Vs30 Mapping of the Greater Montreal Region Using Multiple Data Sources
Abstract
:1. Introduction
2. Compiled Data to Estimate Vs
2.1. Seismic Measurements
2.2. Borehole and Geological Data
- -
- Our own dataset was built from borehole reports collected in the cities of Montréal, Laval and Longueuil.
- -
- The dataset of the Ministère des Transports Québec (MTQ) includes P-wave seismic refraction (SR) profiles in 1584 sites within the MMC [23]. Each profile provides with thickness and depth of the soil layers. 36% of the sites have a profile with a layer indicated as “unknown type”, which overlays a clay layer or another layer with an unknown type of a higher thickness and a different Vp value. The conversion of Vp to S-wave velocity Vs is performed in order to calculate Vs30 using Equation (1) (see Section 2.3).
- -
- The MTQ dataset also includes thousands of digitized borehole reports geographically located [23].
- -
- The dataset of the hydrological information system from the Ministère de l’Environnement et de la Lutte contre les Changements Climatiques (MELCC) includes digitized wells reports, as well as a database providing the thickness and soil types along the borehole (donneesquebec.ca).
- -
- The location of the outcropping bedrock from the digital version of the 1:2,000,000 geological map of Quebec was updated in 2022 [24].
2.3. Vs Derived from the Seismic Refraction Data
2.4. Vs for Rock Using the Rock Quality Designation (RQD)
3. Estimation of Vs30 from the Different Sources of Data
3.1. Vs30 Estimates from Seismic Refraction Data
3.2. Vs30 Estimates from Borehole Data
3.3. Vs30 Derived from HVSR Resonance Frequency
4. Microzonation in Terms of Vs30
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adams, J. A 65-year history of seismic hazard estimates in Canada. In Proceedings of the 12th Canadian Conference on Earthquake Engineering, Quebec City, QC, Canada, 17 June 2019; Available online: https://www.caee.ca/12CCEEpdf/192-cSSQ-149.pdf (accessed on 17 August 2023).
- Adams, J.; Allen, T.; Halchuk, S.; Kolaz, M. Canada’s 6th Generation Seismic Hazard Model, as Prepared for the 2020 National Building Code of Canada. In Proceedings of the 12th Canadian Conference on Earthquake Engineering, Quebec City, QC, Canada, 17 June 2019; Available online: https://www.caee.ca/12CCEEpdf/192-Mkvp-139.pdf (accessed on 17 August 2023).
- Leblanc, G. A closer look at the 16 September 1732, Montreal earthquake. Can. J. Earth Sci. 1981, 18, 539–550. [Google Scholar] [CrossRef]
- Rosset, P.; Chouinard, L.; Nollet, M.J. Consequences on Residential Buildings in Greater Montreal for a Repeat of the 1732 M5.8 Montreal Earthquake. In Proceedings of the Canadian Society of Civil Engineering Annual Conference 2021; CSCE 2021, Lecture Notes in Civil Engineering; Springer: Singapore, 2022; Volume 240, pp. 667–679. [Google Scholar] [CrossRef]
- Hobbs, T.E.; Journeay, J.M.; Rao, A.S.; Kolaj, M.; Martins, L.; LeSueur, P.; Simionato, M.; Silva, V.; Pagani, M.; Johnson, K.; et al. A National Seismic Risk Model for Canada: Methodology and Scientific Basis. Earthq. Spectra 2023, 39, 1410–1434. [Google Scholar] [CrossRef]
- Heath, D.C.; Wald, D.J.; Worden, C.B.; Thompson, E.M.; Smoczyk, G.M. A global hybrid VS30 map with a topographic slope–based default and regional map insets. Earthq. Spectra 2020, 36, 1570–1584. [Google Scholar] [CrossRef]
- Wu, W.; Liu, J.; Guo, L.; Deng, Z. Methodology and assessment of proxy based Vs30 estimation in Sichuan Province, China. Int. J. Disaster Risk Sci. 2020, 11, 133–144. [Google Scholar] [CrossRef]
- Rosset, P.; Zhu, H.; Chouinard, L. Influence of the Vs30 Mapping on the Residential Risk; Case Study of the Greater Montreal. In Proceedings of the Canadian Conference-Pacific Conference on Earthquake Engineering 2023, Vancouver, BC, Canada, 25–30 June 2023; Available online: https://az659834.vo.msecnd.net/eventsaircancprod/production-venuewest-public/6509145f89944833b174e9b568c5548b (accessed on 17 August 2023).
- Foti, S.; Hollender, F.; Garofalo, F.; Albarello, D.; Asten, M.; Bard, P.-Y.; Comina, C.; Cornou, C.; Cox, B.; Di Giulio, G.; et al. Guidelines for the good practice of surface wave analysis: A product of the InterPACIFIC project. Bull. Earthq. Eng. 2018, 16, 2367–2420. [Google Scholar] [CrossRef]
- Mayne, P.W.; Cargill, E.; Miller, B. Geotechnical characteristics of sensitive Leda clay at Canada test site in Gloucester, Ontario. AIMS Geosci. 2019, 5, 390–411. [Google Scholar] [CrossRef]
- Rosset, P.; Bent, A.; Halchuk, S.; Chouinard, L. Positive correlation of DYFI intensity data and microzonation in site classes for Ottawa, Quebec City and the metropolitan area of Montreal. Seismol. Res. Lett. 2022, 93, 3468–3480. [Google Scholar] [CrossRef]
- Rosset, P.; Bour-Belvaux, M.; Chouinard, L. Microzonation models for Montreal with respect to Vs30. Bull. Earthq. Eng. 2015, 13, 2225–2239. [Google Scholar] [CrossRef]
- Rosset, P.; Chouinard, L. Characterization of site effects in Montreal, Canada. Nat. Hazards 2009, 48, 295–308. [Google Scholar] [CrossRef]
- Motazedian, D.; Hunter, J.A.; Pugin, A.; Crow, H. Development of a Vs30 (NEHRP) map for the city of Ottawa, Ontario, Canada. Can. Geotech. J. 2011, 48, 458–472. [Google Scholar] [CrossRef]
- Molnar, S.; Assaf, J.H.; Sirohey, A.; Adhikari, S.R. Overview of local site effects and seismic microzonation mapping in Metropolitan Vancouver, British Columbia, Canada. Eng. Geol. 2020, 270, 105568. [Google Scholar] [CrossRef]
- Oliveira, L.; Teves-Costa, P.; Pinto, C.; Carrilho Gomes, R.; Almeida, I.M.; Ferreira, C.; Pereira, T.; Sotto-Mayor, M. Seismic microzonation based on large geotechnical database: Application to Lisbon. Eng. Geol. 2020, 265, 105417. [Google Scholar] [CrossRef]
- National Building Code of Canada; National Research Council of Canada. National Building Code of Canada; Canadian Commission on Building and Fire Codes: Ottawa, ON, Canada, 2015; Volume 1, 708p, Volume 2, 696p.
- Molnar, S.; Cassidy, J.F.; Castellaro, S.; Cornou, C.; Crow, H.; Hunter, J.A.; Matsushima, S.; Sánchez-Sesma, F.J.; Yong, A. Application of Microtremor Horizontal-to-Vertical Spectral Ratio (MHVSR) Analysis for Site Characterization: State of the Art. Surv. Geophys. 2018, 39, 613–631. [Google Scholar] [CrossRef]
- Bard, P.-Y.; Catello, A.; Aguacil, G.; Anastasiadis, A.; Atakan, K.; Azzara, R.M.; Basili, R.; Bertrand, E.; Bettig, B.; Blarel, F.; et al. Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations measurements, processing and interpretation. Bull. Earthq. Eng. 2008, 6, 1–2. [Google Scholar] [CrossRef]
- Pullan, S.E.; Pugin, A.J.; Hunter, J.A.; Cartwright, T.; Douma, M. Application of P-Wave Seismic Reflection Methods using the Landstreamer/Minivib system To Near-Surface Investigations. In Proceedings of the 21st EEGS Symposium on the Application of Geophysics to Engineering and Environmental Problems, Philadelphia, PA, USA, 6–8 April 2008. [Google Scholar]
- Park, C.B.; Miller, R.D.; Ryden, N.; Xia, J.; Ivanov, J. Combined use of active and passive surface waves. J. Environ. Eng. Geophys. 2005, 10, 323–334. [Google Scholar] [CrossRef]
- Hunter, J.A.; Crow, H.L. Shear Wave Velocity Measurement Guidelines for Canadian Seismic Site Characterization in Soil and Rock; Geological Survey of Canada, Open File; GEOSCAN: Ottawa, ON, Canada, 2012; pp. 1–227.
- Transport Quebec. Site D’Investigation Géotechnique. 2019. Available online: https://www.donneesquebec.ca/recherche/dataset/site-d-investigation-geotechnique/resource/7ba773b8-5b44-467e-ab39-5809f80d2c0a?inner_span=True (accessed on 17 August 2023).
- SIGEOM. SIGÉOM, Geomining Information System of Quebec, Gouvernment of Québec, Ministère de l’Énergie et des Ressources Naturelles. Available online: http://sigeom.mines.gouv.qc.ca (accessed on 17 August 2023).
- Talukder, M.K.; Rosset, P.; Chouinard, L. Reduction of Bias and Uncertainty in Regional Seismic Site Amplification Factors for Seismic Hazard and Risk Analysis. GeoHazards 2021, 2, 277–301. [Google Scholar] [CrossRef]
- Wathelet, M.; Chatelain, J.-L.; Cornou, C.; Di Giulio, G.; Guillier, B.; Ohrnberger, M.; Savvaidis, A. Geopsy: A User-Friendly Open-Source Tool Set for Ambient Vibration Processing. Seismol. Res. Lett. 2020, 91, 1878–1889. [Google Scholar] [CrossRef]
- Shepard, D. A two-dimensional interpolation function for irregularly-spaced data. In Proceedings of the 1968 ACM National Conference, New York, NY, USA, 27–29 January 1968; pp. 517–524. [Google Scholar] [CrossRef]
- Van Noten, K.; Lecocq, T.; Sira, C.; Hinzen, K.-G.; Camelbeeck, T. Path and site effects deduced from merged transfrontier internet macroseismic data of two recent M4 earthquakes in northwest Europe using a grid cell approach. Solid Earth 2017, 8, 453–477. [Google Scholar] [CrossRef]
- Cassidy, J.F.; Brillon, C.; Seywerd, H.; Kaya, Y.; Hassani, B. Updates on Canadian Strong Motion Monitoring and Data Access. In Proceedings of the Canadian Conference-Pacific Conference on Earthquake Engineering 2023, Vancouver, BC, Canada, 25–30 June 2023. [Google Scholar]
Site Class | Soil Type | Vs30 (m/s) |
---|---|---|
A | Hard rock | >1500 |
B | Rock | 760–1500 |
C | Very dense soil or soft rock | 360–760 |
D | Stiff soil | 180–360 |
E | Soft soil | <180 |
Soil Type | Geological Age | a | b | Number of Sites | Standard Deviation | R2 |
---|---|---|---|---|---|---|
Clay | Holocene | 24.587 | −0.302 | 252 | 3.2 | 0.68 |
Sand | Pleistocene | 6.0834 | −0.128 | 213 | 1 | 0.40 |
Silt | Pleistocene | 3.9935 | −0.04 | 61 | 0.9 | 0.14 |
Till | Pleistocene | 7.1573 | −0.224 | 317 | 1.1 | 0.20 |
Soil Type | Relation | a | b | c | Standard Deviation | R2 |
---|---|---|---|---|---|---|
Clay | Vs = a + b H c | 121.2 | 40.8 | 0.43 | 45 | 0.43 |
Sand | Vs = a + b H c | 144.8 | 36.8 | 0.57 | 54 | 0.49 |
Site Types | A | B | C | D | E | Number of Sites |
---|---|---|---|---|---|---|
Boreholes | 21.1% | 31.1% | 33.6% | 14.1% | - | 212,598 |
Geology | 100% | 12,973 | ||||
HVSR | 1.9% | 39.1% | 32.8% | 23.0% | 3.1% | 2653 |
SR | 1.2% | 20.4% | 6.4% | 27.0% | 45.0% | 1014 |
MASW, HRSR and downhole | 0.7% | 2.0% | 24.2% | 38.3% | 34.9% | 149 |
Sites Type | Number of Sites | Source of Information | Estimated Standard Deviation on Vs30 (in m/s) |
---|---|---|---|
MASW | 29 | Field measurements | 30 |
HRSR | 13 | Field measurements | 30 |
Downhole | 3 | Field measurements | 30 |
HVSR | 2653 | Field measurements | 50 |
SR | 1014 | MTQ | 75 |
Boreholes | 212,598 | MTQ and MELCC | 100 |
Geology | 12,973 | SIGEOM | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosset, P.; Takahashi, A.; Chouinard, L. Vs30 Mapping of the Greater Montreal Region Using Multiple Data Sources. Geosciences 2023, 13, 256. https://doi.org/10.3390/geosciences13090256
Rosset P, Takahashi A, Chouinard L. Vs30 Mapping of the Greater Montreal Region Using Multiple Data Sources. Geosciences. 2023; 13(9):256. https://doi.org/10.3390/geosciences13090256
Chicago/Turabian StyleRosset, Philippe, Adil Takahashi, and Luc Chouinard. 2023. "Vs30 Mapping of the Greater Montreal Region Using Multiple Data Sources" Geosciences 13, no. 9: 256. https://doi.org/10.3390/geosciences13090256
APA StyleRosset, P., Takahashi, A., & Chouinard, L. (2023). Vs30 Mapping of the Greater Montreal Region Using Multiple Data Sources. Geosciences, 13(9), 256. https://doi.org/10.3390/geosciences13090256