Impact of Vetiver Plantation on Unsaturated Soil Behavior and Stability of Highway Slope
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Selection and Plantation
2.2. Site Instrumentation and Data Collection
2.3. LiDAR Survey
3. Results
3.1. Moisture Content
3.2. LiDAR Survey Result
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Allam, M.M.; Sridharan, A. Effect of Wetting and Drying on Shear Strength. J. Geotech. Eng. Div. 1981, 107, 421–438. [Google Scholar] [CrossRef]
- Khan, S.; Ivoke, J.; Nobahar, M. Coupled effect of wet-dry cycles and rainfall on highway slope made of yazoo clay. Geosciences 2019, 9, 341. [Google Scholar] [CrossRef]
- Al-Homoud, A.S.; Basma, A.A.; Husein Malkawi, A.I.; Al Bashabsheh, M.A. Cyclic Swelling Behavior of Clays. J. Geotech. Eng. 1995, 121, 562–565. [Google Scholar] [CrossRef]
- Rao, K.S.; Rao, S.M.; Gangadhara, S. Swelling behavior of a desiccated clay. Geotech. Test. J. 2000, 23, 193–198. Available online: https://trid.trb.org/view/656646 (accessed on 12 December 2023). [CrossRef]
- Khan, S.; Amini, F.; Nobahar, M. Performance Evaluation of Highway Slopes on Yazoo Clay; Mississippi Department of Transportation: Jackson, MS, USA, 2020.
- Spears, A.; Khan, M.S.; Whalin, R.W.; Alzeghoul, O.E.; Chakraborty, A. Bio-Inspired Stabilization of a Test Levee Slope Using Vetiver Grass on Highly Plastic Clay. In Proceedings of the Geo-Congress 2023; American Society of Civil Engineers: Los Angeles, CA, USA, 2023; pp. 96–105. [Google Scholar] [CrossRef]
- Nobahar, M.; Salunke, R.; Alzeghoul, O.E.; Khan, M.S.; Amini, F. Mapping of Slope Failures on Highway Embankments using Electrical Resistivity Imaging (ERI), Unmanned Aerial Vehicle (UAV), and Finite Element Method (FEM) Numerical Modeling for Forensic Analysis. Transp. Geotech. 2023, 40, 100949. [Google Scholar] [CrossRef]
- Prakash, K.; Sridharan, A. Free Swell Ratio and Clay Mineralogy of Fine-Grained Soils. Geotech. Test. J. 2004, 27, 10860. [Google Scholar] [CrossRef]
- Mahannopkul, K.; Jotisankasa, A. Influence of root suction on tensile strength of Chrysopogon zizanioides roots and its implication on bioslope stabilization. J. Mt. Sci. 2019, 16, 275–284. [Google Scholar] [CrossRef]
- Taylor, A.C. Mineralogy and Engineering Properties of The Yazoo Clay Formation, Jackson Group, Central Mississippi. Master’s Thesis, Mississippi State University, Mississippi State, MS, USA, 2005. [Google Scholar]
- Kim, J.; Jeong, S.; Park, S.; Sharma, J. Influence of rainfall-induced wetting on the stability of slopes in weathered soils. Eng. Geol. 2004, 75, 251–262. [Google Scholar] [CrossRef]
- Khan, S.; Amini, F.; Salunke, R.; Nobahar, M. Development of Advanced Landslide Investigation Protocol Using Geophysical Methods for Mississippi; Mississippi Department of Transportation: Jackson, MSA, USA, 2023.
- Li, J.; Cameron, D.A.; Ren, G. Case study and back analysis of a residential building damaged by expansive soils. Comput. Geotech. 2014, 56, 89–99. [Google Scholar] [CrossRef]
- Amakye, S.Y.; Abbey, S.J.; Booth, C.A.; Mahamadu, A.-M. Enhancing the Engineering Properties of Subgrade Materials Using Processed Waste: A Review. Geotechnics 2021, 1, 307–329. [Google Scholar] [CrossRef]
- Jones, L.D.; Jefferson, I. Expansive Soil. In Institution of Civil Engineers Manuals Series; ICE Publishing: London, UK, 2012. [Google Scholar]
- NASA Earth Observatory Climate Changes in the United States. Available online: https://earthobservatory.nasa.gov/images/83624/climate-changes-in-the-united-states (accessed on 13 December 2023).
- NOAA The new, U.S. Climate Normals Are Here. What Do They Tell Us about Climate Change? | National Oceanic and Atmospheric Administration. Available online: https://www.noaa.gov/news/new-us-climate-normals-are-here-what-do-they-tell-us-about-climate-change (accessed on 13 December 2023).
- Trenberth, K. Changes in precipitation with climate change. Clim. Res. 2011, 47, 123–138. [Google Scholar] [CrossRef]
- Karl, T.R.; Melillo, J.M.; Oeterson, T.C. Global Climate Change Impacts in the United States; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Sistek, S. 6 Rare “1000-Year” Rain Events within a Month? Climate Change May Force NOAA to Update Criteria. Available online: https://www.foxweather.com/extreme-weather/5-rare-1000-year-rain-events-within-a-month-climate-change-may-force-noaa-to-update-criteria (accessed on 25 July 2023).
- Khan, M.S.; Nobahar, M.; Ivoke, J.; Amini, F. Rainfall Induced Shallow Slope Failure over Yazoo Clay in Mississippi. In PanAm Unsaturated Soils; ASCE: Austin, Texas, USA, 2018; pp. 153–162. [Google Scholar] [CrossRef]
- Tohari, A.; Nishigaki, M.; Komatsu, M. Laboratory Rainfall-Induced Slope Failure with Moisture Content Measurement. J. Geotech. Geoenviron. Eng. 2007, 133, 575–587. [Google Scholar] [CrossRef]
- Nabaei, M. Evaluation of Best Practices for implementation of Slope repair Methods in Texas. Master’s Thesis, University of Texas, Arlington, TX, USA, 2019. [Google Scholar]
- Nelson, M.; Saftner, D.; Carranza-Torres, C. Slope Stabilization for Local Government Engineers in Minnesota. In Congress on Technical Advancement; ASCE: Austin, Texas, USA, 2017; pp. 127–138. [Google Scholar] [CrossRef]
- Collin, J.G.; Loehr, J.E.; Hung, C.J. Slope Maintenance and Slide Restoration Reference Manual for NHI 132081 Course 2008; National Highway Institute: Washington, DC, USA, 2008. [Google Scholar]
- Chen, C.-W.; Salim, H.; Bowders, J.J.; Loehr, J.E.; Owen, J. Creep Behavior of Recycled Plastic Lumber in Slope Stabilization Applications. J. Mater. Civ. Eng. 2007, 19, 130–138. [Google Scholar] [CrossRef]
- Wei, W.B.; Cheng, Y.M. Strength reduction analysis for slope reinforced with one row of piles. Comput. Geotech. 2009, 36, 1176–1185. [Google Scholar] [CrossRef]
- Abramson, L.W.; Lee, T.S.; Sharma, S.; Boyce, G.M. Slope Stability and Stabilization Methods, 2nd ed.; John Wiley & Sons, Inc.: New York, NY, USA, 2002. [Google Scholar]
- Gray, D.H.; Sotir, R.B. Biotechnical and Soil Bioengineering Slope Stabilization: A Practical Guide for Erosion Control; John Wiley & Sons, Inc.: New York, NY, USA, 1996. [Google Scholar]
- Martin Donat Bioengineering Techniques for Streambank Restoration; Watershed Restoration Program, Ministry of Environment, Lands and Parks and Ministry of Forests, Umweltakademie: Stockhofstr, Austria, 1995.
- Crocamo, A.; Di Bernardino, S.; Di Giovanni, R.; Fabbricino, M.; Martins-Dias, S. An integrated approach to energy production and nutrient recovery through anaerobic digestion of Vetiveria zizanoides. Biomass Bioenergy 2015, 81, 288–293. [Google Scholar] [CrossRef]
- Mickovski, S.B.; van Beek, L.P.H. Root morphology and effects on soil reinforcement and slope stability of young vetiver (Vetiveria zizanioides) plants grown in semi-arid climate. Plant Soil 2009, 324, 43–56. [Google Scholar] [CrossRef]
- Nirola, R.; Megharaj, M.; Aryal, R.; Naidu, R. Screening of metal uptake by plant colonizers growing on abandoned copper mine in Kapunda, South Australia. Int. J. Phytoremediation 2016, 18, 399–405. [Google Scholar] [CrossRef]
- Samir, S.; Khan, M.S. Water Balance Final Cover Using Vetiver Grass in Texas. Geo-Congress 2023, 2023, 182–192. [Google Scholar] [CrossRef]
- Hengchaovanich, D. Vetiver system for slope stabilization. In Proceedings of the 3rd International Vetiver Conference, Guangzhou, China, 6–9 October 2003; pp. 301–309. [Google Scholar]
- Mohammad, S.N.; Masoud, N.; Mohammad Sadik, K.; Alzeghoul, O.; Henry Kini, C. Vetiver Grass Performance on a Distressed Highway Slope of High-Plastic Clay under Excessive Rainfall. Geo-Congress 2022, 2022, 268–278. [Google Scholar] [CrossRef]
- Khan, S.; Whalin, R.W.; Spears, A.; Chakraborty, A. Bio-Inspired Stabilization of Levee Slope on Expansive Yazoo Clay at the Maritime and Multimodal Transportation Infrastructure in Mississippi. 2023. Available online: https://rosap.ntl.bts.gov/view/dot/73004 (accessed on 15 December 2023).
- Rahman, F.; Chakraborty, A.; Khan, S. A Transformative Approach to Stabilize Highway Slope Using Vetiver Grass. In Proceedings of the ASCE Inspire 2023; American Society of Civil Engineers: Arlington, VA, USA, 2023; pp. 537–545. [Google Scholar]
- Ng, C.W.W.; Ni, J.J.; Leung, A.K. Effects of plant growth and spacing on soil hydrological changes: A field study. Géotechnique 2020, 70, 867–881. [Google Scholar] [CrossRef]
- Patil, U.D.; Shelton, A.J.; Catahay, M.; Kim, Y.S.; Congress, S.S.C. Role of vegetation in improving the stability of a tropical hill slope in Guam. Environ. Geotech. 2022, 9, 562–581. [Google Scholar] [CrossRef]
- Patil, U.D.; Shelton Iii, A.J.; Aquino, E. Bioengineering Solution to Prevent Rainfall-Induced Slope Failures in Tropical Soil. Land 2021, 10, 299. [Google Scholar] [CrossRef]
- Hu, H.; Fernandez-Steeger, T.M.; Dong, M.; Azzam, R. Numerical modeling of LiDAR-based geological model for landslide analysis. Autom. Constr. 2012, 24, 184–193. [Google Scholar] [CrossRef]
- Truong, P.; Van, T.P.; Pinners, E. The Vetiver System for Slope Stabilization, 1st ed.; The Vetiver Network International: Washington, DC, USA, 2008. [Google Scholar]
- Wandinger, U. Introduction to LiDAR. In Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere; Weitkamp, C., Ed.; Springer Series in Optical Sciences; Springer: New York, NY, USA, 2005; pp. 1–18. ISBN 978-0-387-25101-1. [Google Scholar]
- Hata, A.; Wolf, D. Road marking detection using LIDAR reflective intensity data and its application to vehicle localization. In Proceedings of the 17th International IEEE Conference on Intelligent Transportation Systems (ITSC), Qingdao, China, 8–11 October 2014; pp. 584–589. [Google Scholar]
- Singh, M.; Guleria, N.; Prakasa Rao, E.V.; Goswami, P. Efficient C sequestration and benefits of medicinal vetiver cropping in tropical regions. Agron. Sustain. Dev. 2014, 34, 603–607. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahman, F.; Chakraborty, A.; Khan, S.; Salunke, R. Impact of Vetiver Plantation on Unsaturated Soil Behavior and Stability of Highway Slope. Geosciences 2024, 14, 123. https://doi.org/10.3390/geosciences14050123
Rahman F, Chakraborty A, Khan S, Salunke R. Impact of Vetiver Plantation on Unsaturated Soil Behavior and Stability of Highway Slope. Geosciences. 2024; 14(5):123. https://doi.org/10.3390/geosciences14050123
Chicago/Turabian StyleRahman, Fariha, Avipriyo Chakraborty, Sadik Khan, and Rakesh Salunke. 2024. "Impact of Vetiver Plantation on Unsaturated Soil Behavior and Stability of Highway Slope" Geosciences 14, no. 5: 123. https://doi.org/10.3390/geosciences14050123
APA StyleRahman, F., Chakraborty, A., Khan, S., & Salunke, R. (2024). Impact of Vetiver Plantation on Unsaturated Soil Behavior and Stability of Highway Slope. Geosciences, 14(5), 123. https://doi.org/10.3390/geosciences14050123