New Probabilistic Seismic Hazard Model for Nepal Himalayas by Integrating Distributed Seismicity and Major Thrust Faults
Abstract
:1. Introduction
2. Geodynamics and Seismotectonic Context
3. Seismicity Database
3.1. Compilation of Seismicity Database
3.2. Magnitude Homogenization
3.3. Declustering of the Seismicity Catalog
3.4. Completeness Periods
4. Seismic Source Characterization
4.1. Homogenous Volume Sources
4.1.1. Source Model Based on Thapa and Wang (2013)—SM1
4.1.2. Source Model including the MHT Geometry—SM2
4.1.3. Macrozone/Fault Source Model—SM3F
4.1.4. Homogenous Activity Parameters
4.2. Major Himalayan Thrust Fault Sources
4.3. Heterogenous or Smoothed Models—SM4
5. Ground Motion Models
Target Source | GMM | GMM Type | Weight |
---|---|---|---|
Active shallow crustal sources | CB14 [103] | Crustal | 0.2 |
BSSA14 [102] | Crustal | 0.2 | |
CY14 [105] | Crustal | 0.2 | |
ASK14 [101] | Crustal | 0.2 | |
ZH16 [106] | Crustal | 0.2 | |
Himalayan collision zones (Subduction interface-like sources) | AB03 [100] | Subduction | 0.13 |
ZH16 [104] | Subduction | 0.08 | |
AKG18 [107] | Subduction | 0.13 | |
BSSA14 [102] | Crustal | 0.22 | |
CB14 [103] | Crustal | 0.22 | |
ASK14 [101] | Crustal | 0.22 |
6. SSC Sensitivity Analysis and Logic Tree
7. Results and Discussion
7.1. UHS at Five Selected Locations
7.2. Comparison of PSHA Results
7.3. Seismic Hazard Maps
8. Conclusions and Perspectives
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ader, T.; Avouac, J.-P.; Liu-Zeng, J.; Lyon-Caen, H.; Bollinger, L.; Galetzka, J.; Genrich, J.; Thomas, M.; Chanard, K.; Sapkota, S.N. Convergence Rate across the Nepal Himalaya and Interseismic Coupling on the Main Himalayan Thrust: Implications for Seismic Hazard. J. Geophys. Res. Solid Earth 2012, 117, 4403–4419. [Google Scholar] [CrossRef] [Green Version]
- Bollinger, L.; Sapkota, S.N.; Tapponnier, P.; Klinger, Y.; Rizza, M.; Van der Woerd, J.; Tiwari, D.R.; Pandey, R.; Bitri, A.; Bes de Berc, S. Estimating the Return Times of Great Himalayan Earthquakes in Eastern Nepal: Evidence from the Patu and Bardibas Strands of the Main Frontal Thrust. J. Geophys. Res. Solid Earth 2014, 119, 7123–7163. [Google Scholar] [CrossRef]
- Lavé, J.; Avouac, J.P. Active Folding of Fluvial Terraces across the Siwaliks Hills, Himalayas of Central Nepal. J. Geophys. Res. Solid Earth 2000, 105, 5735–5770. [Google Scholar] [CrossRef] [Green Version]
- Hossler, T.; Bollinger, L.; Sapkota, S.N.; Lavé, J.; Gupta, R.M.; Kandel, T.P. Surface Ruptures of Large Himalayan Earthquakes in Western Nepal: Evidence along a Reactivated Strand of the Main Boundary Thrust. Earth Planet. Sci. Lett. 2016, 434, 187–196. [Google Scholar] [CrossRef]
- Elliott, J.R.; Jolivet, R.; González, P.J.; Avouac, J.-P.; Hollingsworth, J.; Searle, M.P.; Stevens, V.L. Himalayan Megathrust Geometry and Relation to Topography Revealed by the Gorkha Earthquake. Nat. Geosci. 2016, 9, 174–180. [Google Scholar] [CrossRef] [Green Version]
- Chamlagain, D.; Niroula, G.P.; Maskey, P.N.; Bista, M.K.; Tamrakar, M.R.; Gautam, B.K.; Ojha, S.; Dhakal, R.P.; Acharya, I.P. Probabilistic Seismic Hazard Assessment of Nepal for Revision of National Building Code (NBC)-105. In Proceedings of the 17th World Conference on Earthquake Engineering (17WCEE), Sendai, Japan, 13–18 September 2020. [Google Scholar]
- Pradhan, P.M.; Timalsina, S.P.; Bhatt, M.R. Probabilistic Seismic Hazard Analysis for Nepal. Lowl. Technol. Int. 2020, 22, 75–80. [Google Scholar]
- Rahman, M.M.; Bai, L. Probabilistic Seismic Hazard Assessment of Nepal Using Multiple Seismic Source Models. Earth Planet. Phys. 2018, 2, 327–341. [Google Scholar] [CrossRef]
- Stevens, V.L.; Shrestha, S.N.; Maharjan, D.K. Probabilistic Seismic Hazard Assessment of Nepal. Bull. Seismol. Soc. Am. 2018, 108, 3488–3510. [Google Scholar] [CrossRef]
- Thapa, D.; Wang, G. Probabilistic Seismic Hazard Analysis in Nepal. Earthq. Eng. Eng. Vib. 2013, 12, 577–586. [Google Scholar] [CrossRef]
- NBC105: 2020 Nepal National Building Code, Seismic Design of Buildings in Nepal; Government of Nepal: Kathmandu, Nepal, 2020.
- Pagani, M.; Garcia-Pelaez, J.; Gee, R.; Johnson, K.; Poggi, V.; Silva, V.; Simionato, M.; Styron, R.; Viganò, D.; Danciu, L.; et al. The 2018 Version of the Global Earthquake Model: Hazard Component. Earthq. Spectra 2020, 36, 226–251. [Google Scholar] [CrossRef]
- Nath, S.K.; Thingbaijam, K.K.S. Probabilistic Seismic Hazard Assessment of India. Seismol. Res. Lett. 2012, 83, 135–149. [Google Scholar] [CrossRef] [Green Version]
- Hoste-Colomer, R.; Bollinger, L.; Lyon-Caen, H.; Adhikari, L.B.; Baillard, C.; Benoit, A.; Bhattarai, M.; Gupta, R.M.; Jacques, E.; Kandel, T. Lateral Variations of the Midcrustal Seismicity in Western Nepal: Seismotectonic Implications. Earth Planet. Sci. Lett. 2018, 504, 115–125. [Google Scholar] [CrossRef] [Green Version]
- Parajuli, H.R.; Bhusal, B.; Paudel, S. Seismic Zonation of Nepal Using Probabilistic Seismic Hazard Analysis. Arab. J. Geosci. 2021, 14, 2090. [Google Scholar] [CrossRef]
- Cornell, C.A. Engineering Seismic Risk Analysis. Seism. Soc. 1968, 58, 1583–1606. [Google Scholar] [CrossRef]
- Martin, C.; Ameri, G.; Baumont, D.; Carbon, D.; Senfaute, G.; Thiry, J.-M.; Faccioli, E.; Savy, J. Probabilistic Seismic Hazard Assessment for South-Eastern France. Bull. Earthq. Eng. 2018, 16, 2477–2511. [Google Scholar] [CrossRef]
- Zanetti, L.; Chiffi, D.; Petrini, L. Philosophical Aspects of Probabilistic Seismic Hazard Analysis (PSHA): A Critical Review. Nat. Hazards 2023, 117, 1193–1212. [Google Scholar] [CrossRef]
- Dal Zilio, L.; Hetényi, G.; Hubbard, J.; Bollinger, L. Building the Himalaya from Tectonic to Earthquake Scales. Nat. Rev. Earth Environ. 2021, 2, 251–268. [Google Scholar] [CrossRef]
- Klootwijk, C.T.; Conaghan, P.J.; Powell, C.M. The Himalayan Arc: Large-Scale Continental Subduction, Oroclinal Bending and Back-Arc Spreading. Earth Planet. Sci. Lett. 1985, 75, 167–183. [Google Scholar] [CrossRef]
- Liou, J.G.; Tsujimori, T.; Zhang, R.Y.; Katayama, I.; Maruyama, S. Global UHP Metamorphism and Continental Subduction/Collision: The Himalayan Model. Int. Geol. Rev. 2004, 46, 1–27. [Google Scholar] [CrossRef]
- O’Brien, P.J. Eclogites and Other High-Pressure Rocks in the Himalaya: A Review. Geol. Soc. Lond. Spec. Publ. 2019, 483, 183–213. [Google Scholar] [CrossRef] [Green Version]
- Soret, M.; Larson, K.P.; Cottle, J.; Ali, A. How Himalayan Collision Stems from Subduction. Geology 2021, 49, 894–898. [Google Scholar] [CrossRef]
- Zheng, T.; He, Y.; Ding, L.; Jiang, M.; Ai, Y.; Mon, C.T.; Hou, G.; Sein, K.; Thant, M. Direct Structural Evidence of Indian Continental Subduction beneath Myanmar. Nat. Commun. 2020, 11, 1944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeCelles, P.G.; Gehrels, G.E.; Quade, J.; Ojha, T.P.; Kapp, P.A.; Upreti, B.N. Neogene Foreland Basin Deposits, Erosional Unroofing, and the Kinematic History of the Himalayan Fold-Thrust Belt, Western Nepal. Geol. Soc. Am. Bull. 1998, 110, 2–21. [Google Scholar] [CrossRef]
- Harvey, J.E.; Burbank, D.W.; Bookhagen, B. Along-Strike Changes in Himalayan Thrust Geometry: Topographic and Tectonic Discontinuities in Western Nepal. Lithosphere 2015, 7, 511–518. [Google Scholar] [CrossRef] [Green Version]
- Lindsey, E.O.; Almeida, R.; Mallick, R.; Hubbard, J.; Bradley, K.; Tsang, L.L.H.; Liu, Y.; Burgmann, R.; Hill, E.M. Structural Control on Downdip Locking Extent of the Himalayan Megathrust. J. Geophys. Res. Solid Earth 2018, 123, 5265–5278. [Google Scholar] [CrossRef]
- Wang, M.; Shen, Z.-K. Present-Day Crustal Deformation of Continental China Derived from GPS and Its Tectonic Implications. J. Geophys. Res. Solid Earth 2020, 125, e2019JB018774. [Google Scholar] [CrossRef] [Green Version]
- Stevens, V.L.; Avouac, J.P. Interseismic Coupling on the Main Himalayan Thrust. Geophys. Res. Lett. 2015, 42, 5828–5837. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Wang, Q.; Yang, S.; Qiao, X.; Nie, Z.; Zou, R.; Ding, K.; He, P.; Chen, G. Geodetic Imaging Mega-Thrust Coupling beneath the Himalaya. Tectonophysics 2018, 747–748, 225–238. [Google Scholar] [CrossRef]
- Avouac, J.-P. Mountain Building, Erosion, and the Seismic Cycle in the Nepal Himalaya. Adv. Geophys. 2003, 46, 1–80. [Google Scholar]
- Lavé, J.; Yule, D.; Sapkota, S.; Basant, K.; Madden, C.; Attal, M.; Pandey, R. Evidence for a Great Medieval Earthquake (∼1100 AD) in the Central Himalayas, Nepal. Science 2005, 307, 1302–1305. [Google Scholar] [CrossRef] [Green Version]
- Sapkota, S.N.; Bollinger, L.; Klinger, Y.; Tapponnier, P.; Gaudemer, Y.; Tiwari, D. Primary Surface Ruptures of the Great Himalayan Earthquakes in 1934 and 1255. Nat. Geosci. 2013, 6, 71–76. [Google Scholar] [CrossRef]
- Bilham, R.; Mencin, D.; Bendick, R.; Bürgmann, R. Implications for Elastic Energy Storage in the Himalaya from the Gorkha 2015 Earthquake and Other Incomplete Ruptures of the Main Himalayan Thrust. Quat. Int. 2017, 462, 3–21. [Google Scholar]
- Dal Zilio, L.; Jolivet, R.; van Dinther, Y. Segmentation of the Main Himalayan Thrust Illuminated by Bayesian Inference of Interseismic Coupling. Geophys. Res. Lett. 2020, 47, e2019GL086424. [Google Scholar]
- Michel, S.; Jolivet, R.; Rollins, C.; Jara, J.; Dal Zilio, L. Seismogenic Potential of the Main Himalayan Thrust Constrained by Coupling Segmentation and Earthquake Scaling. Geophys. Res. Lett. 2021, 48, e2021GL093106. [Google Scholar]
- Bollinger, L.; Tapponnier, P.; Sapkota, S.N.; Klinger, Y. Slip Deficit in Central Nepal: Omen for a Repeat of the 1344 AD Earthquake? Earth Planets Space 2016, 68, 12. [Google Scholar] [CrossRef] [Green Version]
- Gansser, A. The Geodynamic History of the Himalaya. Zagros Hindu Kush Himalaya Geodyn. Evol. 1981, 3, 111–121. [Google Scholar]
- Robinson, D.M.; DeCelles, P.G.; Garzione, C.N.; Pearson, O.N.; Harrison, T.M.; Catlos, E.J. Kinematic Model for the Main Central Thrust in Nepal. Geology 2003, 31, 359–362. [Google Scholar] [CrossRef]
- Nakata, T. Active Faults of the Himalaya of India and Nepal. Geol. Soc. Am. Spec. Pap. 1989, 232, 243–264. [Google Scholar]
- Searle, M.P.; Law, R.D.; Godin, L.; Larson, K.P.; Streule, M.J.; Cottle, J.M.; Jessup, M.J. Defining the Himalayan Main Central Thrust in Nepal. J. Geol. Soc. 2008, 165, 523–534. [Google Scholar]
- Hodges, K.V.; Hurtado, J.M.; Whipple, K.X. Southward Extrusion of Tibetan Crust and Its Effect on Himalayan Tectonics. Tectonics 2001, 20, 799–809. [Google Scholar] [CrossRef]
- Murphy, M.A.; Taylor, M.H.; Gosse, J.; Silver, C.R.P.; Whipp, D.M.; Beaumont, C. Limit of Strain Partitioning in the Himalaya Marked by Large Earthquakes in Western Nepal. Nat. Geosci. 2014, 7, 38–42. [Google Scholar] [CrossRef]
- Pettenati, F.; Sirovich, L.; Bjerrum, L.W. Fault Sources and Kinematics of the 1897 Mw 8.1 Assam and the 1934 Ms 8.2 Nepal Earthquakes Retrieved by KF-NGA Inversion and Their Seismotectonic Implications. Bull. Seismol. Soc. Am. 2017, 107, 2480–2489. [Google Scholar] [CrossRef]
- Kumar, S.; Wesnousky, S.G.; Rockwell, T.K.; Briggs, R.W.; Thakur, V.C.; Jayangondaperumal, R. Paleoseismic Evidence of Great Surface Rupture Earthquakes along the Indian Himalaya. J. Geophys. Res. Solid Earth 2006, 111, 3304–3323. [Google Scholar] [CrossRef] [Green Version]
- Bilham, R. Himalayan Earthquakes: A Review of Historical Seismicity and Early 21st Century Slip Potential. Geol. Soc. Lond. Spec. Publ. 2019, 483, 423–482. [Google Scholar] [CrossRef] [Green Version]
- Albini, M.; Musson, R.M.W.; Capera, A.A.G.; Locati, M.; Rovida, A.; Stucchi, M.; Vigano, D. Global Historical Earthquake Archive and Catalogue (1000–1903); GEM Technical Report 2013-01; GEM Foundation: Pavia, Italy, 2013. [Google Scholar]
- Di Giacomo, D.; Engdahl, E.R.; Storchak, D.A. The ISC-GEM Earthquake Catalogue (1904–2014): Status after the Extension Project. Earth Syst. Sci. Data 2018, 10, 1877–1899. [Google Scholar] [CrossRef] [Green Version]
- Storchak, D.A.; Di Giacomo, D.; Engdahl, E.R.; Harris, J.; Bondár, I.; Lee, W.H.K.; Bormann, P.; Villaseñor, A. The ISC-GEM Global Instrumental Earthquake Catalogue (1900–2009): Introduction. Phys. Earth Planet. Inter. 2015, 239, 48–63. [Google Scholar] [CrossRef]
- Engdahl, E.R.; van der Hilst, R.; Buland, R. Global Teleseismic Earthquake Relocation with Improved Travel Times and Procedures for Depth Determination. Bull. Seismol. Soc. Am. 1998, 88, 722–743. [Google Scholar] [CrossRef]
- Ekström, G.; Nettlesa, M.; Dziewońskib, A.M. The Global CMT Project 2004–2010: Centroid-Moment Tensors for 13,017 Earthquakes. Phys. Earth Planet. Inter. 2012, 200–201, 1–9. [Google Scholar] [CrossRef]
- ISC International Seismological Center. Available online: http://www.isc.ac.uk (accessed on 22 March 2023).
- National Earthquake Monitoring & Research Center. Available online: http://www.seismonepal.gov.np/ (accessed on 24 March 2023).
- USGS United States Geological Survey. Global Earthquake Catalogues Covering the Period 1979–2019. Available online: https://earthquake.usgs.gov/earthquakes/search/ (accessed on 22 March 2023).
- Official Website of National Center of Seismology. Available online: https://riseq.seismo.gov.in/riseq/earthquake (accessed on 22 March 2023).
- Storchak, D.A.; Di Giacomo, D.; Bondar, I.; Engdahl, E.R.; Harris, J.; Lee, W.H.K.; Villasenor, A.; Bormann, P. Public Release of the ISC-GEM Global Instrumental Earthquake Catalogue (1900–2009). Seismol. Res. Lett. 2013, 84, 810–815. [Google Scholar] [CrossRef] [Green Version]
- Scordilis, E.M. Empirical Global Relations Converting MS and Mb to Moment Magnitude. J. Seismol. 2006, 10, 225–236. [Google Scholar] [CrossRef]
- Castellaro, S.; Mulargia, F.; Kagan, Y.Y. Regression Problems for Magnitudes. Geophys. J. Int. 2006, 165, 913–930. [Google Scholar] [CrossRef] [Green Version]
- Fuller, W.A. Measurement Error Models, W.A. Fuller, John Wiley & Sons, New York, 1987. ISBN 0–471–86187–1. $44.95, Pp. Xxiii + 440. J. Appl. Econom. 1987, 3, 315–317. [Google Scholar] [CrossRef]
- Kumar, R.; Yadav, R.B.S.; Castellaro, S. Regional Earthquake Magnitude Conversion Relations for the Himalayan Seismic Belt. Seismol. Res. Lett. 2020, 91, 3195–3207. [Google Scholar] [CrossRef]
- Gasperini, P.; Lolli, B.; Castellaro, S. Comment on “Earthquake Magnitude Conversion Problem” by Ranjit Das, H.R. Wason, Gabriel Gonzalez, M.L. Sharma, Deepankar Choudhury, Conrad Lindholm, Narayan Roy, and Pablo Salazar. Bull. Seismol. Soc. Am. 2023, 113, 1366–1369. [Google Scholar] [CrossRef]
- Gardner, J.K.; Knopoff, L. Is the Sequence of Earthquakes in Southern California, with Aftershocks Removed, Poissonian? Bull. Seismol. Soc. Am. 1974, 64, 1363–1367. [Google Scholar] [CrossRef]
- Uhrhammer, R. Characteristics of Northern and Central California Seismicity. Earthq. Notes 1986, 57, 21. [Google Scholar]
- Hakimhashemi, A.H.; Grünthal, G. A Statistical Method for Estimating Catalog Completeness Applicable to Long-Term Nonstationary Seismicity Data. Bull. Seismol. Soc. Am. 2012, 102, 2530–2546. [Google Scholar] [CrossRef]
- Thapa, D.R. Seismicity of Nepal and the Surrounding Region. Bull. Dep. Geol. 2018, 20, 83–86. [Google Scholar] [CrossRef]
- Baillard, C.; Lyon-Caen, H.; Bollinger, L.; Rietbrock, A.; Letort, J.; Adhikari, L.B. Automatic Analysis of the Gorkha Earthquake Aftershock Sequence: Evidences of Structurally Segmented Seismicity. Geophys. J. Int. 2017, 209, 1111–1125. [Google Scholar] [CrossRef] [Green Version]
- Cattin, R.; Avouac, J.P. Modeling Mountain Building and the Seismic Cycle in the Himalaya of Nepal. J. Geophys. Res. Solid Earth 2000, 105, 13389–13407. [Google Scholar] [CrossRef] [Green Version]
- Duvall, M.J.; Waldron, J.W.; Godin, L.; Najman, Y. Active Strike-Slip Faults and an Outer Frontal Thrust in the Himalayan Foreland Basin. Proc. Natl. Acad. Sci. USA 2020, 117, 17615–17621. [Google Scholar] [CrossRef] [PubMed]
- Hubbard, J.; Almeida, R.; Foster, A.; Sapkota, S.N.; Bürgi, P.; Tapponnier, P. Structural Segmentation Controlled the 2015 Mw 7.8 Gorkha Earthquake Rupture in Nepal. Geology 2016, 44, 639–642. [Google Scholar] [CrossRef] [Green Version]
- Laporte, M.; Bollinger, L.; Lyon-Caen, H.; Hoste-Colomer, R.; Duverger, C.; Letort, J.; Riesner, M.; Koirala, B.P.; Bhattarai, M.; Kandel, T. Seismicity in Far Western Nepal Reveals Flats and Ramps along the Main Himalayan Thrust. Geophys. J. Int. 2021, 226, 1747–1763. [Google Scholar] [CrossRef]
- Sheehan, A.F.; de la Torre, T.; Monsalve, G.; Schulte-Pelkum, V.; Bilham, R.; Blume, F.; Bendick, R.; Wu, F.; Pandey, M.R.; Sapkota, S. Earthquakes and Crustal Structure of Himalaya from Himalayan Nepal-Tibet Seismic Experiment (HIMNT). J. Nepal Geol. Soc. 2008, 38, 1–8. [Google Scholar] [CrossRef]
- Stöcklin, J. Geology of Nepal and Its Regional Frame: Thirty-Third William Smith Lecture. J. Geol. Soc. 1980, 137, 1–34. [Google Scholar] [CrossRef]
- Berger, A.; Jouanne, F.; Hassani, R.; Mugnier, J.L. Modelling the Spatial Distribution of Present-Day Deformation in Nepal: How Cylindrical Is the Main Himalayan Thrust in Nepal? Geophys. J. Int. 2004, 156, 94–114. [Google Scholar] [CrossRef] [Green Version]
- Cotton, F.; Campillo, M.; Deschamps, A.; Rastogi, B.K. Rupture History and Seismotectonics of the 1991 Uttarkashi, Himalaya Earthquake. Tectonophysics 1996, 258, 35–51. [Google Scholar] [CrossRef]
- Stevens, V.L.; Avouac, J.-P. Determination of Mmax from Background Seismicity and Moment Conservation. Bull. Seismol. Soc. Am. 2017, 107, 2578–2596. [Google Scholar] [CrossRef] [Green Version]
- Stevens, V.L.; Avouac, J.-P. Millenary Mw > 9.0 Earthquakes Required by Geodetic Strain in the Himalaya. Geophys. Res. Lett. 2016, 43, 1118–1123. [Google Scholar] [CrossRef] [Green Version]
- Bai, L.; Klemperer, S.L.; Mori, J.; Karplus, M.S.; Ding, L.; Liu, H.; Li, G.; Song, B.; Dhakal, S. Lateral Variation of the Main Himalayan Thrust Controls the Rupture Length of the 2015 Gorkha Earthquake in Nepal. Sci. Adv. 2019, 5, eaav0723. [Google Scholar] [CrossRef] [Green Version]
- Hazarika, P.; Kumar, M.R.; Srijayanthi, G.; Raju, P.S.; Rao, N.P.; Srinagesh, D. Transverse Tectonics in the Sikkim Himalaya: Evidence from Seismicity and Focal-Mechanism Data. Bull. Seismol. Soc. Am. 2010, 100, 1816–1822. [Google Scholar] [CrossRef]
- Meade, B.J. The Signature of an Unbalanced Earthquake Cycle in Himalayan Topography? Geology 2010, 38, 987–990. [Google Scholar] [CrossRef]
- Mugnier, J.-L.; Gajurel, A.; Huyghe, P.; Jayangondaperumal, R.; Jouanne, F.; Upreti, B. Structural Interpretation of the Great Earthquakes of the Last Millennium in the Central Himalaya. Earth-Sci. Rev. 2013, 127, 30–47. [Google Scholar] [CrossRef]
- Gutenberg, B.; Richter, C.F. Magnitude and Energy of Earthquakes. Ann. Geophys. 1956, 9, 1–15. [Google Scholar]
- EPRI. Technical Report: Central and Eastern United States Seismic Source Characterization for Nuclear Facilities; U.S. Nuclear Regulatory Commission: Washington, DC, USA, 2012.
- Weichert, D.H. Estimation of the Earthquake Recurrence Parameters for Unequal Observation Periods for Different Magnitudes. Bull. Seismol. Soc. Am. 1980, 70, 1337–1346. [Google Scholar] [CrossRef]
- Johnston, A.C.; Coppersmith, K.J.; Kanter, L.R.; Cornell, C.A. The Earthquakes of Stable Continental Regions: Assessment of Large Earthquake Potential; EPRI: Palo Alto, CA, USA, 1994; Volume 1. [Google Scholar]
- Bilham, R.; Larson, K.; Freymueller, J. GPS Measurements of Present-Day Convergence across the Nepal Himalaya. Nature 1997, 386, 61–64. [Google Scholar] [CrossRef]
- Jouanne, F.; Mugnier, J.L.; Sapkota, S.N.; Bascou, P.; Pecher, A. Estimation of Coupling along the Main Himalayan Thrust in the Central Himalaya. J. Asian Earth Sci. 2017, 133, 62–71. [Google Scholar] [CrossRef]
- Jouanne, F.; Mugnier, J.L.; Pandey, M.R.; Gamond, J.F.; Le Fort, P.; Serrurier, L.; Vigny, C.; Avouac, J.P. Oblique Convergence in the Himalayas of Western Nepal Deduced from Preliminary Results of GPS Measurements. Geophys. Res. Lett. 1999, 26, 1933–1936. [Google Scholar] [CrossRef] [Green Version]
- Bollinger, L.; Avouac, J.P.; Beyssac, O.; Catlos, E.J.; Harrison, T.M.; Grove, M.; Goffé, B.; Sapkota, S. Thermal Structure and Exhumation History of the Lesser Himalaya in Central Nepal: Thermal Structure of the Lesser Himalaya. Tectonics 2004, 23. [Google Scholar] [CrossRef] [Green Version]
- Mishra, R.L.; Singh, I.; Pandey, A.; Rao, P.S.; Sahoo, H.K.; Jayangondaperumal, R. Paleoseismic Evidence of a Giant Medieval Earthquake in the Eastern Himalaya. Geophys. Res. Lett. 2016, 43, 5707–5715. [Google Scholar] [CrossRef] [Green Version]
- Youngs, R.R.; Coppersmith, K.J. Implications of Fault Slip Rates and Earthquake Recurrence Models to Probabilistic Seismic Hazard Estimates. Bull. Seismol. Soc. Am. 1985, 75, 939–964. [Google Scholar] [CrossRef]
- Woo, G. Kernel Estimation Methods for Seismic Hazard Area Source Modeling. Bull. Seismol. Soc. Am. 1996, 86, 353–362. [Google Scholar] [CrossRef]
- Helmstetter, A.; Kagan, Y.Y.; Jackson, D.D. High-Resolution Time-Independent Grid-Based Forecast for M ≥ 5 Earthquakes in California. Seismol. Res. Lett. 2007, 78, 78–86. [Google Scholar] [CrossRef]
- Douglas, J. Ground Motion Predication Equations 1964–2021; Department of Civil and Environmental Engineering, University of Strathclyde: Glasgow, UK, 2022. [Google Scholar]
- Singh, S.K.; Srinagesh, D.; Srinivas, D.; Arroyo, D.; Pérez-Campos, X.; Chadha, R.K.; Suresh, G.; Suresh, G. Strong Ground Motion in the Indo-Gangetic Plains during the 2015 Gorkha, Nepal, Earthquake Sequence and Its Prediction during Future Earthquakes. Bull. Seismol. Soc. Am. 2017, 107, 1293–1306. [Google Scholar] [CrossRef]
- Basu, J.; Podili, B.; Raghukanth, S.T.G.; Srinagesh, D. Ground Motion Parameters for the 2015 Nepal Earthquake and Its Aftershocks. Nat. Hazards 2023, 116, 2091–2134. [Google Scholar] [CrossRef]
- Bajaj, K.; Anbazhagan, P. Determination of GMPE Functional Form for an Active Region with Limited Strong Motion Data: Application to the Himalayan Region. J. Seismol. 2018, 22, 161–185. [Google Scholar] [CrossRef]
- Cotton, F.; Scherbaum, F.; Bommer, J.J.; Bungum, H. Criteria for Selecting and Adjusting Ground-Motion Models for Specific Target Regions. J. Seismol. 2006, 10, 137–156. [Google Scholar] [CrossRef] [Green Version]
- Bommer, J.J.; Douglas, J.; Scherbaum, F.; Cotton, F.; Bungum, H.; Fäh, D. On the Selection of Ground-Motion Prediction Equations for Seismic Hazard Analysis. Seismol. Res. Lett. 2010, 81, 783–793. [Google Scholar] [CrossRef]
- Asimaki, D.; Mohammadi, K.; Mason, H.B.; Adams, R.K.; Rajaure, S.; Khadka, D. Observations and Simulations of Basin Effects in the Kathmandu Valley during the 2015 Gorkha, Nepal, Earthquake Sequence. Earthq. Spectra 2017, 33, 35–53. [Google Scholar] [CrossRef]
- Atkinson, G.M. Empirical Ground-Motion Relations for Subduction-Zone Earthquakes and Their Application to Cascadia and Other Regions. Bull. Seismol. Soc. Am. 2003, 93, 1703–1729. [Google Scholar] [CrossRef]
- Abrahamson, N.A.; Silva, W.J.; Kamai, R. Summary of the ASK14 Ground Motion Relation for Active Crustal Regions. Earthq. Spectra 2014, 30, 1025–1055. [Google Scholar] [CrossRef]
- Boore, D.; Stewart, J.; Seyhan, E.; Atkinson, G.M. NGA-West2 Equations for Predicting PGA, PGV, and 5% Damped PSA for Shallow Crustal Earthquakes. Earthq. Spectra 2014, 30, 1057–1085. [Google Scholar] [CrossRef] [Green Version]
- Campbell, K.W.; Bozorgnia, Y. NGA-West2 Ground Motion Model for the Average Horizontal Components of PGA, PGV, and 5%-Damped Linear Acceleration Response Spectra. Earthq. Spectra 2014, 30, 1087–1115. [Google Scholar] [CrossRef]
- Zhao, J.X.; Liang, X.; Jiang, F.; Xing, H.; Zhu, M.; Hou, R.; Zhang, Y.; Lan, X.; Rhoades, D.A.; Irikura, K.; et al. Ground-Motion Prediction Equations for Subduction Interface Earthquakes in Japan Using Site Class and Simple Geometric Attenuation Functions. Bull. Seismol. Soc. Am. 2016, 106, 1518–1534. [Google Scholar] [CrossRef]
- Chiou, B.; Youngs, R.R. Update of the Chiou and Youngs NGA Model for the Average Horizontal Component of Peak Ground Motion and Response Spectra. Earthq. Spectra 2014, 30, 1117–1153. [Google Scholar] [CrossRef]
- Zhao, J.X.; Zhou, S.; Zhou, J.; Zhao, C.; Zhang, H.; Zhang, Y.; Gao, P.; Lan, X.; Rhoades, D.; Fukushima, Y.; et al. Ground-Motion Prediction Equations for Shallow Crustal and Upper-Mantle Earthquakes in Japan Using Site Class and Simple Geometric Attenuation. Bull. Seismol. Soc. Am. 2016, 106, 1552–1569. [Google Scholar] [CrossRef]
- Abrahamson, N.; Gregor, N.; Addo, K. BC Hydro Ground Motion Prediction Equations for Subduction Earthquakes. Earthq. Spectra 2016, 32, 23–44. [Google Scholar] [CrossRef]
- Bommer, J.J.; Abrahamson, N.A. Why Do Modern Probabilistic Seismic-Hazard Analyses Often Lead to Increased Hazard Estimates? Bull. Seismol. Soc. Am. 2006, 96, 1967–1977. [Google Scholar] [CrossRef]
- Sabetta, F.; Lucantoni, A.; Bungum, H.; Bommer, J.J. Sensitivity of PSHA Results to Ground Motion Prediction Relations and Logic-Tree Weights. Soil Dyn. Earthq. Eng. 2005, 25, 317–329. [Google Scholar] [CrossRef]
- Douglas, J.; Ulrich, T.; Bertil, D.; Rey, J. Comparison of the Ranges of Uncertainty Captured in Different Seismic-Hazard Studies. Seismol. Res. Lett. 2014, 85, 977–985. [Google Scholar] [CrossRef] [Green Version]
- Thomas, P.; Wong, I.; Abrahamson, N. Verification of Probabilistic Seismic Hazard Analysis Computer Programs; Pacific Earthquake Engineering Research Center, University of California: Berkeley, CA, USA, 2010. [Google Scholar]
- Hale, C.; Abrahamson, N.; Bozorgnia, Y. Probabilistic Seismic Hazard Analysis Code Verification; Pacific Earthquake Engineering Research Center Headquarters at the University of California: Berkeley, CA, USA, 2018. [Google Scholar]
Time Period | Distance (km) | Time | Magnitude |
---|---|---|---|
≤1900 | 500 | 2.5 h | 3.0 |
1901–1979 | 500 | 120 s | 2.0 |
1980–1999 | 250 | 60 s | 2.0 |
≥2000 | 100 | 30 s | 1.0 |
Source Databases (Acronym, References) | Period Covered | Description |
---|---|---|
REF [10,46] | 1223–1900 | The lists of historical seismicity for Himalayan region provided in various scientific publications. |
GHEA [47] | 1411–1900 | The Global Historical Earthquake Archive (GHEA) is the worldwide database of historical seismic events. |
ISC-GEM [48,49] | 1904–2016 | ISC-GEM V9.1, global instrumental earthquake catalog compiled, reviewed and magnitude homogenized mostly for larger earthquakes (M ≥ 5.0). |
EHB [50] | 1964–2017 | Revision of hypocenter location for the larger events (generally M ≥ 4.0) for ISC catalog. |
GCMT [51] | 1976–2021 | The Global Centroid Moment Tensor (GCMT) catalog comprises the revision of magnitude based on [51]. This catalog provides events of magnitude mostly greater than 5, revised in magnitude, since 1976. The main interest in CMT catalog is Mw magnitude estimates information, which is often taken as a reference magnitude. |
ISC [52] | 1900–2022 | International Seismological Center (ISC) is the most complete source for pre-instrumental and instrumental events. Note that the data for National Seismological Centre, Nepal (DMN) [53] was recovered through ISC bulletins for use in this study. |
USGS [54] | 1985–2022 | United States Geological Survey (USGS) is the earthquake catalog compiled and distributed by the United States Geological Survey (USGS). |
NDI [55] | 1720–2022 | National Centre of Seismology (NDI) is an Indian national database of seismological data which covers both historical and instrumental period. |
Conversion | Intercept | Gradient | σ | N * | Magnitude Range |
---|---|---|---|---|---|
Mw,NDI—Mw* | 0.8754 (±0.40) | 0.8878 (±0.08) | 0.20 | 41 | 4.0–6.9 |
mL,NDI—Mw* | 0.0629 (±0.37) | 1.0273 (±0.07) | 0.28 | 270 | 3.6–6.8 |
mL,BJI—Mw* | 1.9015 (±0.27) | 0.6524 (±0.05) | 0.19 | 182 | 3.8–6.8 |
Mw Range | Best Estimate Completeness Year | Minimum Completeness Year | Maximum Completeness Year | End Year | Mean Completeness (Years) |
---|---|---|---|---|---|
3.0–3.5 | 2000 | 1995 | 2005 | 2021 | 21 |
3.5–4.0 | 2000 | 1995 | 2005 | 2021 | 21 |
4.0–4.5 | 1995 | 1995 | 2000 | 2021 | 26 |
4.5–5.0 | 1980 | 1975 | 1985 | 2021 | 41 |
5.0–5.5 | 1965 | 1965 | 1975 | 2021 | 56 |
5.5–6.0 | 1930 | 1925 | 1940 | 2021 | 91 |
6.0–6.5 | 1910 | 1900 | 1920 | 2021 | 111 |
6.5–7.0 | 1910 | 1900 | 1920 | 2021 | 111 |
7.0–8.0 | 1800 | 1800 | 1850 | 2021 | 221 |
8.0–9.0 | 1200 | 1180 | 1250 | 2021 | 821 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maharjan, S.; Poujol, A.; Martin, C.; Ameri, G.; Baumont, D.; Hashemi, K.; Benjelloun, Y.; Shible, H. New Probabilistic Seismic Hazard Model for Nepal Himalayas by Integrating Distributed Seismicity and Major Thrust Faults. Geosciences 2023, 13, 220. https://doi.org/10.3390/geosciences13080220
Maharjan S, Poujol A, Martin C, Ameri G, Baumont D, Hashemi K, Benjelloun Y, Shible H. New Probabilistic Seismic Hazard Model for Nepal Himalayas by Integrating Distributed Seismicity and Major Thrust Faults. Geosciences. 2023; 13(8):220. https://doi.org/10.3390/geosciences13080220
Chicago/Turabian StyleMaharjan, Saroj, Antoine Poujol, Christophe Martin, Gabriele Ameri, David Baumont, Kiana Hashemi, Yacine Benjelloun, and Hussein Shible. 2023. "New Probabilistic Seismic Hazard Model for Nepal Himalayas by Integrating Distributed Seismicity and Major Thrust Faults" Geosciences 13, no. 8: 220. https://doi.org/10.3390/geosciences13080220
APA StyleMaharjan, S., Poujol, A., Martin, C., Ameri, G., Baumont, D., Hashemi, K., Benjelloun, Y., & Shible, H. (2023). New Probabilistic Seismic Hazard Model for Nepal Himalayas by Integrating Distributed Seismicity and Major Thrust Faults. Geosciences, 13(8), 220. https://doi.org/10.3390/geosciences13080220