU]2 Side-Scan Sonar Data Sets: Database Management. In Proceedings of the International Symposium on Spectral Sensing Research, Maui, HI, USA, 15–20 November 1992; pp. 737–742. [Google Scholar]
- Harknett, J.; Whitworth, M.; Rust, D.; Krokos, M.; Kearl, M.; Tibaldi, A.; Bonali, F.L.; Van Wyk de Vries, B.; Antoniou, V.; Nomikou, P.; et al. The Use of Immersive Virtual Reality for Teaching Fieldwork Skills in Complex Structural Terrains. J. Struct. Geol. 2022, 163, 104681. [Google Scholar] [CrossRef]
- Arrowsmith, C.; Counihan, A.; McGreevy, D. Development of a Multi-Scaled Virtual Field Trip for the Teaching and Learning of Geospatial Science. Available online: http://ijedict.dec.uwi.edu/viewarticle.php?id=29 (accessed on 3 January 2024).
- McCaffrey, K.J.W.; Jones, R.R.; Holdsworth, R.E.; Wilson, R.W.; Clegg, P.; Imber, J.; Holliman, N.; Trinks, I. Unlocking the Spatial Dimension: Digital Technologies and the Future of Geoscience Fieldwork. J. Geol. Soc. 2005, 162, 927–938. [Google Scholar] [CrossRef]
- Bailey, J.E.; Whitmeyer, S.J.; De Paor, D.G. Introduction: The Application of Google Geo Tools to Geoscience Education and Research. In Google Earth and Virtual Visualizations in Geoscience Education and Research; Geological Society of America: Boulder, CO, USA, 2012; ISBN 978-0-8137-2492-8. [Google Scholar]
- Fuller, I.C. Taking Students Outdoors to Learn in High Places. Area 2012, 44, 7–13. [Google Scholar] [CrossRef]
- Wright, P.N.; Whitworth, M.; Tibaldi, A.; Bonali, F.; Nomikou, P.; Antoniou, V.; Vitello, F.; Becciani, U.; Krokos, M.; Van Wyk De Vries, B. Student Evaluations of Using Virtual Reality to Investigate Natural Hazard Field Sites. J. Geogr. High. Educ. 2023, 47, 311–329. [Google Scholar] [CrossRef]
- Bursztyn, N.; Shelton, B.; Walker, A.; Pederson, J. Increasing Undergraduate Interest to Learn Geoscience with GPS-Based Augmented Reality Field Trips on Students’ Own Smartphones. GSA Today 2017, 27, 4–10. [Google Scholar] [CrossRef]
- Rapprich, V.; Lisec, M.; Fiferna, P.; Závada, P. Application of Modern Technologies in Popularization of the Czech Volcanic Geoheritage. Geoheritage 2017, 9, 413–420. [Google Scholar] [CrossRef]
- Ozdemir, D.; Ozturk, F. The Investigation of Mobile Virtual Reality Application Instructional Content in Geography Education: Academic Achievement, Presence, and Student Interaction. Int. J. Hum.-Comput. Interact. 2022, 38, 1487–1503. [Google Scholar] [CrossRef]
- Gilbert, L.A.; Wirth, K.R.; Stempien, J.A.; Budd, D.A.; Bykerk-Kauffman, A.; Jones, M.H.; Knight, C.; van der Hoeven Kraft, K.J.; Matheney, R.K.; McConnell, D. What Motivations and Learning Strategies Do Students Bring to Introductory Geology. In GARNET Part 2, Students: Geological Society of America Abstracts with Programs; Geological Society of America: Boulder, CO, USA, 2009; Volume 3, p. 603. [Google Scholar]
- Gilbert, L.A.; Stempien, J.; McConnell, D.A.; Budd, D.A.; Van Der Hoeven Kraft, K.J.; Bykerk-Kauffman, A.; Jones, M.H.; Knight, C.C.; Matheney, R.K.; Perkins, D.; et al. Not Just “Rocks for Jocks”: Who Are Introductory Geology Students and Why Are They Here? J. Geosci. Educ. 2012, 60, 360–371. [Google Scholar] [CrossRef]
- Van Der Hoeven Kraft, K.J.; Srogi, L.; Husman, J.; Semken, S.; Fuhrman, M. Engaging Students to Learn through the Affective Domain: A New Framework for Teaching in the Geosciences. J. Geosci. Educ. 2011, 59, 71–84. [Google Scholar] [CrossRef]
- Harackiewicz, J.M.; Barron, K.E.; Tauer, J.M.; Carter, S.M.; Elliot, A.J. Short-Term and Long-Term Consequences of Achievement Goals: Predicting Interest and Performance over Time. J. Educ. Psychol. 2000, 92, 316–330. [Google Scholar] [CrossRef]
- Hall, C.; Dickerson, J.; Batts, D.; Kauffmann, P.; Bosse, M. Are We Missing Opportunities to Encourage Interest in STEM Fields? J. Technol. Educ. 2011, 23, 32–46. [Google Scholar] [CrossRef]
- Bond, C.E.; Cawood, A.J. A Role for Virtual Outcrop Models in Blended Learning—Improved 3D Thinking and Positive Perceptions of Learning. Geosci. Commun. 2021, 4, 233–244. [Google Scholar] [CrossRef]
- Qiu, W.; Hubble, T. The Advantages and Disadvantages of Virtual Field Trips in Geoscience Education. China Pap. 2002, 1, 75–79. [Google Scholar]
- Klippel, A.; Zhao, J.; Oprean, D.; Wallgrün, J.O.; Stubbs, C.; La Femina, P.; Jackson, K.L. The Value of Being There: Toward a Science of Immersive Virtual Field Trips. Virtual Real. 2020, 24, 753–770. [Google Scholar] [CrossRef]
- Zhao, Z.; Wu, J. Study on Virtual Reality Technology Applied to Mining Subsidence and Geohazards. In Proceedings of the 2010 2nd International Conference on Computer Engineering and Technology, Chengdu, China, 16–18 April 2010; IEEE: Chengdu, China, 2010; pp. V6-722–V6-725. [Google Scholar]
- Gerloni, I.G.; Carchiolo, V.; Vitello, F.R.; Sciacca, E.; Becciani, U.; Costa, A.; Riggi, S.; Bonali, F.L.; Russo, E.; Fallati, L.; et al. Immersive Virtual Reality for Earth Sciences. In Proceedings of the 2018 Federated Conference on Computer Science and Information Systems (FedCSIS), Poznan, Poland, 9–12 September 2018; pp. 527–534. [Google Scholar]
- Havenith, H.-B.; Cerfontaine, P.; Mreyen, A.-S. How Virtual Reality Can Help Visualise and Assess Geohazards. Int. J. Digit. Earth 2019, 12, 173–189. [Google Scholar] [CrossRef]
- Vanneschi, C.; Di Camillo, M.; Aiello, E.; Bonciani, F.; Salvini, R. SfM-MVS Photogrammetry for Rockfall Analysis and Hazard Assessment along the Ancient Roman via Flaminia Road at the Furlo Gorge (Italy). ISPRS Int. J. Geo-Inf. 2019, 8, 325. [Google Scholar] [CrossRef]
- Havenith, H.-B. 3D Landslide Models in VR. In Understanding and Reducing Landslide Disaster Risk: Volume 4 Testing, Modeling and Risk Assessment; Tiwari, B., Sassa, K., Bobrowsky, P.T., Takara, K., Eds.; ICL Contribution to Landslide Disaster Risk Reduction; Springer International Publishing: Cham, Switerzland, 2021; pp. 195–204. ISBN 978-3-030-60706-7. [Google Scholar]
- Robiati, C.; Mastrantoni, G.; Francioni, M.; Eyre, M.; Coggan, J.; Mazzanti, P. Contribution of High-Resolution Virtual Outcrop Models for the Definition of Rockfall Activity and Associated Hazard Modelling. Land 2023, 12, 191. [Google Scholar] [CrossRef]
- Macchione, F.; Costabile, P.; Costanzo, C.; De Santis, R. Moving to 3-D Flood Hazard Maps for Enhancing Risk Communication. Environ. Model. Softw. 2019, 111, 510–522. [Google Scholar] [CrossRef]
- Skinner, C. Flash Flood!: A SeriousGeoGames Activity Combining Science Festivals, Video Games, and Virtual Reality with Research Data for Communicating Flood Risk and Geomorphology. Geosci. Commun. 2020, 3, 1–17. [Google Scholar] [CrossRef]
- Spero, H.R.; Vazquez-Lopez, I.; Miller, K.; Joshaghani, R.; Cutchin, S.; Enterkine, J. Drones, Virtual Reality, and Modeling: Communicating Catastrophic Dam Failure. Int. J. Digit. Earth 2022, 15, 585–605. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, N. Virtual and Augmented Reality Technologies for Emergency Management in the Built Environments: A State-of-the-Art Review. J. Saf. Sci. Resil. 2021, 2, 1–10. [Google Scholar] [CrossRef]
- Murphy, B.L. Locating Social Capital in Resilient Community-Level Emergency Management. Nat. Hazards 2007, 41, 297–315. [Google Scholar] [CrossRef]
- Psycharis, S. The Impact of Computational Experiment and Formative Assessment in Inquiry-Based Teaching and Learning Approach in STEM Education. J. Sci. Educ. Technol. 2016, 25, 316–326. [Google Scholar] [CrossRef]
- Psycharis, S. Steam in Education: A Literature Review on the Role of Computational Thinking, Engineering Epistemology and Computational Science. Computational Steam Pedagogy (Csp). Sci. Cult. 2018, 4, 51–72. [Google Scholar] [CrossRef]
- Psycharis, S.; Kalovrektis, K.; Xenakis, A. A Conceptual Framework for Computational Pedagogy in STEAM Education: Determinants and Perspectives. Hell. J. STEM Educ. 2020, 1, 17–32. [Google Scholar] [CrossRef]
- Ng, S.B. Exploring STEM Competences for the 21st Century. In Progress Reflection on Current and Critical Issues in Curriculum Learning and Assessment; UNESCO: Paris, France, 2019. [Google Scholar]
- Bryan, L.; Guzey, S.S. K-12 STEM Education: An Overview of Perspectives and Considerations. Hell. J. STEM Educ. 2020, 1, 5–15. [Google Scholar] [CrossRef]
- REVE Cot—CIREVE. Available online: https://cireve.unicaen.fr/index.php/projets/geographie/reve-cot/ (accessed on 30 December 2023).
- Costa, S.; Madeleine, S.; Maneuvrier, A. Contribution of Virtual Reality to the Appropriation of Marine Flooding Hazard. Bull. de L’Association de Géographes Français 2022, 98, 514–529. [Google Scholar] [CrossRef]
- Calil, J.; Fauville, G.; Queiroz, A.C.M.; Leo, K.; Mann, A.; Wise-West, T.; Salvatore, P.; Bailenson, J.N. Using Virtual Reality in Sea Level Rise Planning and Community Engagement—An Overview. Water 2021, 13, 1142. [Google Scholar] [CrossRef]
- Fauville, G.; Queiroz, A.C.M.; Bailenson, J.N. Virtual Reality as a Promising Tool to Promote Climate Change Awareness. In Technology and Health; Elsevier Academic Press: Cambridge, MA, USA, 2020; pp. 91–108. ISBN 978-0-12-816958-2. [Google Scholar]
- Queiroz, A.C.M.; Fauville, G.; Abeles, A.T.; Levett, A.; Bailenson, J.N. The Efficacy of Virtual Reality in Climate Change Education Increases with Amount of Body Movement and Message Specificity. Sustainability 2023, 15, 5814. [Google Scholar] [CrossRef]
- Gill, J.C. Geology and the Sustainable Development Goals. Epis. J. Int. Geosci. 2017, 40, 70–76. [Google Scholar] [CrossRef]
- Stewart, I.S.; Gill, J.C. Social Geology—Integrating Sustainability Concepts into Earth Sciences. Proc. Geol. Assoc. 2017, 128, 165–172. [Google Scholar] [CrossRef]
- Gerbaudo, A.; Lozar, F.; Lasagna, M.; Tonon, M.D.; Egidio, E. Are We Ready for a Sustainable Development? A Survey among Young Geoscientists in Italy. Sustainability 2022, 14, 7621. [Google Scholar] [CrossRef]
- Coratza, P.; Vandelli, V.; Ghinoi, A. Increasing Geoheritage Awareness through Non-Formal Learning. Sustainability 2023, 15, 868. [Google Scholar] [CrossRef]
- ProGEO. Conserving Our Shared Geoheritage—A Protocol on Geoconservation Principles, Sustainable Site Use, Management, Fieldwork, Fossil and Mineral Collecting; ProGEO: Uppsala, Sweden, 2011; p. 12. [Google Scholar]
- Global Geosites Working Group of IUGS IUGS Geological Heritage Sites|UNESCO. Available online: https://www.unesco.org/en/iggp/igcp-projects/731 (accessed on 7 January 2024).
- Reynard, E.; Brilha, J. (Eds.) Geoheritage: Assessment, Protection, and Management; Elsevier: Amsterdam, The Netherlands, 2018; p. 450. ISBN 978-012809542-3. [Google Scholar]
- Hilario, A.; Asrat, A.; de Vries, B.v.W.; Mogk, D.; Lozano, G.; Zhang, J.; Brilha, J.; Vegas, J.; Lemon, K.; Carcavilla, L. (Eds.) The First 100 IUGS Geological Heritage Sites; International Union of Geological Sciences (IUGS): Zumaia, Spain, 2022; ISBN 1-79239-975-8. [Google Scholar]
- Brocx, M.; Semeniuk, V. Geoheritage and Geoconservation—History, Definition, Scope and Scale. J. R. Soc. West. Aust. 2007, 90, 53–87. [Google Scholar]
- Tormey, D. New Approaches to Communication and Education through Geoheritage. Int. J. Geoheritage Parks 2019, 7, 192–198. [Google Scholar] [CrossRef]
- Lansigu, C.; Bosse-Lansigu, V.; Le Hebel, F. Tools and Methods Used to Represent Geological Processes and Geosites: Graphic and Animated Media as a Means to Popularize the Scientific Content and Value of Geoheritage. Geoheritage 2014, 6, 159–168. [Google Scholar] [CrossRef]
- Cayla, N.; Martin, S. Digital Geovisualisation Technologies Applied to Geoheritage Management. In Geoheritage; Reynard, E., Brilha, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 289–303. ISBN 978-0-12-809531-7. [Google Scholar]
- Papadopoulou, E.-E.; Papakonstantinou, A.; Zouros, N.; Soulakellis, N. Scale-Variant Flight Planning for the Creation of 3D Geovisualization and Augmented Reality Maps of Geosites: The Case of Voulgaris Gorge, Lesvos, Greece. Appl. Sci. 2021, 11, 10733. [Google Scholar] [CrossRef]
- Papadopoulou, E.-E.; Vasilakos, C.; Zouros, N.; Soulakellis, N. DEM-Based UAV Flight Planning for 3D Mapping of Geosites: The Case of Olympus Tectonic Window, Lesvos, Greece. ISPRS Int. J. Geo-Inf. 2021, 10, 535. [Google Scholar] [CrossRef]
- Migoń, P.; Różycka, M. When Individual Geosites Matter Less—Challenges to Communicate Landscape Evolution of a Complex Morphostructure (Orlické–Bystrzyckie Mountains Block, Czechia/Poland, Central Europe). Geosciences 2021, 11, 100. [Google Scholar] [CrossRef]
- Martínez-Graña, A.M.; Goy, J.L.; Cimarra, C.A. A Virtual Tour of Geological Heritage: Valourising Geodiversity Using Google Earth and QR Code. Comput. Geosci. 2013, 61, 83–93. [Google Scholar] [CrossRef]
- Martínez-Graña, A.M.; Legoinha, P.; González-Delgado, J.A.; Dabrio, C.J.; Pais, J.; Goy, J.L.; Zazo, C.; Civis, J.; Armenteros, I.; Alonso-Gavilan, G.; et al. Augmented Reality in a Hiking Tour of the Miocene Geoheritage of the Central Algarve Cliffs (Portugal). Geoheritage 2017, 9, 121–131. [Google Scholar] [CrossRef]
- Martínez-Graña, A.; González-Delgado, J.Á.; Ramos, C.; Gonzalo, J.C. Augmented Reality and Valorizing the Mesozoic Geological Heritage (Burgos, Spain). Sustainability 2018, 10, 4616. [Google Scholar] [CrossRef]
- Giardino, M.; Lombardo, V.; Lozar, F.; Magagna, A.; Perotti, L. GeoMedia-Web: Multimedia and Networks for Dissemination of Knowledge on Geoheritage and Natural Risk. In Engineering Geology for Society and Territory—Volume 7; Lollino, G., Arattano, M., Giardino, M., Oliveira, R., Peppoloni, S., Eds.; Springer International Publishing: Cham, Switzerland, 2014; pp. 147–150. ISBN 978-3-319-09302-4. [Google Scholar]
- Lozar, F.; Clari, P.; Dela Pierre, F.; Natalicchio, M.; Bernardi, E.; Violanti, D.; Costa, E.; Giardino, M. Virtual Tour of Past Environmental and Climate Change: The Messinian Succession of the Tertiary Piedmont Basin (Italy). Geoheritage 2015, 7, 47–56. [Google Scholar] [CrossRef]
- Perotti, L.; Bollati, I.M.; Viani, C.; Zanoletti, E.; Caironi, V.; Pelfini, M.; Giardino, M. Fieldtrips and Virtual Tours as Geotourism Resources: Examples from the Sesia Val Grande UNESCO Global Geopark (NW Italy). Resources 2020, 9, 63. [Google Scholar] [CrossRef]
- Avzal, A.; Özdemïr, D.; Erarslan, K. Design of Aizanoi Antique City Touristic Promotional Application Examples Using Augmented and Virtual Reality Technologies. J. Estud. Inf. 2022, 3, 66–73. [Google Scholar] [CrossRef]
- Mayer, R.E. Multimedia Learning. In Psychology of Learning and Motivation; Elsevier: Amsterdam, The Netherlands, 2002; Volume 41, pp. 85–139. ISBN 978-0-12-543341-9. [Google Scholar]
- Makransky, G.; Mayer, R.E. Benefits of Taking a Virtual Field Trip in Immersive Virtual Reality: Evidence for the Immersion Principle in Multimedia Learning. Educ. Psychol. Rev. 2022, 34, 1771–1798. [Google Scholar] [CrossRef] [PubMed]
- GeoVT—Download Page. Available online: https://www.geovt.eu/downloads (accessed on 25 February 2024).
- GeoVT—Authoring Tools. Available online: https://authoring.geovt.eu/ (accessed on 25 February 2024).
- Petalas, C.; Pliakas, F.; Diamantis, I.; Kallioras, A. Development of an Integrated Conceptual Model for the Rational Management of the Transboundary Nestos River, Greece. Environ. Geol. 2005, 48, 941–954. [Google Scholar] [CrossRef]
- Boskidis, I. Environmental Management of Nestos River Basin. Ph.D. Thesis, Ecological Engineering and Technology Laboratory, Department of Environmental Engineering, Polytechnic School, Democritus University of Thrace, Xanthi, Greece, 2011. [Google Scholar]
- Giolandis, A. Shifting of the Nestos River Delta Coastline. Master’s Thesis, Department of Geography, School of Environment, Geography & Applied Economics, Harokopio University, Athens, Greece, 2019. [Google Scholar]
- Charlton, R. Fundamentals of Fluvial Geomorphology; Routledge: London, UK, 2007; ISBN 978-0-203-37108-4. [Google Scholar]
- Evelpidou, N. Geomorphological and Environmental Study in Naxos Island (Cyclades) Using Remote Sensing and GIS Techniques. Ph.D. Thesis, Department of Geology and Geoenvironment, National and Kapodistrian University of Athens, Athens, Greece, 2001. [Google Scholar]
- Evelpidou, N.; Pavlopoulos, K.; Vassilopoulos, A.; Triantaphyllou, M.; Vouvalidis, K.; Syrides, G. Yria (Western Naxos Island, Greece): Sea Level Changes in Upper Holocene and Palaeogeographical Reconstruction. Geodin. Acta 2010, 23, 233–240. [Google Scholar] [CrossRef]
- Evelpidou, N.; Pavlopoulos, K.; Vassilopoulos, A.; Triantaphyllou, M.; Vouvalidis, K.; Syrides, G. Holocene Palaeogeographical Reconstruction of the Western Part of Naxos Island (Greece). Quat. Int. 2012, 266, 81–93. [Google Scholar] [CrossRef]
- Evelpidou, N.; Petropoulos, A.; Karkani, A.; Saitis, G. Evidence of Coastal Changes in the West Coast of Naxos Island, Cyclades, Greece. J. Mar. Sci. Eng. 2021, 9, 1427. [Google Scholar] [CrossRef]
- Flemming, N.C. Holocene Earth Movements and Eustatic Sea Level Change in the Peloponnese. Nature 1968, 217, 1031–1032. [Google Scholar] [CrossRef]
- Flemming, N.C. Eustatic and Tectonic Factors in the Relative Vertical Displacement of the Aegean Coast. In The Mediterranean Sea: A Natural Sedimentation Laboratory; Stanley, D.J., Ed.; Dowden, Hutchinson and Ross Inc.: Stroudsburg, PA, USA, 1972; pp. 189–201. [Google Scholar]
- Flemming, N.C. Holocene Eustatic Changes and Coastal Tectonics in the Northeast Mediterranean: Implications for Models of Crustal Consumption. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 1978, 289, 405–458. [Google Scholar]
- Kelletat, D.; Gassert, D. Die Formengruppe Pediment-Glatthang -Felsfächer Der Westlichen Mani-Halbinsel, Peloponnes. Die Erde 1975, 106, 5–68. [Google Scholar]
- Kelletat, D.; Gassert, D. Quartärgeologische Untersuchungen Im Küstenraum Der Mani-Halbinsel, Peloponnes. Z. Für Geomorphol. Suppl. Issues 1975, 22, 8–56. [Google Scholar]
- Kelletat, D.; Kowalczyk, G.; Schröder, B.; Winter, K.-P. A Synoptic View on the Neotectonic Development of the Peloponnesian Coastal Regions. Z. Der Dtsch. Geol. Ges. 1976, 127, 447–465. [Google Scholar] [CrossRef]
- Kelletat, D.; Kowalczyk, G.; Schröder, B.; Winter, K.P. Neotectonics in the Peloponnesian Coastal Regions. In Alps, Apennines, Hellenides. Geodynamic Investigations along Geotraverses by an International Group of Geoscientists; Closs, H., Roeder, D., Schmidt, K., Eds.; Schweizerbart’sche Verlagsbuchhandlung: Stuttgart, Germany, 1978; pp. 512–518. [Google Scholar]
- Mariolakos, I. A Neotectonic Geodynamic Model of Peloponnesus Based on Morphotectonics, Repeated Gravity Measurements, and Seismicity. Geol. Jahrb. 1985, B50, 3–17. [Google Scholar]
- Kourampas, N. Plio-Quaternary Sedimentation and Geomorphology within an Active Fore-Arc: Messenia and Eastern Lakonia Peninsulae, Southern Peloponnese, Greece; University of Edinburgh: Edinburgh, UK, 2001. [Google Scholar]
- Stroeven, A.; Hättestrand, C.; Jansson, K.; Kleman, J. Paleoglaciology. In Glaciers and Ice Sheets in the Climate System; Fowler, A., Ng, F., Eds.; Springer Textbooks in Earth Sciences, Geography and Environment; Springer International Publishing: Cham, Switzerland, 2021; pp. 431–457. ISBN 978-3-030-42582-1. [Google Scholar]
- Stroeven, A.P.; Hättestrand, C.; Kleman, J.; Heyman, J.; Fabel, D.; Fredin, O.; Goodfellow, B.W.; Harbor, J.M.; Jansen, J.D.; Olsen, L.; et al. Deglaciation of Fennoscandia. Quat. Sci. Rev. 2016, 147, 91–121. [Google Scholar] [CrossRef]
- Kleman, J.; Borgström, I. The Boulder Fields of Mt. Fulufjället, West-Central Sweden: Late Weichselian Boulder Blankets and Interstadial Periglacial Phenomena. Geogr. Ann. Ser. A Phys. Geogr. 1990, 72, 63–78. [Google Scholar] [CrossRef]
- Kleman, J.; Borgström, I. Glacial Land Forms Indicative of a Partly Frozen Bed. J. Glaciol. 1994, 40, 255–264. [Google Scholar] [CrossRef]
- Kleman, J.; Hättestrand, M.; Borgström, I.; Preusser, F.; Fabel, D. The Idre Marginal Moraine—An Anchorpoint for Middle and Late Weichselian Ice Sheet Chronology. Quat. Sci. Adv. 2020, 2, 100010. [Google Scholar] [CrossRef]
- National Observation Service of Coastal Dynamics DYNALIT UK. Available online: https://www.dynalit.fr/dynalit_uk (accessed on 7 January 2024).
- Medjkane, M.; Maquaire, O.; Costa, S.; Roulland, T.; Letortu, P.; Fauchard, C.; Antoine, R.; Davidson, R. High-Resolution Monitoring of Complex Coastal Morphology Changes: Cross-Efficiency of SfM and TLS-Based Survey (Vaches-Noires Cliffs, Normandy, France). Landslides 2018, 15, 1097–1108. [Google Scholar] [CrossRef]
- Roulland, T.; Maquaire, O.; Costa, S.; Compain, V.; Davidson, R.; Medjkane, M. Dynamique Des Falaises Des Vaches Noires: Analyse Diachronique Historique et Récente à l’aide de Documents Multi-Sources (Normandie, France). Géomorphologie Relief Process. Environ. 2019, 25, 37–55. [Google Scholar] [CrossRef]
- Roulland, T. Modalités et Rythmes d’Évolution des Falaises des Vaches Noires (Normandie, France): Caractérisation et Quantification des Dynamiques Hydrogravitaires par Approches Multi-Scalaires. Ph.D. Thesis, Normandie Université, Rouen, France, 2022. [Google Scholar]
- Lekkas, E.; Parcharidis, I.; Arianoutsou, M.; Lozios, S.; Mavroulis, S.; Spyrou, N.I.; Antoniou, V.; Nastos, P.; Mavrouli, M.; Speis, P. The July–August 2021 Wildfires in Greece. In Newsletter in Environmental Disaster Crisis Management Strategies; National and Kapodistrian University of Athens: Athens, Greece, 2021; Volume 25, Available online: https://edcm.edu.gr/images/docs/newsletters/Newsletter_25_2021_July_August_Wildfires_in_Greece.pdf (accessed on 4 December 2023).
- Evelpidou, N.; Tzouxanioti, M.; Gavalas, T.; Spyrou, E.; Saitis, G.; Petropoulos, A.; Karkani, A. Assessment of Fire Effects on Surface Runoff Erosion Susceptibility: The Case of the Summer 2021 Forest Fires in Greece. Land 2021, 11, 21. [Google Scholar] [CrossRef]
- Dafis, S. Forest Ecology; Giahoudi-Giapouli: Thessaloniki, Greece, 1986. [Google Scholar]
- Baloutsos, G.; Oikonomou, A.; Kaoukis, K. The Risk of Flooding in Drainage Basins After Fire. Analysis of the Problem and Immediate Measures to Reduce the Effects. Electronic text, National Agricultural Research Foundation, Institute of Mediterranean Forest Ecosystems and Technology of Forest Products, Athens. Available online: http://repository-theophrastus.ekt.gr/theophrastus/bitstream/20.500.12038/223/1/Mpaloytsos_Oikonomou_Kaoukis%20KindinoiPlymmirasSeLekanesAporrois.pdf (accessed on 15 May 2023).
- Diakakis, M. Flood Risk Assessment Using Simulation Models. Ph.D. Thesis, Department of Geology and Geo-Environment, National and Kapodistrian University of Athens, Athens, Greece, 2012. [Google Scholar]
- Armanini, A. Principles of River Hydraulics; Springer International Publishing: Cham, Switzerland, 2018; ISBN 978-3-319-68099-6. [Google Scholar]
- Evelpidou, N.; Tzouxanioti, M.; Spyrou, E.; Petropoulos, A.; Karkani, A.; Saitis, G.; Margaritis, M. GIS-Based Assessment of Fire Effects on Flash Flood Hazard: The Case of the Summer 2021 Forest Fires in Greece. GeoHazards 2022, 4, 1. [Google Scholar] [CrossRef]
- Spallanzani, L. Viaggi alle Due Sicilie e in Alcune parti dell’Appennino; Stamperia B. Comini: Pavia, Italy, 1795. [Google Scholar]
- Stoppani, A. Il Bel Paese. Conversazioni sulle Bellezze Naturali la Geologia e la Geografia Fisica d’Italia; Tipografia e Libreria Editrice Ditta Giacomo Agnelli: Milano, Italy, 1881. [Google Scholar]
- Castaldini, D.; Conventi, M. Inquadramento geografico e caratteristiche delle Salse di Nirano. Atti Soc. Nat. Mat. Modena 2017, 148, 11–22. [Google Scholar]
- Castaldini, D.; Coratza, P. Mud Volcanoes in the Emilia-Romagna Apennines: Small Landforms of Outstanding Scenic and Scientific Value. In Landscapes and Landforms of Italy; Soldati, M., Marchetti, M., Eds.; World Geomorphological Landscapes; Springer International Publishing: Cham, Switzerland, 2017; pp. 225–234. ISBN 978-3-319-26192-8. [Google Scholar]
- Selmi, L.; Coratza, P.; Gauci, R.; Soldati, M. Geoheritage as a Tool for Environmental Management: A Case Study in Northern Malta (Central Mediterranean Sea). Resources 2019, 8, 168. [Google Scholar] [CrossRef]
- Morino, C.; Coratza, P.; Soldati, M. Landslides, a Key Landform in the Global Geological Heritage. Front. Earth Sci. 2022, 10, 864760. [Google Scholar] [CrossRef]
- Calleja, I.; Tonelli, C. Dwejra and Maqluba: Emblematic Sinkholes in the Maltese Islands. In Landscapes and Landforms of the Maltese Islands; Gauci, R., Schembri, J.A., Eds.; World Geomorphological Landscapes; Springer International Publishing: Cham, Switzerland, 2019; pp. 129–139. ISBN 978-3-030-15454-7. [Google Scholar]
- Virtual Field Trips—ASU Center for Education through Exploration. Available online: https://vft.asu.edu/ (accessed on 12 April 2024).
- European University Foundation Erasmus+ Review 2021–2022-Higher Education—Student and Staff Mobility. Available online: https://uni-foundation.eu/uploads/2023_Erasmus+review2021_2022.pdf (accessed on 25 February 2024).
- de Castro, A.M.G.; García-Peñalvo, F.J. Systematic Review of Erasmus+ Projects Labelled as Good Practice and Related to E-Learning and ICT: Some Case Studies. Heliyon 2023, 9, e22331. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vandelli, V.; Migoń, P.; Palmgren, Y.; Spyrou, E.; Saitis, G.; Andrikopoulou, M.E.; Coratza, P.; Medjkane, M.; Prieto, C.; Kalovrektis, K.; et al. Towards Enhanced Understanding and Experience of Landforms, Geohazards, and Geoheritage through Virtual Reality Technologies in Education: Lessons from the GeoVT Project. Geosciences 2024, 14, 127. https://doi.org/10.3390/geosciences14050127
Vandelli V, Migoń P, Palmgren Y, Spyrou E, Saitis G, Andrikopoulou ME, Coratza P, Medjkane M, Prieto C, Kalovrektis K, et al. Towards Enhanced Understanding and Experience of Landforms, Geohazards, and Geoheritage through Virtual Reality Technologies in Education: Lessons from the GeoVT Project. Geosciences. 2024; 14(5):127. https://doi.org/10.3390/geosciences14050127
Chicago/Turabian StyleVandelli, Vittoria, Piotr Migoń, Ylva Palmgren, Evangelos Spyrou, Giannis Saitis, Maria Eleni Andrikopoulou, Paola Coratza, Mohand Medjkane, Carmen Prieto, Konstantinos Kalovrektis, and et al. 2024. "Towards Enhanced Understanding and Experience of Landforms, Geohazards, and Geoheritage through Virtual Reality Technologies in Education: Lessons from the GeoVT Project" Geosciences 14, no. 5: 127. https://doi.org/10.3390/geosciences14050127
APA StyleVandelli, V., Migoń, P., Palmgren, Y., Spyrou, E., Saitis, G., Andrikopoulou, M. E., Coratza, P., Medjkane, M., Prieto, C., Kalovrektis, K., Lissak, C., Papadopoulos, A., Papastamatiou, N., Evelpidou, N., Maquaire, O., Psycharis, S., Stroeven, A. P., & Soldati, M. (2024). Towards Enhanced Understanding and Experience of Landforms, Geohazards, and Geoheritage through Virtual Reality Technologies in Education: Lessons from the GeoVT Project. Geosciences, 14(5), 127. https://doi.org/10.3390/geosciences14050127