Optically Stimulated Luminescence (OSL) Dating of Alluvial Deposits from the Cahuachi Archaeological Site (South Peru)
Abstract
:1. Introduction
2. Materials, Methods and Sample Descriptions
2.1. Study Area
2.2. Sediment Sampling
2.2.1. Sampling Point 1
2.2.2. Sampling Point 2
2.2.3. Sampling Point 3
2.2.4. Sampling Point 4
2.2.5. Sampling Point 5
2.3. Grain-Size and Mineralogical Features
2.4. Analysis Methods Description
2.4.1. OSL Dating
2.4.2. Radiocarbon Dating
3. Results
4. Discussion
4.1. Evaluation of the Catastrophe Hypothesis of Grodzicki
4.2. Advancement in Fluvial Geomorphology Knowledge
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Geological Survey and Inferences Drawn from It
Appendix B. Supplementary OSL Data
References
- Orefici, G. Cahuachi. In Capital Teocrática Nasca; Fundo Editorial Universidad SMP: Lima, Peru, 2012. (In Spanish) [Google Scholar]
- Orefici, G. Nasca historical and cultural analysis. In Ancient Nasca World. New Insights from Science and Archaeology; Lasaponara, R., Masini, N., Orefici, G., Eds.; Springer: Basel, Switzerland, 2016; pp. 65–86. [Google Scholar]
- Delle Rose, M. The geology of Cahuachi. In Ancient Nasca World. New Insights from Science and Archaeology; Lasaponara, R., Masini, N., Orefici, G., Eds.; Springer: Basel, Switzerland, 2016; pp. 47–64. [Google Scholar]
- Grodzicki, J. Las catástrofes ecológicas en la Pampa de Nazca a fines del Holoceno y el fenómeno El Niño. In Proceedings of the El Fenómeno El Niño: A Través de las Fuentes Arqueológicas y Geológicas, Warsaw, Poland, 18–19 May 1990; pp. 64–102. (In Spanish). [Google Scholar]
- Grodzicki, J. Los geoglifos de Nazca segun algunos datos geologicos. In Paleo ENSO Records; Ortlieb, L., Machare, J., Eds.; Orstom-Concytec: Lima, Peru, 1992; pp. 119–130. (In Spanish) [Google Scholar]
- Grodzicki, J. Nasca: Los Sintomas Geológicos del Fenómeno El Niño y Sus Aspectos Arquelógicos; Warsaw University: Warsaw, Poland, 1994. (In Spanish) [Google Scholar]
- Silverman, H.; Proulx, D.A. The Nasca; Blackwell Publishers: Malden, MA, USA, 2002. [Google Scholar]
- Eitel, B.; Hecht, S.; Mächtle, B.; Schukraft, G.; Kadereit, A.; Wagner, G.A.; Kromer, B.; Unkel, I.; Reindel, M. Geoarchaeological evidence from desert loess in the Nazca–Palpa region, Southern Peru: Palaeoenvironmental changes and their impact on Pre-Columbian cultures. Archaeometry 2005, 47, 137–158. [Google Scholar] [CrossRef]
- Delle Rose, M. Landscape Modifications Ascribed to El Niño Events in Late Pre-Hispanic Coastal Peru. Land 2022, 11, 2207. [Google Scholar] [CrossRef]
- Delle Rose, M.; Mattioli, M.; Capuano, N.; Renzulli, A. Stratigraphy, Petrography and Grain-Size Distribution of Sedimentary Lithologies at Cahuachi (South Peru): ENSO-Related Deposits or a Common Regional Succession? Geosciences 2019, 9, 80. [Google Scholar] [CrossRef]
- Leon, W.; Aleman, A.; Torres, V.; Rosell, W.; De La Cruz, O. Estratigrafía, Sedimentología y Evolución de la Cuenca Pisco Oriental; Boletín Serie D, n. 27; INGEMMET: Lima, Peru, 2008. (In Spanish) [Google Scholar]
- Sebrier, M.; Macharé, J. Observaciones acerca del Cuaternario de la Costa del Perù Central. Bull. Inst. Fr. Études Andines 1980, 9, 9–52. (In Spanish) [Google Scholar] [CrossRef]
- Machare, J. La Marge Continentale du Pérou: Régimes Tectoniques et séDimentaires céNozoïques de l’Avant-Arc des Andes Centrales. Ph.D. Thesis, Université Paris XI, Orsay, France, 1987. (In French). [Google Scholar]
- De La Cruz, J.; De La Cruz, O. Memoria Descriptiva de la Revision y Actualizacion del Cuadrangulo de Nasca (30-n); INGEMMET: Lima, Peru, 2003. (In Spanish) [Google Scholar]
- Leon, W.; Torres, V. Memoria Descriptiva de la Revisión y Actualización del Cuadrángulos de Punta Grande (29-k), Ica (29-l), Lomitas (30-l), Palpa (30-m), San Juan (31-m), Acari (31-n), y Yauca (32-n); INGEMMET: Lima, Peru, 2003. (In Spanish) [Google Scholar]
- Hall, S.R.; Farber, D.L.; Audin, L.; Finkel, R.C.; Meriaux, A.S. Geochronology of pediment surfaces in southern Peru: Implications for Quaternary deformation of the Andean Forearc. Tectonophysics 2008, 459, 186–205. [Google Scholar] [CrossRef]
- Viveen, W.; Sanjurjo-Sanchez, J.; Rosas, M.A.; Vanacker, V.; Villegas-Lanza, J.C. Heinrich events and tectonic uplift as possible drivers for late Quaternary fluvial dynamics in the western Peruvian Andes. Glob. Planet. Chang. 2022, 218, 103972. [Google Scholar] [CrossRef]
- Machtle, B.; Unkel, I.; Eitel, B.; Kromer, B.; Schiegl, S. Molluscs as evidence for a Late Pleistocene and Early Holocene humid period in the northern Atacama desert, southern Peru (14.5 S). Quat. Res. 2010, 73, 39–47. [Google Scholar] [CrossRef]
- Bromley, G.R.M.; Schaefer, J.M.; Winckler, W.; Hall, B.L.; Todd, C.E.; Rademaker, K.M. Relative timing of last glacial maximum and late-glacial events in the central tropical Andes. Quat. Sci. Rev. 2009, 28, 2514–2526. [Google Scholar] [CrossRef]
- Rodbell, D.T.; Hatfield, R.G.; Abbott, M.B.; Chen, C.Y.; Woods, A.; Stoker, J.S.; McGee, D.; Tapia, P.M.; Bush, M.; Valero-Garces, B.L.; et al. 700,000 years of tropical Andean glaciation. Nature 2022, 607, 301–306. [Google Scholar] [CrossRef]
- Machtle, B.; Eitel, B.; Kadereit, A.; Unkel, I. Holocene environmental changes in the northern Atacama desert, southern Peru and their impact on the rise and fall of Pre-Columbian cultures. Z. Geomorphol. Suppl. 2006, 142, 47–62. [Google Scholar]
- Eitel, B.; Machtle, B. Man and Environment in the Eastern Atacama Desert (Southern Peru): Holocene Climate Changes and Their Impact on Pre-Columbian Cultures. In New Technologies for Archaeology; Reindel, M., Wagner, G.A., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 17–37. [Google Scholar]
- INGEMMET. Mapa Geologico del Cuadrangulo de Palpa, 2nd ed.; Ministerio de Energía y Minas: Lima, Peru, 2001. [Google Scholar]
- Miall, A.D. Lithofacies types and vertical profile models in braided river deposits: A summary. In Fluvial Sedimentology; Miall, A.D., Ed.; Canadian Petroleum Geology Society: Calgary, AB, Canada, 1978; pp. 597–604. [Google Scholar]
- Miall, A.D. Methods of architectural-element analysis. In The Geology of Fluvial Deposits; Miall, A.D., Ed.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 75–98. [Google Scholar]
- Orefici, G. The decline of Cahuachi and the end of the Nasca theocracy. In Ancient Nasca World. New Insights from Science and Archaeology; Lasaponara, R., Masini, N., Orefici, G., Eds.; Springer: Basel, Switzerland, 2016; pp. 449–468. [Google Scholar]
- Lasaponara, R.; Masini, N. Combating illegal excavations in Cahuachi: Ancient problems and modern technologies. In Ancient Nasca World. New Insights from Science and Archaeology; Lasaponara, R., Masini, N., Orefici, G., Eds.; Springer: Basel, Switzerland, 2016; pp. 605–633. [Google Scholar]
- Orefici, G. Recent discoveries in Cahuachi: The Templo Sur. In Ancient Nasca World. New Insights from Science and Archaeology; Lasaponara, R., Masini, N., Orefici, G., Eds.; Springer: Basel, Switzerland, 2016; pp. 363–374. [Google Scholar]
- Huntley, D.; Godfrey-Smith, D.; Thewalt, M. Optical dating of sediments. Nature 1985, 313, 105–107. [Google Scholar] [CrossRef]
- Aitken, M.J. An Introduction to Optical Dating: The Dating of Quaternary Sediments by the Use of Photon-Stimulated Luminescence, 1st ed.; Oxford University Press: Oxford, UK, 1998; 280p. [Google Scholar]
- Galbraith, R.F.; Roberts, R.G.; Laslett, G.M.; Yoshida, H.; Olley, J.M. Optical dating of single and multiple grains of quartz from Jinmium rock shelter, northern Australia: Part I, experimental design and statistical models. Archaeometry 1999, 41, 339–364. [Google Scholar] [CrossRef]
- Murray, A.S.; Wintle, A.G. Luminescence Dating of Quartz Using an Improved Single Aliquot Regenerative-Dose Protocol. Radiat. Meas. 2000, 32, 57–73. [Google Scholar] [CrossRef]
- Wintle, A.G.; Murray, A.S. A review of quartz optically stimulated luminescence characteristics and their relevance in single-aliquot regeneration dating protocol. Radiat. Meas. 2006, 41, 369–391. [Google Scholar] [CrossRef]
- Panzeri, L.; Galli, A.; Maspero, F.; Saleh, M.; Martini, M. The activities of the LAMBDA (Laboratory of Milano Bicocca university for Dating and Archaeometry): What’s new? J. Phys. Conf. Ser. 2022, 2204, 012047. [Google Scholar] [CrossRef]
- Duller, G.A.T. Distinguishing quartz and feldspar in single grain luminescence measurements. Radiat. Meas. 2003, 37, 161–165. [Google Scholar] [CrossRef]
- Faershtein, G.; Porat, N.; Avni, Y.; Matmon, A. Aggradation-incision Transition in Arid Environments at the End of the Pleistocene: An Example from the Negev Highlands, Southern Israel. Geomorphology 2016, 253, 289–304. [Google Scholar] [CrossRef]
- Medialdea, A.; Thomsen, K.J.; Murray, A.S.; Benito, G. Reliability of equivalent-dose determination and age-models in the OSL dating of historical and modern palaeoflood sediments. Quat. Geochronol. 2014, 22, 11–24. [Google Scholar] [CrossRef]
- Aitken, M.J. Thermoluminescence Dating, 1st ed.; Academic Press: London, UK, 1985; 153p. [Google Scholar]
- Bell, W.T. Attenuation Factors for the Absorbed Radiation Dose in Quartz Inclusions for Thermoluminescence Dating. Ancient TL 1979, 8, 2–13. [Google Scholar]
- Wintle, A.G.; Aitken, M.J. Absorbed Dose from a beta source as shown by thermoluminescence dosimetry. Appl. Radiat. Isot. 1977, 28, 625–627. [Google Scholar] [CrossRef]
- Guerin, G.; Mercier, N.; Adamiec, G. Dose-rate conversion factors: Update. Ancient TL 2011, 29, 5–8. [Google Scholar]
- Prescott, J.R.; Hutton, J.T. Cosmic ray contributions to dose rates for luminescence and ESR dating: Large depths and long-term time variations. Radiat. Meas. 1994, 23, 497–500. [Google Scholar] [CrossRef]
- Nelson, M.S.; Rittenour, T.M. Using grain-size characteristics to model soil water content: Application to dose-rate calculation for luminescence dating. Radiat. Meas. 2015, 81, 142–149. [Google Scholar] [CrossRef]
- Calcagnile, L.; Maruccio, L.; Scrimieri, L.; Delle Side, D.; Braione, E.; D’Elia, M.; Quarta, G. Development and application of facilities at the Centre for Applied Physics, Dating and Diagnostics (CEDAD) at the University of Salento during the last 15 years. Nucl. Instrum. Methods Phys. Res. B 2019, 456, 252–256. [Google Scholar] [CrossRef]
- D’Elia, M.; Calcagnile, L.; Quarta, G.; Rizzo, A.; Sanapo, C.; Laudisa, M.; Toma, U.; Rizzo, A. Sample preparation and blank values at the AMS radiocarbon facility of the University of Lecce. Nucl. Instrum. Methods Phys. Res. B 2004, 223–224, 278–283. [Google Scholar] [CrossRef]
- Hajdas, I.; Ascough, P.; Garnett, M.H.; Fallon, S.J.; Pearson, C.L.; Quarta, G.; Spalding, K.L.; Yamaguchi, H.; Yoneda, M. Radiocarbon Dating. Nat. Rev. Methods Prim. 2021, 1, 62. [Google Scholar] [CrossRef]
- Steffen, D.; Schlunegger, F.; Preusser, F. Drainage basin response to climate change in the Pisco valley, Peru. Geology 2009, 37, 491–494. [Google Scholar] [CrossRef]
- Viveen, W.; Baby, P.; Sanjurjo-Sanchez, J.; Hurtado-Enríquez, C. Fluvial terraces as quantitative markers of late Quaternary detachment folding and creeping thrust faulting in the Peruvian Huallaga basin. Geomorphology 2020, 367, 1–23. [Google Scholar] [CrossRef]
- Baby, P.; Viveen, W.; Sanjurjo-Sanchez, J.; Bigot, J.-Y.; Dosseto, A.; Villegas-Lanza, J.C.; Apaéstegui, J.; Guyot, J.-L. First record of OSL-dated fluvial sands in a tropical Andean cave reveals rapid late Quaternary tectonic uplift. Terra Nova 2021, 33, 262–273. [Google Scholar] [CrossRef]
- Sanjurjo-Sanchez, J.; Viveen, W.; Vega-Centeno Sara-Lafosse, R. Testing the accuracy of OSL and pIR IRSL dating of young geoarchaeological sediments in coastal Peru. Quat. Geochronol. 2022, 73, 101382. [Google Scholar] [CrossRef]
- Viveen, W.; Zevallos-Valdivia, L.; Sanjurjo-Sanchez, J. The influence of centennial-scale variations in the South American summer monsoon and base-level fall on Holocene fluvial systems in the Peruvian Andes. Glob. Planet. Chang. 2019, 176, 1–22. [Google Scholar] [CrossRef]
- Viveen, W.; Sanjurjo-Sanchez, J.; Baby, P.; González-Moradas, M.d.A. An assessment of competing factors for fluvial incision: An example of the late Quaternary exorheic Moyobamba basin. Peruvian Subandes. Glob. Planet. Chang. 2021, 200, 103476. [Google Scholar] [CrossRef]
- Bailey, R.M. The interpretation of quartz optically stimulated luminescence equivalent dose versus time plots. Radiat. Meas. 2000, 32, 129–140. [Google Scholar] [CrossRef]
- Bailey, R.M. Paper II: The interpretation of measurement-time-dependent single-aliquot equivalent-dose estimates using predictions from a simple empirical model. Radiat. Meas. 2003, 37, 685–691. [Google Scholar] [CrossRef]
- Li, B.; Li, S.-H. Comparison of De estimates using the fast component and the medium component of quartz OSL. Radiat. Meas. 2006, 41, 125–136. [Google Scholar] [CrossRef]
- Magnini, L.; Pozzi-Escot, D.; Oshiro, J.; Angeles, R.; Apa, M.I.P.; Ventura, G. Effects of the Architectural Layout of the Sanctuary of Pachacamac (2nd–16th Century CE, Peru) on the Exposure to Rain, Wind, and Solar Radiation from the Morphometric Analysis of Digital Surface Models. Remote Sens. 2024, 16, 1848. [Google Scholar] [CrossRef]
- Silverman, H.; Browne, D. New Evidence for the Date of the Nazca Lines. Antiquity 1991, 65, 208–220. [Google Scholar] [CrossRef]
- Bray, W. Under the skin of Nazca. Nature 1992, 358, 19. [Google Scholar] [CrossRef]
- Rink, W.J.; Bartoll, J. Dating the geometric Nasca lines in the Peruvian desert. Antiquity 2005, 79, 390–401. [Google Scholar] [CrossRef]
- Unkel, I.; Kromer, B.; Reindel, M.; Wacker, L.; Wagner, G.A. A Chronology of the Pre-Columbian Paracas and Nasca Cultures in South Peru Based on AMS 14C Dating. Radiocarbon 2007, 49, 551–564. [Google Scholar] [CrossRef]
- Mogrovejo, J.D.; Makowski, C.M. Cajamarquilla y los Mega Niños del Pasado prehispánico. Íconos: Rev. Peru. Conserv. Arte Arqueol. 1999, 1, 46–57. (In Spanish) [Google Scholar]
- Contreras, D.A. Landscape and environment: Insights from the Prehispanic central Andes. J. Archaeol. Res. 2010, 18, 241–288. [Google Scholar] [CrossRef]
- Valdez, R.; Jacay, J. Cronología, indicadores paleoclimáticos, aluviones y fenómenos de El Niño en la costa central del Perù. Arqueológicas 2012, 29, 71–86. (In Spanish) [Google Scholar]
- Ghezzi, I.; Guadalupe, E. Fenómenos geológicos que afectaron las edificaciones de Chankillo. Rev. Inst. Investig. 2014, 17, 45–51. (In Spanish) [Google Scholar]
- Cornejo, M.A. Adaptación tecnológica a los cambios climáticos en los Andes peruanos. Rev. Arqueol. Am. 2015, 33, 115–151. (In Spanish) [Google Scholar]
- Steffen, D.; Schlunegger, F.; Preusser, F. Late Pleistocene fans and terraces in the Majes valley, southern Peru, and their relation to climatic variations. Int. J. Earth Sci. Geol. Rundsch. 2010, 99, 1975–1989. [Google Scholar] [CrossRef]
- Viveen, W.; Sanjurjo-Sanchez, J.; Bravo-Lembcke, G.; Uribe-Ventura, R. A 121-ka record of Western Andean fluvial response to suborbital climate cycles recorded by rhythmic grain size variations of the Lima fluvial fan. Earth Surf. Process. Landforms 2024, 49, 2326–2347. [Google Scholar] [CrossRef]
- Zhang, J.-F.; Qiu, W.-L.; Hu, G.; Zhou, L.-P. Determining the Age of Terrace Formation Using Luminescence Dating—A Case of the Yellow River Terraces in the Baode Area, China. Methods Protoc. 2020, 3, 17. [Google Scholar] [CrossRef]
- Hancock, G.S.; Anderson, R.S. Numerical modeling of fluvial strath-terrace formations in response to oscillating climate. Geol. Soc. Am. Bull. 2002, 114, 1131–1142. [Google Scholar] [CrossRef]
- Foster, M.A.; Anderson, R.S.; Gray, H.J.; Mahan, S.A. Dating of river terraces along Lefthand Creek, western High Plains, Colorado, reveals punctuated incision. Geomorphology 2017, 295, 176–190. [Google Scholar] [CrossRef]
- Parsons, A.J.; Abrahams, A.D.; Simanton, J.R. Microtopography and soil surface materials on semi-arid piedmont hillslopes, southern Arizona. J. Arid Environ. 1992, 22, 107–115. [Google Scholar] [CrossRef]
- Williams, S.H.; Zimbelman, J.R. Desert pavement evolution: An example of the role of sheetflood. J. Geol. 1994, 102, 243–248. [Google Scholar] [CrossRef]
- Dixon, J. Lag deposits. In Encyclopedia of Planetary Landforms; Hargitai, H., Kereszturi, A., Eds.; Springer: New York, NY, USA, 2015; 6p. [Google Scholar]
- Haff, P.K.; Werner, B.T. Dynamic processes on desert pavements and the healing of surficial disturbances. Quat. Res. 1996, 45, 38–46. [Google Scholar] [CrossRef]
- Pelletier, J.D.; Cline, M.; DeLong, S.B. Desert pavement dynamics: Numerical modeling and field-based calibration. Earth Surf. Process. Landforms 2007, 32, 1913–1927. [Google Scholar] [CrossRef]
Sampling Point | Samples | Latitude * | Longitude * | Altitude ** |
---|---|---|---|---|
1 | NZ16 | 14°48′41.58″ S | 75°08′43.66″ W | 335 |
2 | NZ7-8 | 14°48′38.45″ S | 75°07′49.86″ W | 345 |
3 | NZ11 | 14°48′40.26″ S | 75°07′46.96″ W | 355 |
4 | NZ1a | 14°49′07.94″ S | 75°07′00.38″ W | 390 |
5 | NZ3 | 14°49′10.53″ S | 75°06′57.05″ W | 390 |
Sample | W | ppm U (±5%) | ppm Th (±5%) | K2O (±3%) | Dose Rate (mGy/a) | OD (%) | (Gy) | Age |
---|---|---|---|---|---|---|---|---|
NZ1a | 0.22 | 2.32 | 7.33 | 1.73 | 2.65 ± 0.13 | 16 ± 5 | 67 ± 4 | >25,280 ± 1970 |
NZ3 | 0.21 | 2.96 | 9.36 | 1.89 | 3.08 ± 0.15 | 33 ± 5 | 7.0 ± 0.7 | 2270 ± 250 |
NZ7 | 0.20 | 2.31 | 7.31 | 1.7 | 2.64 ± 0.13 | nd | ||
NZ8 | 0.20 | 2.99 | 9.45 | 1.75 | 2.98 ± 0.15 | nd | ||
NZ11 1 | 0.30 | 3.05 | 9.63 | 1.51 | 2.70 ± 0.13 | 35 ± 4 | 66 ± 3 | 24,440 ± 1650 |
143 ± 15 | 52,960 ± 6140 | |||||||
NZ16 | 0.23 | 3.21 | 10.13 | 2.04 | 3.29 ± 0.16 | 37 ± 7 | 63 ± 9 | 19,150 ± 3100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Delle Rose, M.; Orefici, G.; Panzeri, L.; Galli, A.; Taussi, M.; Quarta, G.; Calcagnile, L.; Renzulli, A. Optically Stimulated Luminescence (OSL) Dating of Alluvial Deposits from the Cahuachi Archaeological Site (South Peru). Geosciences 2024, 14, 323. https://doi.org/10.3390/geosciences14120323
Delle Rose M, Orefici G, Panzeri L, Galli A, Taussi M, Quarta G, Calcagnile L, Renzulli A. Optically Stimulated Luminescence (OSL) Dating of Alluvial Deposits from the Cahuachi Archaeological Site (South Peru). Geosciences. 2024; 14(12):323. https://doi.org/10.3390/geosciences14120323
Chicago/Turabian StyleDelle Rose, Marco, Giuseppe Orefici, Laura Panzeri, Anna Galli, Marco Taussi, Gianluca Quarta, Lucio Calcagnile, and Alberto Renzulli. 2024. "Optically Stimulated Luminescence (OSL) Dating of Alluvial Deposits from the Cahuachi Archaeological Site (South Peru)" Geosciences 14, no. 12: 323. https://doi.org/10.3390/geosciences14120323
APA StyleDelle Rose, M., Orefici, G., Panzeri, L., Galli, A., Taussi, M., Quarta, G., Calcagnile, L., & Renzulli, A. (2024). Optically Stimulated Luminescence (OSL) Dating of Alluvial Deposits from the Cahuachi Archaeological Site (South Peru). Geosciences, 14(12), 323. https://doi.org/10.3390/geosciences14120323