Effectiveness of the Geoeducational Assessment Method (GEOAM) in Unveiling Geoeducational Potential: A Case Study of Samos
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Area
2.1.1. Geological Setting
2.1.2. The Paleontological Heritage of Samos
2.1.3. Selection of Geosites for Comprehensive Evaluation
The Tunnel of Eupalinos—GS1
Ancient Quarries of Agiades—GS2 and GS3
Panagia Spiliani—GS4
2.2. Description of the GEOAM
3. Results
Geosites Assessment and Scores
4. Discussion
4.1. The Effectiveness of the GEOAM
4.2. Required Skills for Successful GEOAM Implementation
4.3. Limitations in Assessing Geoeducational Potential Using GEOAM
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Herrera-Franco, G.; Carrión-Mero, P.; Montalván-Burbano, N.; Caicedo-Potosí, J.; Berrezueta, E. Geoheritage and geosites: A bibliometric analysis and literature review. Geosciences 2022, 12, 169. [Google Scholar] [CrossRef]
- Berrezueta, E.; Sánchez-Cortez, J.L.; Aguilar-Aguilar, M. Inventory and characterization of geosites in Ecuador: A review. Geoheritage 2021, 13, 93. [Google Scholar] [CrossRef]
- Zafeiropoulos, G.; Drinia, H.; Antonarakou, A.; Zouros, N. From Geoheritage to Geoeducation, Geoethics and Geotourism: A critical evaluation of the Greek region. Geosciences 2021, 11, 381. [Google Scholar] [CrossRef]
- Németh, B.; Németh, K.; Procter, J.N. Visitation Rate Analysis of Geoheritage Features from Earth Science Education Perspective Using Automated Landform Classification and Crowdsourcing: A Geoeducation Capacity Map of the Auckland Volcanic Field, New Zealand. Geosciences 2021, 11, 480. [Google Scholar] [CrossRef]
- Zafeiropoulos, G.; Drinia, H. GEOAM: A Holistic Assessment Tool for Unveiling the Geoeducational Potential of Geosites. Geosciences 2023, 13, 210. [Google Scholar] [CrossRef]
- Evelpidou, N.; Vassilopoulos, A.; Leonidopoulou, D.; Poulos, S. An investigation of the coastal erosion causes in Samos Island, Eastern Aegean Sea. J. Landsc. Ecol. 2008, 6, 295–310. [Google Scholar]
- McKenzie, D.P. Plate tectonics in the Mediterranean Region. Nature 1970, 226, 239–243. [Google Scholar] [CrossRef]
- McKenzie, D.P. Active tectonics of the Mediterranean Region. Geophys. J. Int. 1972, 30, 109–185. [Google Scholar] [CrossRef]
- McKenzie, D. Active tectonics of the Alpine—Himalayan belt: The Aegean Sea and surrounding regions. Geophys. J. Int. 1978, 55, 217–254. [Google Scholar] [CrossRef]
- Papanikolaou, D. The three metamorphic belts of the Hellenides. A review and a kin-ematic interpretation. Geol. Soc. Lond. Spec. Publ. 1984, 17, 551–561. [Google Scholar] [CrossRef]
- Theodoropoulos, D. Geological Map of Greece, 1:50.000 Scale; Neon Karlovasi and Limin Vatheos Sheets; IGME: Athens, Greece, 1979. [Google Scholar]
- Papanikolaou, D. Unités tectoniques et phases de déformation dans I’ île de Samos, Mer Egée, Grèce. Bull. Soc. Géol. Fr. 1979, 7, 745–752. [Google Scholar] [CrossRef]
- Papanikolaou, D. The Geology of Greece; Patakis Publ. Co.: Athens, Greece, 2015; p. 443. (In Greek) [Google Scholar]
- Ring, U.; Laws, S.; Bernet, M. Structural analysis of a complex nappe sequence and late orogenic basins from the Aegean island of Samos, Greece. J. Struct. Geol. 1999, 21, 1575–1601. [Google Scholar] [CrossRef]
- Roche, V.; Jolivet, L.; Papanikolaou, D.; Bozkurt, E.; Menant, A.; Rimmele, G. Slab fragmentation beneath the Aegean/Anatolia transition zone: Insights from the tectonic and metamorphic evolution of the Eastern Aegean region. Tectonophysics 2019, 754, 101–129. [Google Scholar] [CrossRef]
- Chatzipetros, A.; Kiratzi, A.; Sboras, S.; Zouros, N.; Pavlides, S. Active faulting in the north-eastern Aegean Sea Islands. Tectonophysics 2013, 597–598, 106–122. [Google Scholar] [CrossRef]
- Angelier, J. Sur l’alternance mio-quaternaire de mouvements extensifs et compressifs en Εgee orientale: L’ ile de Samos. C. R. Acad. Sci. 1976, 283, 463–466. [Google Scholar]
- Nomikou, P.; Evangelidis, D.; Papanikolaou, D.; Lampridou, D.; Litsas, D.; Tsaparas, Y.; Koliopanos, I. Morphotectonic analysis along the northern Margin of Samos Island, related to the seismic activity of October 2020, Aegean Sea, Greece. Geosciences 2021, 11, 102. [Google Scholar] [CrossRef]
- Nomikou, P.; Evangelidis, D.; Papanikolaou, D.; Lampridou, D.; Litsas, D.; Tsaparas, Y.; Koliopanos, I.; Petroulia, M. Co-existence of active EW normal faulting and NE-SW strike-slip faulting in the Eastern Aegean Islands; evidence from offshore studies in Lesvos and Samos, Greece. In Proceedings of the EGU General Assembly Conference Abstracts 2022, Vienna, Austria, 23–27 May 2022; p. EGU22-9864. [Google Scholar] [CrossRef]
- Aksu, A.E.; Piper, D.J.W.; Konuk, T. Quaternary growth patterns of Buyuk Menderes and Kuyuk Menderes deltas, western Turkey. Sediment. Geol. 1987, 52, 227–250. [Google Scholar] [CrossRef]
- Taymaz, T.; Jackson, J.A.; McKenzie, D. Active tectonics of the north and central Aegean Sea. Geophys. J. Int. 1991, 106, 433–490. [Google Scholar] [CrossRef]
- Seyitoglu, G.; Scott, B.C. The cause of NS extensional tectonics in western Turkey: Tec-tonic escape vs. back-arc spreading vs. orogenic collapse. J. Geodyn. 1996, 22, 145–153. [Google Scholar] [CrossRef]
- Yilmaz, Y.; Genç, Ş.C.; Gürer, F.; Bozcu, M.; Yilmaz, K.; Karacik, Z.; Altunkaynak, Ş.; Elmas, A. When did the western Anatolian grabens begin to develop? Geol. Soc. Lond. Spec. Publ. 2000, 173, 353–384. [Google Scholar] [CrossRef]
- Stiros, S.C.; Laborel, J.; Laborel-Deguen, F.; Papageorgiou, S.; Evin, J.; Pirazzoli, P.A. Seismic coastal uplift in a region of subsidence: Holocene raised shorelines of Samos Island, Aegean Sea, Greece. Mar. Geol. 2000, 170, 41–58. [Google Scholar] [CrossRef]
- Kouskouna, V. Updating the macroseismic intensity database of 19th century damaging earthquakes in Greece: A case study in Samos Island. Acta Geophys. 2021, 69, 1101–1111. [Google Scholar] [CrossRef]
- Kiratzi, A.; Papazachos, C.; Özacar, A.; Pinar, A.; Kkallas, C.; Sopaci, E. Characteristics of the 2020 Samos earthquake (Aegean Sea) using seismic data. Bull. Earthq. Eng. 2021, 20, 7713–7735. [Google Scholar] [CrossRef]
- Mountrakis, D. Tertiary and Quaternary tectonics of Greece. In Postcollisional Tectonics and Magmatism in the Mediterranean Region and Asia; Special Papers 2006; Geological Society of America: Boulder, CO, USA, 2006. [Google Scholar] [CrossRef]
- Solounias, N.; Ring, U. Ancient history of the Samos fossils and the record of earthquakes. J. Virtual Explor. 2007, 28, 6. [Google Scholar]
- Solounias, N.; Rivals, F.; Semprebon, G.M. Dietary interpretation and paleoecology of herbivores from Pikermi and Samos (late Miocene of Greece). Paleobiology 2010, 36, 113–136. [Google Scholar] [CrossRef]
- Solounias, N. Mammalian fossils of Samos and Pikermi, II. Resurrection of a classic Turolian fauna. Ann. Carnegie Mus. 1981, 50, 231–270. [Google Scholar] [CrossRef]
- Solounias, N. The Turolian fauna from the Island of Samos, Greece. Contrib. Vertebr. Evol. 1981, 6, 1–232. [Google Scholar]
- Solounias, N.; Mayor, A. Ancient references to the fossils from the land of Pythagoras. Earth Sci. Hist. 2004, 23, 283–296. [Google Scholar] [CrossRef]
- Axelrod, D.I. Evolution and biogeography of Madrean-Tethyan sclerophyll vegetation. Ann. Mo. Bot. Gard. 1975, 72, 280–334. [Google Scholar] [CrossRef]
- Orgeta, M. Erste Ergebnisse einer palynologischen Unterschuchung der Lignite von Pikermi/Attica. Ann. Géologiques Des Pays Helléniques 1979, 2, 909–921. [Google Scholar]
- Ioakim, C.; Solounias, N. A radiometrically dated pollen flora from the Upper Miocene of Samos Island, Greece. Rev. Micropaléontol. 1985, 28, 197–204. [Google Scholar]
- Angistalis, G.; Dounias, G.; Tsokas, G.; Zambas, C. The Walls of Eupalinos Aqueduct, Samos Island, Greece. Description, Pathology and Proposed Restoration Measures. Bull. Geol. Soc. Greece 2018, 53, 193–228. [Google Scholar] [CrossRef]
- Seitanidis, G.; Margoni, S.; Psilovikos, A. Monitoring of Efpalinos tunnel of Samos, an ancient hydraulic water supply work operating as a dynamic karstic cave. Bull. Geol. Soc. Greece 2006, 39, 1–11. [Google Scholar]
- Seitanidis, G. Morphological Hydrological and Environmental Elements Connected to the Eupaline Tunnel of Samos. Master’s Thesis, Geography and Environment Major, Department of Geology, Aristotle University of Thessaloniki, Thessaloniki, Greece, 2003. [Google Scholar]
- Meissner, B. Das Neogene von Ost-Samos. Sedimentationgeschichte und Korrelation, Neues Jahrbuch für Geologie und Paläontologie Abhandlung; Separtdruck: Lobnitz, Germany, 1976; Volume 152, pp. 161–176. [Google Scholar]
- Kienast, H. Die Wasserleitung des Eupalinos auf Samos; Deutsches Archäologisches Institut: Bohn, Germany, 1995. [Google Scholar]
- Kienast, H. Topographische Studien im Heraion von Samos. Archäologisher Anz. 1992, 1992, 171–213. [Google Scholar]
- Tziligkaki, E.; Stamatakis, M. Underground quarries in the area of Agiades, Samos Island, Greece: Notes on historical topography and chronology. Bull. Geol. Soc. Greece 2018, 53, 161–192. [Google Scholar] [CrossRef]
- Stamatakis, M.; Zagouroglou, K. On the occurrence of niter, Samos Island, Greece. Miner. Wealth 1984, 33, 17–20. [Google Scholar]
- Rampini, M.; Di Russo, C.; Taylan, M.S.; Gelosa, A.; Cobolli, M. Four new species of Dolichopoda Bolivar, 1880 from Southern Sporades and Western Turkey (Orthoptera, Rhaphidophoridae, Dolichopodainae). ZooKeys 2012, 201, 43–58. [Google Scholar] [CrossRef]
- Di Russo, C.; Carchini, G.; Sbordoni, V. Life-history variation in Dolichopoda cave crickets. In Insect Life-Cycle Polimorphism; Danks, H.V., Ed.; Kluwer Academy Publisher: Dordrecht, The Netherlands, 1994; pp. 205–226. [Google Scholar] [CrossRef]
- Kirdis, S.; Papadopoulos, G. Speleological research in Samos Island. Bull. Greek Speleol. Soc. 2000, 22, 147–162. [Google Scholar]
- Spathis, P.K.; Mavrommati, M.; Gkrava, E.; Tsiridis, V.; Evgenidis, S.P.; Karapanagiotis, I.; Melfos, V.; Karapantsios, T.D. Characterization of Natural Stone from the Archaeological Site of Pella, Macedonia, Northern Greece. Heritage 2021, 4, 4665–4677. [Google Scholar] [CrossRef]
- Baczyńska, E.; Lorenc, M.W.; Kaźmierczak, U. The landscape attractiveness of aban-doned quarries. Geoheritage 2017, 10, 271–285. [Google Scholar] [CrossRef]
- Kurowska, E.E.; Czerniak, A.; Bańkowski, J. The Rationale for Restoration of Aban-doned Quarries in Forests of the Ślęża Massif (Poland) in the Context of Sustainable Tourism and Forest Environment Protection. Forests 2023, 14, 1386. [Google Scholar] [CrossRef]
- Bohle, M.; Marone, E. Geoethics, a Branding for Sustainable Practices. Sustainability 2021, 13, 895. [Google Scholar] [CrossRef]
- Peppoloni, S.; Di Capua, G. Geoethics to Start Up a Pedagogical and Political Path to-wards Future Sustainable Societies. Sustainability 2021, 13, 10024. [Google Scholar] [CrossRef]
- Panizza, M. Geomorphosites: Concepts, methods and examples of geomorphological survey. Chin. Sci. Bull. 2001, 46, 4–5. [Google Scholar] [CrossRef]
- Trueba, J.J.G.; Cañadas, E.S. La valoración del patrimonio geomorfológico en espacios naturales protegidos. Su aplicación al parque nacional de los picos de Europa. Bull. Assoc. Span. Geogr. 2008, 47, 175–194. Available online: http://hdl.handle.net/10902/2734 (accessed on 10 August 2023).
- De Wever, P.; Baudin, F.; Pereira, D.; Cornee, A.; Egoroff, G.; Page, K. The Importance of Geosites and Heritage Stones in Cities—A Review. Geoheritage 2017, 9, 561–575. [Google Scholar] [CrossRef]
- Reynard, E.; Fontana, G.; Kozlik, L.; Scapozza, C. A method for assessing the scientific and additional values of geomorphosites. Geogr. Helv. 2007, 62, 148–158. [Google Scholar] [CrossRef]
- Ruban, D.A. Quantification of geodiversity and its loss. Proc. Geologist. Assoc. 2010, 121, 326–333. [Google Scholar] [CrossRef]
- Ruban, D.A. Geotourism—A geographical review of the literature. Tour. Manag. Perspect. 2015, 15, 1–15. [Google Scholar] [CrossRef]
- Skentos, A. Geotopes of Greece. Master’s Thesis, University of Athens, Athens, Greece, 2012. [Google Scholar]
- Brilha, J.B. Inventory and Quantitative Assessment of Geosites and Geodiversity Sites: A Review. Geoheritage 2016, 8, 119–134. [Google Scholar] [CrossRef]
- Henriques, M.H.; Brilha, J. UNESCO Global Geoparks: A strategy towards global understanding and sustainability. Episodes 2017, 40, 349–355. [Google Scholar] [CrossRef]
- Bruschi, V.M.; Coratza, P. Geoheritage and Environmental Impact Assessment (EIA). In Geoheritage: Assessment, Protection and Management; Reynard, E., Brilha, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 251–264. [Google Scholar]
- Zwoliński, Z.; Najwer, A.; Giardino, M. Methods for Assessing Geodiversity. In Geoheritage: Assessment, Protection, and Management; Reynard, E., Brilha, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 27–52. [Google Scholar]
- Drinia, H.; Tsipra, T.; Panagiaris, G.; Patsoules, M.; Papantoniou, C.; Magganas, A. Geological heritage of Syros Island, Cyclades complex, Greece: An assessment and geotourism perspectives. Geosciences 2021, 11, 138. [Google Scholar] [CrossRef]
- Fassoulas, C.; Mouriki, D.; Dimitriou-Nikolakis, P.; Iliopoulos, G. Quantitative Assessment of Geotopes as an Effective Tool for Geoheritage Management. Geoheritage 2012, 4, 177–193. [Google Scholar] [CrossRef]
- Suzuki, D.A.; Takagi, H. Evaluation of geosite for sustainable planning and management in geotourism. Geoheritage 2018, 10, 123–135. [Google Scholar] [CrossRef]
- Petterson, M. Interconnected geoscience for international development. Epis. J. Int. Geosci. 2019, 42, 225–233. [Google Scholar] [CrossRef]
- Procesi, M.; Di Capua, G.; Peppoloni, S.; Corirossi, M.; Valentinelli, A. Science and Citizen Collaboration as Good Example of Geoethics for Recovering a Natural Site in the Urban Area of Rome (Italy). Sustainability 2022, 14, 4429. [Google Scholar] [CrossRef]
- Marjanović, M.; Radivojević, A.; Antić, A.; Peppoloni, S.; Di Capua, G.; Lazarević, J.; Marković, R.; Tomić, N.; Milićević, A.; Langović, Z.; et al. Geotourism and geoethics as support for rural development in the Knjaževac municipality, Serbia. Open Geosci. 2022, 14, 794–812. [Google Scholar] [CrossRef]
- Kubalíková, L.; Bajer, A.; Balková, M.; Kirchner, K.; Machar, I. Geodiversity Action Plans as a Tool for Developing Sustainable Tourism and Environmental Education. Sustainability 2022, 14, 6043. [Google Scholar] [CrossRef]
- Vasconcelos, C.; Orion, N. Earth Science Education as a Key Component of Education for Sustainability. Sustainability 2021, 13, 1316. [Google Scholar] [CrossRef]
- Di Capua, G.; Peppoloni, S. Defining Geoethics. Website of the IAPG—International Association for Promoting Geoethics. 2019. Available online: http://www.geoethics.org/definition (accessed on 25 September 2023).
- Peppoloni, S.; Di Capua, G. Geoethics: Ethical, Social and Cultural Implications in Geosciences. Ann. Geophys. 2017, 60, 7. [Google Scholar] [CrossRef]
- Mogk, D. Geoethics and professionalism: The responsible conduct of scientists. Ann. Geophys. 2017, 60, 12. [Google Scholar] [CrossRef]
- Peppoloni, S.; Di Capua, G. Geoethics and geological culture: Awareness, responsibility and challenges. Ann. Geophys. 2012, 55, 335–341. [Google Scholar] [CrossRef]
- Georgousis, E.; Savelides, S.; Mosios, S.; Holokolos, M.V.; Drinia, H. The need for geoethical awareness: The importance of geoenvironmental education in geoheritage understanding in the case of Meteora geomorphes, Greece. Sustainability 2021, 13, 6626. [Google Scholar] [CrossRef]
- Mosios, S.; Georgousis, E.; Drinia, H. The Status of Geoethical Thinking in the Educational System of Greece: An Overview. Geosciences 2023, 13, 37. [Google Scholar] [CrossRef]
1 < final score < 2 | LI—Low implementation |
2 ≤ final score < 3 | MI—Medium implementation |
3 ≤ final score < 4 | HI—High implementation |
4 ≤ final score < 4.5 | VHI—Very high implementation |
From 4.5 up to 5 | EHI—Extremely high implementation |
SMVE—Site Management and Visitor Experience | ||||
---|---|---|---|---|
Subcriteria | GS1 | GS2 | GS3 | GS4 |
Site accessibility | 5 | 4 | 4 | 5 |
Signage and interpretation | 4 | 3 | 3 | 4 |
Staff knowledge and visitor interaction | 2 | 1 | 1 | 1 |
Visitor facilities | 5 | 2 | 2 | 5 |
Site maintenance | 5 | 1 | 1 | 5 |
Safety and security | 5 | 1 | 1 | 3 |
Average | 4.33 | 2.00 | 2.00 | 3.83 |
NRM—Natural Resource Management | ||||
---|---|---|---|---|
Subcriteria | GS1 | GS2 | GS3 | GS4 |
Conservation of biodiversity | 4 | 4 | 4 | 4 |
Preservation of ecosystems | 4 | 3 | 3 | 4 |
Sustainable use of natural resources | 3 | 3 | 3 | 3 |
Pollution prevention and control | 4 | 4 | 4 | 4 |
Climate change mitigation and adaptation | 2 | 1 | 1 | 2 |
Average | 3.40 | 3.00 | 3.00 | 3.40 |
EEI—Environmental Education and Interpretation | ||||
---|---|---|---|---|
Subcriteria | GS1 | GS2 | GS3 | GS4 |
Presence of interpretive signage or exhibits | 2 | 1 | 1 | 1 |
Availability of trained interpretive staff or volunteers | 3 | 1 | 1 | 1 |
Integration of environmental education and interpretation | 2 | 1 | 1 | 1 |
Inclusion of interactive and hands-on activities | 2 | 1 | 1 | 1 |
Incorporation of environmentally friendly practices | 2 | 1 | 1 | 1 |
Average | 2.20 | 1.00 | 1.00 | 1.00 |
CHS—Cultural and Historical Significance | ||||
---|---|---|---|---|
Subcriteria | GS1 | GS2 | GS3 | GS4 |
Historical significance | 5 | 5 | 5 | 5 |
Cultural significance | 5 | 5 | 5 | 5 |
Interpretation and education | 4 | 1 | 1 | 1 |
Cultural diversity and inclusivity | 2 | 1 | 1 | 1 |
Average | 4.00 | 3.00 | 3.00 | 3.00 |
GE—Geoethics | ||||
---|---|---|---|---|
Subcriteria | GS1 | GS2 | GS3 | GS4 |
Environmental impact | 4 | 3 | 3 | 4 |
Cultural heritage | 5 | 3 | 3 | 5 |
Social responsibility | 5 | 2 | 2 | 4 |
Transparency and accountability | 5 | 1 | 1 | 3 |
Professional conduct | 5 | 1 | 1 | 3 |
Average | 4.80 | 2.00 | 2.00 | 3.80 |
EV—Economic Viability | ||||
---|---|---|---|---|
Subcriteria | GS1 | GS2 | GS3 | GS4 |
Tourist revenue potential | 5 | 3 | 3 | 5 |
Local economic impact | 5 | 4 | 4 | 5 |
Sustainability of economic benefits | 4 | 2 | 2 | 3 |
Cost-effectiveness of management | 5 | 4 | 4 | 4 |
Innovative economic models | 5 | 3 | 3 | 3 |
Average | 4.80 | 3.20 | 3.20 | 4.00 |
CIE—Community Involvement and Engagement | ||||
---|---|---|---|---|
Subcriteria | GS1 | GS2 | GS3 | GS4 |
Stakeholder participation | 3 | 1 | 1 | 3 |
Cultural sensitivity | 5 | 2 | 2 | 5 |
Community benefits | 5 | 1 | 1 | 5 |
Outreach and communication | 3 | 1 | 1 | 3 |
Average | 4.00 | 1.25 | 1.25 | 4.00 |
SD—Sustainable Development | ||||
---|---|---|---|---|
Subcriteria | GS1 | GS2 | GS3 | GS4 |
Resource efficiency | 4 | 4 | 4 | 4 |
Waste management | 5 | 1 | 1 | 5 |
Biodiversity conservation | 4 | 4 | 4 | 4 |
Social and economic impacts | 5 | 4 | 4 | 5 |
Climate change adaptation | 1 | 1 | 1 | 1 |
Cultural heritage preservation | 5 | 3 | 3 | 4 |
Average | 4.00 | 2.83 | 2.83 | 3.83 |
Criteria | Weight | GS1 | GS2 | GS3 | GS4 |
---|---|---|---|---|---|
SMVE | 10% | 4.33 | 2 | 2 | 3.83 |
NRM | 10% | 3.4 | 3 | 3 | 3.4 |
EEI | 30% | 2.2 | 1 | 1 | 1 |
CHS | 10% | 4 | 3 | 3 | 3 |
GE | 20% | 4.8 | 2 | 2 | 3.8 |
EV | 5% | 4.8 | 3.2 | 3.2 | 4 |
CIE | 5% | 4 | 1.25 | 1.25 | 4 |
SD | 10% | 4 | 2.83 | 2.83 | 3.83 |
Final Score | 3.63 | 2.00 | 2.00 | 2.86 | |
Characterization of score | HI | MI | MI | MI |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zafeiropoulos, G.; Drinia, H. Effectiveness of the Geoeducational Assessment Method (GEOAM) in Unveiling Geoeducational Potential: A Case Study of Samos. Geosciences 2023, 13, 336. https://doi.org/10.3390/geosciences13110336
Zafeiropoulos G, Drinia H. Effectiveness of the Geoeducational Assessment Method (GEOAM) in Unveiling Geoeducational Potential: A Case Study of Samos. Geosciences. 2023; 13(11):336. https://doi.org/10.3390/geosciences13110336
Chicago/Turabian StyleZafeiropoulos, George, and Hara Drinia. 2023. "Effectiveness of the Geoeducational Assessment Method (GEOAM) in Unveiling Geoeducational Potential: A Case Study of Samos" Geosciences 13, no. 11: 336. https://doi.org/10.3390/geosciences13110336
APA StyleZafeiropoulos, G., & Drinia, H. (2023). Effectiveness of the Geoeducational Assessment Method (GEOAM) in Unveiling Geoeducational Potential: A Case Study of Samos. Geosciences, 13(11), 336. https://doi.org/10.3390/geosciences13110336