Integrating Seismic Methods for Characterizing and Monitoring Landslides: A Case Study of the Heinzenberg Deep-Seated Gravitational Slope Deformation (Switzerland)
Abstract
:1. Introduction
2. Description of the Heinzenberg Landslide
2.1. Geography and Geology
2.2. Geomorphology
2.3. Historic Documentation and Monitoring of the Landslide Movement
3. Methods
3.1. H/V Analysis
3.2. Polarization Analysis
3.3. Site-to-Reference Spectral Ratios (SRSR)
3.4. Surface-Wave Analysis with Array Methods (3CFK)
3.5. Seismic Refraction Tomography (SRT)
3.6. Multichannel Analysis of Surface Waves (MASW)
3.7. Combination and Inversion of Dispersion Curves (Neopsy)
3.8. Description of the Seismic Experiment at Heinzenberg
4. Results
4.1. Former Lake Lüsch: Within-Lake Sediments (HEI500)
4.2. Alp Lüsch: Within the Water-Saturated Horizon (HEI300)
4.3. Obergmeind: Results from the Sagging Zone (HEI400)
4.4. Bischolapass: Mountain Splitting and Uphill-Facing Scarps (HEI100/HEI200)
5. Discussion: Formation of a Baseline Model of Selected Sites at Heinzenberg Using Seismic Results
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Agliardi, F.; Crosta, G.B.; Zanchi, A. Structural constraints on deep-seated slope deformation kinematics. Eng. Geol. 2001, 59, 83–102. [Google Scholar] [CrossRef]
- Crosta, G.B.; Frattini, P.; Agliardi, F. Deep seated gravitational slope deformations in the European Alps. Tectonophysics 2013, 605, 13–33. [Google Scholar] [CrossRef]
- Varnes, D. Slope movement types and processes. Spec. Rep. 1978, 176, 11–33. [Google Scholar]
- Agliardi, F.; Crosta, G.B.; Frattini, P. Slow rock-slope deformation. In Landslides: Types, Mechanisms and Modeling; Cambridge University Press: Cambridge, UK, 2012; pp. 207–221. [Google Scholar] [CrossRef]
- Osten, J.; Küppers, J.; Dufresne, A.; Huwiler, A.; Amann, F. Deep seated gravitational slope deformation of the southern Heinzenberg (Grison, Switzerland). Geomech. Tunn. 2020, 13, 74–87. [Google Scholar] [CrossRef]
- Stähli, W. Bericht zur Triangulation IV. Ordnung Heinzenberg: Diplomvermessungskurs 1976; Eidgenössische Technische Hochschule Zürich, Institut für Geodäsie und Photogrammetrie: Zürich, Switzerland, 1977. [Google Scholar]
- Wyss, R.; Jäckli, H.; Burla, S.; Streiff, V.; Wyss, R.; Wiederkehr, M. Thusis, Karte 1215, Geologische Karte des Bundesamt für Landestopografie swisstopo, Erläuterungen. In 1215 Thusis; Federal Office of Topography: Wabern, Switzerland, 2017. [Google Scholar]
- Ziegler, H. Die Hangbewegungen im Lugnez, am Heinzenberg und bei Schuders (Graubünden). Geologie und Geomechanik. Ph.D. Dissertation, Universität Bern, Bern, Switzerland, 1982. [Google Scholar]
- Evans, S.G.; Clague, J.J. Recent climatic change and catastrophic geomorphic processes in mountain environments. Geomorphology 1994, 10, 107–128. [Google Scholar] [CrossRef]
- Heim, A. Bergsturz und Menschenleben; Beer & Co.: Zürich, Switzerland, 1932. [Google Scholar]
- Savage, W.Z.; Swolfs, H.S.; Powers, P.S. Gravitational stresses in long symmetric ridges and valleys. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1985, 22, 291–302. [Google Scholar] [CrossRef]
- Zangerl, C.; Eberhardt, E.; Perzlmaier, S. Kinematic behaviour and velocity characteristics of a complex deep-seated crystalline rockslide system in relation to its interaction with a dam reservoir. Eng. Geol. 2010, 112, 53–67. [Google Scholar] [CrossRef]
- Romegialli, G. Das Ende des Lüschersees: Tschappina Heinzenberg; Desertina: Chur, Switzerland, 2012. [Google Scholar]
- Conzett, R. Verschiebungsmessungen am Heinzenberg; Photogrammetrisches Testfeld Heinzenberg; Verifikation von VPV-Operaten am Heinzenberg; Eichung der EDM-Distanzmesser: Diplomvermessungskurs (DVK)/Institut für Geodäsie und Photogrammetrie ETHZ 1986; Eidgenössische Technische Hochschule Zürich, Institut für Geodäsie und Photogrammetrie: Zürich, Switzerland, 1987. [Google Scholar]
- Ingensand, H. Diplomvermessungskurs Heinzenberg 1995—Neubestimmung der Landesfixpunkte; Diplomvermessungskurs Thusis 1995—Erstellen eines Grundlagennetzes; Institut für Geodäsie und Photogrammetrie an der Eidg. Technischen Hochschule Zürich: Zürich, Switzerland, 1997. [Google Scholar]
- Knechtel, S. Gefahrenkarte Heinzenberg Deformationsmessung 2018. HMQ AG 2017, 11. [Google Scholar]
- Burjanek, J.; Cauzzi, C.; Fäh, D.; Bard, P.-Y.; Cornou, C.; Pitilakis, K.; Massa, M.; Theodulidis, N.; Bertrand, E. Toward reliable characterization of sites with pronounced topography and related effects on ground motion. In Proceedings of the 15th World Conference on Earthquake Engineering (15WCEE), Lisbon, Portugal, 24–28 September 2012. [Google Scholar]
- Kleinbrod, U.; Burjanek, J.; Fah, D. On the seismic response of instable rock slopes based on ambient vibration recordings. Earth Planets Space 2017, 69, 126. [Google Scholar] [CrossRef]
- Colombero, C.; Jongmans, D.; Fiolleau, S.; Valentin, J.; Baillet, L.; Bièvre, G. Seismic Noise Parameters as Indicators of Reversible Modifications in Slope Stability: A Review. Surv. Geophys. 2021, 42, 339–375. [Google Scholar] [CrossRef]
- Häusler, M.; Gischig, V.; Thöny, R.; Glueer, F.; Fäh, D. Monitoring the changing seismic site response of a fast-moving rockslide (Brienz/Brinzauls, Switzerland). Geophys. J. Int. 2022, 229, 310. [Google Scholar] [CrossRef]
- Havenith, H.-B.; Jongmans, D.; Faccioli, E.; Abdrakhmatov, K.; Bard, P.-Y. Site Effect Analysis around the Seismically Induced Ananevo Rockslide, Kyrgyzstan. Bull. Seismol. Soc. Am. 2002, 92, 3190–3209. [Google Scholar] [CrossRef]
- Mreyen, A.-S.; Cauchie, L.; Micu, M.; Onaca, A.; Havenith, H.-B. Multiple geophysical investigations to characterize massive slope failure deposits: Application to the Balta rockslide, Carpathians. Geophys. J. Int. 2021, 225, 1032–1047. [Google Scholar] [CrossRef]
- Burjanek, J.; Gassner-Stamm, G.; Poggi, V.; Moore, J.R.; Fäh, D. Ambient vibration analysis of an unstable mountain slope. Geophys. J. Int. 2010, 180, 820–828. [Google Scholar] [CrossRef]
- Danneels, G.; Bourdeau, C.; Torgoev, I.; Havenith, H.B. Geophysical investigation and dynamic modelling of unstable slopes: Case-study of Kainama (Kyrgyzstan). Geophys. J. Int. 2008, 175, 17–34. [Google Scholar] [CrossRef]
- Kleinbrod, U.; Burjanek, J.; Fah, D. Ambient vibration classification of unstable rock slopes: A systematic approach. Eng. Geol. 2019, 249, 198–217. [Google Scholar] [CrossRef]
- Bonnefoy-Claudet, S.; Cotton, F.; Bard, P.-Y. The nature of noise wavefield and its applications for site effects studies: A literature review. Earth-Sci. Rev. 2006, 79, 205–227. [Google Scholar] [CrossRef]
- Nakamura, Y. A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. Railw. Tech. Res. Inst. Q. Rep. 1989, 30, 9. [Google Scholar]
- Rezaei, S.; Shooshpasha, I.; Rezaei, H. Evaluation of landslides using ambient noise measurements (case study: Nargeschal landslide). Int. J. Geotech. Eng. 2020, 14, 409–419. [Google Scholar] [CrossRef]
- Pazzi, V.; Tanteri, L.; Bicocchi, G.; D’Ambrosio, M.; Caselli, A.; Fanti, R. H/V measurements as an effective tool for the reliable detection of landslide slip surfaces: Case studies of Castagnola (La Spezia, Italy) and Roccalbegna (Grosseto, Italy). Phys. Chem. Earth Parts A/B/C 2017, 98, 136–153. [Google Scholar] [CrossRef]
- Grandjean, G.; Malet, J.-P.; Bitri, A.; Méric, O. Geophysical data fusion by fuzzy logic for imaging the mechanical behaviour of mudslides. Bull. Société Géologique Fr. 2007, 178, 127–136. [Google Scholar] [CrossRef]
- Hibert, C.; Grandjean, G.; Bitri, A.; Travelletti, J.; Malet, J.-P. Characterizing landslides through geophysical data fusion: Example of the La Valette landslide (France). Eng. Geol. 2012, 128, 23–29. [Google Scholar] [CrossRef]
- Louie, J. Faster, Better: Shear-Wave Velocity to 100 Meters Depth From Refraction Microtremor Arrays. Bull. Seismol. Soc. Am. 2001, 91, 347–364. [Google Scholar] [CrossRef]
- Luo, Y.; Xia, J.; Miller, R.D.; Xu, Y.; Liu, J.; Liu, Q. Rayleigh-Wave Dispersive Energy Imaging Using a High-Resolution Linear Radon Transform. Pure Appl. Geophys. 2008, 165, 903–922. [Google Scholar] [CrossRef]
- Uhlemann, S.; Hagedorn, S.; Dashwood, B.; Maurer, H.; Gunn, D.; Dijkstra, T.; Chambers, J. Landslide characterization using P- and S-wave seismic refraction tomography—The importance of elastic moduli. J. Appl. Geophys. 2016, 134, 64–76. [Google Scholar] [CrossRef]
- Calamita, G.; Gallipoli, M.R.; Gueguen, E.; Sinisi, R.; Summa, V.; Vignola, L.; Stabile, T.A.; Bellanova, J.; Piscitelli, S.; Perrone, A. Integrated geophysical and geological surveys reveal new details of the large Montescaglioso (southern Italy) landslide of December 2013. Eng. Geol. 2023, 313, 106984. [Google Scholar] [CrossRef]
- Martino, S.; Cercato, M.; Della Seta, M.; Esposito, C.; Hailemikael, S.; Iannucci, R.; Martini, G.; Paciello, A.; Scarascia Mugnozza, G.; Seneca, D.; et al. Relevance of rock slope deformations in local seismic response and microzonation: Insights from the Accumoli case-study (central Apennines, Italy). Eng. Geol. 2020, 266, 105427. [Google Scholar] [CrossRef]
- Cavargna-Sani, M.; Epard, J.-L.; Steck, A. Structure, geometry and kinematics of the northern Adula nappe (Central Alps). Swiss J. Geosci. 2014, 107, 135–156. [Google Scholar] [CrossRef]
- Ivy-Ochs, S. Glacier variations in the European Alps at the end of the last glaciation. Cuad. Investig. Geográfica/Geogr. Res. Lett. 2015, 41, 295–315. [Google Scholar] [CrossRef]
- Ivy-Ochs, S.; Kerschner, H.; Reuther, A.; Preusser, F.; Heine, K.; Maisch, M.; Kubik, P.W.; Schlüchter, C. Chronology of the last glacial cycle in the European Alps. J. Quat. Sci. Publ. Quat. Res. Assoc. 2008, 23, 559–573. [Google Scholar] [CrossRef]
- Meisser, S. Die Nolla und die Geschichte ihrer Verbauung. In Jahrbuch des Schweizer Alpenclubs; Schweizer Alpen-Club SAC: Bern, Switzerland, 1910; Volume 46, p. 29. [Google Scholar]
- Jäckli, H. Die Bodenbewegungen im Hinterrhein-Tal und Ihre bautechnischen Auswirkungen; Schweizerische Bauzeitung: Zürich, Switzerland, 1948; p. 5. [Google Scholar]
- Fäh, D.; Kind, F.; Giardini, D. A theoretical investigation of average H/V ratios. Geophys. J. Int. 2001, 145, 535–549. [Google Scholar] [CrossRef]
- Hobiger, M.; Bard, P.; Cornou, C.; Le Bihan, N. Single station determination of Rayleigh wave ellipticity by using the random decrement technique (RayDec). Geophys. Res. Lett. 2009, 36, 5. [Google Scholar] [CrossRef]
- Burjanek, J.; Edwards, B.; Fah, D. Empirical evidence of local seismic effects at sites with pronounced topography: A systematic approach. Geophys. J. Int. 2014, 197, 608–619. [Google Scholar] [CrossRef]
- Borcherdt, R.D. Effects of local geology on ground motion near San-Francisco-Bay. Bull. Seismol. Soc. Am. 1970, 60, 29–61. [Google Scholar]
- Perron, V.; Gélis, C.; Froment, B.; Hollender, F.; Bard, P.-Y.; Cultrera, G.; Cushing, E.M. Can broad-band earthquake site responses be predicted by the ambient noise spectral ratio? Insight from observations at two sedimentary basins. Geophys. J. Int. 2018, 215, 1442–1454. [Google Scholar] [CrossRef]
- Gischig, V.; Eberhardt, E.; Moore, J.; Hungr, O. On the seismic response of deep-seated rock slope instabilities—Insights from numerical modeling. Eng. Geol. 2015, 193, 1–18. [Google Scholar] [CrossRef]
- Chieppa, D.; Hobiger, M.; Bergamo, P.; Fäh, D. Ambient Vibration Analysis on Large Scale Arrays When Lateral Variations Occur in the Subsurface: A Study Case in Switzerland. Pure Appl. Geophys. 2020, 177, 4247–4269. [Google Scholar] [CrossRef]
- Hobiger, M.; Bergamo, P.; Imperatori, W.; Panzera, F.; Lontsi, A.M.; Perron, V.; Michel, C.; Burjánek, J.; Fäh, D. Site Characterization of Swiss Strong-Motion Stations: The Benefit of Advanced Processing Algorithms. Bull. Seism. Soc. Am. 2021, 111, 1713–1739. [Google Scholar] [CrossRef]
- Wathelet, M.; Chatelain, J.L.; Cornou, C.; Giulio, G.D.; Guillier, B.; Ohrnberger, M.; Savvaidis, A. Geopsy: A User-Friendly Open-Source Tool Set for Ambient Vibration Processing. Seismol. Res. Lett. 2020, 91, 1878–1889. [Google Scholar] [CrossRef]
- Wathelet, M.; Jongmans, D.; Ohrnberger, M.; Bonnefoy-Claudet, S. Array performances for ambient vibrations on a shallow structure and consequences over Vsinversion. J. Seismol. 2008, 12, 1–19. [Google Scholar] [CrossRef]
- White, D.J. Two-Dimensional Seismic Refraction Tomography. Geophys. J. Int. 1989, 97, 223–245. [Google Scholar] [CrossRef]
- Hayashi, K.; Takahashi, T. High resolution seismic refraction method using surface and borehole data for site characterization of rocks. Int. J. Rock Mech. Min. Sci. 2001, 38, 807–813. [Google Scholar] [CrossRef]
- Park, C.B.; Miller, R.; Xia, J. Imaging dispersion curves of surface waves on multi-channel record. In SEG Technical Program Expanded Abstracts 1998; Society of Exploration Geophysicists: Tulsa, OK, USA, 1998; pp. 1377–1380. [Google Scholar]
- Xia, J.; Miller, R.D.; Park, C.B.; Hunter, J.A.; Harris, J.B. Comparing Shear-Wave Velocity Profiles from MASW with Borehole Measurements in Unconsolidated Sediments, Fraser River Delta, B.C., Canada. J. Environ. Eng. Geophys. 2000, 5, 1–13. [Google Scholar] [CrossRef]
- Park, C.B.; Miller, R.D.; Xia, J. Multichannel analysis of surface waves. Geophysics 1999, 64, 800–808. [Google Scholar] [CrossRef]
- Park, C.B. SurfSeis-Active and Passive MASW. User’s Manual V2.0; Kansas Geological Survey: Lawrence, KS, USA, 2006. [Google Scholar]
- Hallo, M.; Imperatori, W.; Panzera, F.; Fäh, D. Joint multizonal transdimensional Bayesian inversion of surface wave dispersion and ellipticity curves for local near-surface imaging. Geophys. J. Int. 2021, 226, 627–659. [Google Scholar] [CrossRef]
- Tarantola, A. Inverse Problem Theory and Methods for Model Parameter Estimation; Society for Industrial and Applied Mathematics (SIAM): Philadelphia, PA, USA, 2005. [Google Scholar] [CrossRef]
- Green, P.J. Reversible Jump Markov Chain Monte Carlo Computation and Bayesian Model Determination. Biometrika 1995, 82, 711–732. [Google Scholar] [CrossRef]
- Hastings, W.K. Monte Carlo Sampling Methods Using Markov Chains and Their Applications. Biometrika 1970, 57, 97–109. [Google Scholar] [CrossRef]
- Sambridge, M. A Parallel Tempering algorithm for probabilistic sampling and multimodal optimization. Geophys. J. Int. 2013, 196, 357–374. [Google Scholar] [CrossRef]
- Glueer, F.; Mreyen, A.S.; Cauchie, L.; Havenith, H.; Bergamo, P.; Halló, M.; Fäh, D. Seismic data to Integrating Seismic Methods for Characterizing and Monitoring Landslides: A Case Study of the Heinzenberg Deep-Seated Gravitational Slope Deformation (Switzerland). 2023. [CrossRef]
- Del Gaudio, V.; Wasowski, J.; Hu, W.; Capone, P.; Venisti, N.; Li, Y. Ambient noise and ERT data provide insights into the structure of co-seismic rock avalanche deposits in Sichuan (China). Bull. Eng. Geol. Environ. 2021, 80, 7153–7170. [Google Scholar] [CrossRef]
- Harba, P.; Pilecki, Z.; Krawiec, K. Comparison of MASW and seismic interferometry with use of ambient noise for estimation of S-wave velocity field in landslide subsurface. Acta Geophys. 2019, 67, 1875–1883. [Google Scholar] [CrossRef]
- Klimeš, J.; Hussain, Y.; Mreyen, A.-S.; Cauchie, L.; Schlögel, R.; Piroton, V.; Petružálek, M.; Blahůt, J.; René, M.; Meletlidis, S.; et al. New Insights into the Internal Structures and Geotechnical Rock Properties of the Giant San Andrés Landslide, El Hierro Island, Spain. Remote Sens. 2023, 15, 1627. [Google Scholar] [CrossRef]
data from inversion vs/vp [m/s] and depth d [m] | HEI100 | HEI200 | HEI300 | HEI400 | HEI500 | |
---|---|---|---|---|---|---|
Bischolapass | Bischolapass | Alp Lüsch | Obergmeind | Former Lake Lüsch | ||
shallow superficial rock mass | vs | <900 | <800 | <500 | <850 | <400 |
and sedimentary fillings | vp | <1600 | <1600 | <1000 | <1400 | <1000 |
d | 5–10 | 5–15 | 15–20 * | 5–20 | 5–20 | |
rock mass of DSGSD | vs | 900–1150 | 800–950 | 700–900 | 800–1050 | 750–900 |
vp | 1600–2300 | 1600–2450 | 1600–2300 | 1500–2200 | 1550–2000 | |
d | 30–40 | 40–50 | 90–110 * | 90–110 | 60–70 | |
intact bedrock | vs | >1500 | >1500 | >1300 | >1300 | >1575 |
vp | >3000 | >3000 | >2400 | >2600 | >3200 | |
d | >30 | >40 | >90 * | >90 | >60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Glueer, F.; Mreyen, A.-S.; Cauchie, L.; Havenith, H.-B.; Bergamo, P.; Halló, M.; Fäh, D. Integrating Seismic Methods for Characterizing and Monitoring Landslides: A Case Study of the Heinzenberg Deep-Seated Gravitational Slope Deformation (Switzerland). Geosciences 2024, 14, 28. https://doi.org/10.3390/geosciences14020028
Glueer F, Mreyen A-S, Cauchie L, Havenith H-B, Bergamo P, Halló M, Fäh D. Integrating Seismic Methods for Characterizing and Monitoring Landslides: A Case Study of the Heinzenberg Deep-Seated Gravitational Slope Deformation (Switzerland). Geosciences. 2024; 14(2):28. https://doi.org/10.3390/geosciences14020028
Chicago/Turabian StyleGlueer, Franziska, Anne-Sophie Mreyen, Léna Cauchie, Hans-Balder Havenith, Paolo Bergamo, Miroslav Halló, and Donat Fäh. 2024. "Integrating Seismic Methods for Characterizing and Monitoring Landslides: A Case Study of the Heinzenberg Deep-Seated Gravitational Slope Deformation (Switzerland)" Geosciences 14, no. 2: 28. https://doi.org/10.3390/geosciences14020028
APA StyleGlueer, F., Mreyen, A. -S., Cauchie, L., Havenith, H. -B., Bergamo, P., Halló, M., & Fäh, D. (2024). Integrating Seismic Methods for Characterizing and Monitoring Landslides: A Case Study of the Heinzenberg Deep-Seated Gravitational Slope Deformation (Switzerland). Geosciences, 14(2), 28. https://doi.org/10.3390/geosciences14020028