Global Rayleigh Wave Attenuation and Group Velocity from International Seismological Centre Data
Abstract
:1. Introduction
2. Methods
3. Results
4. Discussion
4.1. Other Studies
4.2. Interpretation
5. Conclusions
Supplementary Materials
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adenis, A.; Debayle, E.; Ricard, Y. Seismic Evidence for Broad Attenuation Anomalies in the Asthenosphere beneath the Pacific Ocean. Geophys. J. Int. 2017, 209, 1677–1698. [Google Scholar] [CrossRef]
- Ma, Z.; Masters, G.; Mancinelli, N. Two-Dimensional Global Rayleigh Wave Attenuation Model by Accounting for Finite-Frequency Focusing and Defocusing Effect. Geophys. J. Int. 2016, 204, 631–649. [Google Scholar] [CrossRef]
- Billien, M.; Lévêque, J.; Trampert, J. Global Maps of Rayleigh Wave Attenuation for Periods between 40 and 150 Seconds. Geophys. Res. Lett. 2000, 27, 3619–3622. [Google Scholar] [CrossRef]
- Dalton, C.A.; Ekström, G. Constraints on Global Maps of Phase Velocity from Surface-Wave Amplitudes. Geophys. J. Int. 2006, 167, 820–826. [Google Scholar] [CrossRef]
- Dalton, C.A.; Ekström, G. Global Models of Surface Wave Attenuation. J. Geophys. Res. 2006, 111, 1–19. [Google Scholar] [CrossRef]
- Dalton, C.A.; Ekström, G.; Dziewoński, A.M. The Global Attenuation Structure of the Upper Mantle. J. Geophys. Res. 2008, 113, 1–24. [Google Scholar] [CrossRef]
- Magrini, F.; Boschi, L.; Gualtieri, L.; Lekić, V.; Cammarano, F. Rayleigh-Wave Attenuation across the Conterminous United States in the Microseism Frequency Band. Sci. Rep. 2021, 11, 10149. [Google Scholar] [CrossRef]
- Levshin, A.L.; Ritzwoller, M.H.; Barmin, M.P.; Villaseñor, A.; Padgett, C.A. New Constraints on the Arctic Crust and Uppermost Mantle: Surface Wave Group Velocities, Pn, and Sn. Phys. Earth Planet. Inter. 2001, 123, 185–204. [Google Scholar] [CrossRef]
- Ritzwoller, M.H. Global Surface Wave Diffraction Tomography. J. Geophys. Res. 2002, 107, 1–13. [Google Scholar] [CrossRef]
- Yanovskaya, T. 3D S-Wave Velocity Pattern in the Upper Mantle beneath the Continent of Asia from Rayleigh Wave Data. Phys. Earth Planet. Inter. 2003, 138, 263–278. [Google Scholar] [CrossRef]
- Yang, X.; Taylor, S.R.; Patton, H.J. The 20-s Rayleigh Wave Attenuation Tomography for Central and Southeastern Asia. J. Geophys. Res. 2004, 109, 2004JB003193. [Google Scholar] [CrossRef]
- Levshin, A.L.; Yang, X.; Barmin, M.P.; Ritzwoller, M.H. Midperiod Rayleigh Wave Attenuation Model for Asia: Rayleigh wave attenuation in Asia. Geochem. Geophys. Geosyst. 2010, 11. [Google Scholar] [CrossRef]
- Bao, X.; Song, X.; Li, J. High-Resolution Lithospheric Structure beneath Mainland China from Ambient Noise and Earthquake Surface-Wave Tomography. Earth Planet. Sci. Lett. 2015, 417, 132–141. [Google Scholar] [CrossRef]
- Babikoff, J.C.; Dalton, C.A. Long-Period Rayleigh Wave Phase Velocity Tomography Using USArray. Geochem. Geophys. Geosyst. 2019, 20, 1990–2006. [Google Scholar] [CrossRef]
- Zhou, Y.; Nolet, G.; Dahlen, F.A.; Laske, G. Global Upper-Mantle Structure from Finite-Frequency Surface-Wave Tomography. J. Geophys. Res. 2006, 111, B04304. [Google Scholar] [CrossRef]
- International Seismological Centre On-Line Bulletin 2023. Available online: https://www.isc.ac.uk (accessed on 2 February 2024).
- Hearn, T.M. Two-Dimensional Attenuation and Velocity Tomography of Iran. Geosciences 2022, 12, 397. [Google Scholar] [CrossRef]
- Vincenty, T. Direct and Inverse Solutions of Geodesics on the Ellipsoid with Application of Nested Equations. Surv. Rev. 1975, 22, 88–93. [Google Scholar] [CrossRef]
- Paige, C.C.; Saunders, M.A. Algorithm 583, LSQR: Sparse Linear Equations and Least-Squares Problems. ACM Trans. Math. Softw. 1982, 8, 43–71. [Google Scholar] [CrossRef]
- Paige, C.C.; Saunders, M.A. LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares, Trans. ACM Trans. Math. Softw. 1982, 8, 195–209. [Google Scholar] [CrossRef]
- Ewing, W.M.; Jardetzky, W.S.; Press, F. Elastic Waves in Layered Media; McGraw-Hill Book Company: New York, NY, USA, 1957. [Google Scholar]
- Dahlen, F.A.; Tromp, J. Theoretical Global Seismology; Princeton University Press: Princeton, NJ, USA, 1998; ISBN 978-0-691-00116-6. [Google Scholar]
- Bao, X.; Dalton, C.A.; Ritsema, J. Effects of Elastic Focusing on Global Models of Rayleigh Wave Attenuation. Geophys. J. Int. 2016, 207, 1062–1079. [Google Scholar] [CrossRef]
- Chen, H.; Ni, S.; Chu, R.; Chong, J.; Liu, Z.; Zhu, L. Influence of the Off-Great-Circle Propagation of Rayleigh Waves on Event-Based Surface Wave Tomography in Northeast China. Geophys. J. Int. 2018, 214, 1105–1124. [Google Scholar] [CrossRef]
- Hearn, T.M.; Wang, S.; Ni, J.F.; Xu, Z.; Yu, Y.; Zhang, X. Uppermost Mantle Velocities beneath China and Surrounding Regions. J. Geophys. Res. 2004, 109, B11301. [Google Scholar] [CrossRef]
- Rezapour, M.; Pearce, R.G. Bias in Surface-Wave Magnitude Ms Due to Inadequate Distance Corrections. Bull. Seismol. Soc. Am. 1998, 88, 43–61. [Google Scholar] [CrossRef]
- Selby, N.D.; Bowers, D.; Marshall, P.D.; Douglas, A. Empirical Path and Station Corrections for Surface-Wave Magnitude, Ms, Using a Global Network. Geophys. J. Int. 2003, 155, 379–390. [Google Scholar] [CrossRef]
- Zhou, L.; Song, X.; Yang, X.; Zhao, C. Rayleigh Wave Attenuation Tomography in the Crust of the Chinese Mainland. Geochem. Geophys. Geosyst. 2020, 21, e2020GC008971. [Google Scholar] [CrossRef]
- Feng, M.; Assumpção, M.; Van Der Lee, S. Group-Velocity Tomography and Lithospheric S-Velocity Structure of the South American Continent. Phys. Earth Planet. Inter. 2004, 147, 315–331. [Google Scholar] [CrossRef]
- Nascimento, A.V.D.S.; França, G.S.; Chaves, C.A.M.; Marotta, G.S. Rayleigh Wave Group Velocity Maps at Periods of 10–150 s beneath South America. Geophys. J. Int. 2021, 228, 958–981. [Google Scholar] [CrossRef]
- Ekström, G.; Tromp, J.; Larson, E.W.F. Measurements and Global Models of Surface Wave Propagation. J. Geophys. Res. 1997, 102, 8137–8157. [Google Scholar] [CrossRef]
- Durand, S.; Debayle, E.; Ricard, Y. Rayleigh Wave Phase Velocity and Error Maps up to the Fifth Overtone. Geophys. Res. Lett. 2015, 42, 3266–3272. [Google Scholar] [CrossRef]
- Liu, K.; Zhou, Y. Global Rayleigh Wave Phase-Velocity Maps from Finite-Frequency Tomography. Geophys. J. Int. 2016, 205, 51–66. [Google Scholar] [CrossRef]
- Zhou, Y.; Dahlen, F.A.; Nolet, G.; Laske, G. Finite-Frequency Effects in Global Surface-Wave Tomography. Geophys. J. Int. 2005, 163, 1087–1111. [Google Scholar] [CrossRef]
- Dalton, C.A.; Ekström, G.; Dziewonski, A.M. Global Seismological Shear Velocity and Attenuation: A Comparison with Experimental Observations. Earth Planet. Sci. Lett. 2009, 284, 65–75. [Google Scholar] [CrossRef]
- Selby, N.D.; Woodhouse, J.H. Controls on Rayleigh Wave Amplitudes: Attenuation and Focusing. Geophys. J. Int. 2000, 142, 933–940. [Google Scholar] [CrossRef]
- Selby, N.D. The Q Structure of the Upper Mantle: Constraints from Rayleigh Wave Amplitudes. J. Geophys. Res. 2002, 107, 2097. [Google Scholar] [CrossRef]
- Pilidou, S.; Priestley, K.; Gudmundsson, Ó.; Debayle, E. Upper Mantle S -Wave Speed Heterogeneity and Anisotropy beneath the North Atlantic from Regional Surface Wave Tomography: The Iceland and Azores Plumes. Geophys. J. Int. 2004, 159, 1057–1076. [Google Scholar] [CrossRef]
- Herrmann, R.B. Computer Programs in Seismology: An Evolving Tool for Instruction and Research. Seism. Res. Lettr. 2013, 84, 1081–1088. [Google Scholar] [CrossRef]
- Abbott, D.H.; Mooney, W.D.; VanTongeren, J.A. The Character of the Moho and Lower Crust within Archean Cratons and the Tectonic Implications. Tectonophysics 2013, 609, 690–705. [Google Scholar] [CrossRef]
- Bird, P. An Updated Digital Model of Plate Boundaries. Geochem. Geophys. Geosyst. 2003, 4, 2001GC000252. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hearn, T.M. Global Rayleigh Wave Attenuation and Group Velocity from International Seismological Centre Data. Geosciences 2024, 14, 50. https://doi.org/10.3390/geosciences14020050
Hearn TM. Global Rayleigh Wave Attenuation and Group Velocity from International Seismological Centre Data. Geosciences. 2024; 14(2):50. https://doi.org/10.3390/geosciences14020050
Chicago/Turabian StyleHearn, Thomas Martin. 2024. "Global Rayleigh Wave Attenuation and Group Velocity from International Seismological Centre Data" Geosciences 14, no. 2: 50. https://doi.org/10.3390/geosciences14020050
APA StyleHearn, T. M. (2024). Global Rayleigh Wave Attenuation and Group Velocity from International Seismological Centre Data. Geosciences, 14(2), 50. https://doi.org/10.3390/geosciences14020050