Ionospheric Total Electron Content (TEC) Anomalies as Earthquake Precursors: Unveiling the Geophysical Connection Leading to the 2023 Moroccan 6.8 Mw Earthquake
Abstract
:1. Introduction
2. Study Area and Seismotectonic Setting
3. Data Used and Methodology
3.1. Data Collection and Pre-Processing
3.2. TEC Calculation
3.3. Spatial Mapping
4. Results and Discussions
4.1. Space Weather Analysis
4.2. TEC Analysis
4.2.1. Positive Anomaly
4.2.2. Negative Anomaly
4.3. InSAR Observation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cannata, A.; Iozzia, A.; Alparone, S.; Bonforte, A.; Cannavò, F.; Cesca, S.; Gresta, S.; Rivalta, E.; Ursino, A. Repeating earthquakes and ground deformation reveal the structure and triggering mechanisms of the Pernicana fault, Mt. Etna. Commun. Earth Environ. 2021, 2, 116. [Google Scholar] [CrossRef]
- Niu, A.-F.; Zhang, J.; Jiang, Z.-S.; Jia, M.-Y. Study on the sudden changes in ground tilt and earthquakes. Acta Seism. Sin. 2003, 16, 468–472. [Google Scholar] [CrossRef]
- Moro, M.; Saroli, M.; Stramondo, S.; Bignami, C.; Albano, M.; Falcucci, E.; Gori, S.; Doglioni, C.; Polcari, M.; Tallini, M.; et al. New insights into earthquake precursors from InSAR. Sci. Rep. 2017, 7, 12035. [Google Scholar] [CrossRef]
- Bondur, V.G.; Gokhberg, M.B.; Garagash, I.A.; Alekseev, D.A. Revealing short-term precursors of the strong M > 7 earthquakes in Southern California from the simulated stress–strain state patterns exploiting geomechanical model and seismic catalog data. Front. Earth Sci. 2020, 8, 571700. [Google Scholar] [CrossRef]
- Ojo, A.O.; Kao, H.; Jiang, Y.; Craymer, M.; Henton, J. Strain accumulation and release rate in Canada: Implications for long-term crustal deformation and earthquake hazards. J. Geophys. Res. Solid Earth 2021, 126, e2020JB020529. [Google Scholar] [CrossRef]
- Moustafa, S.S.R.; Abdalzaher, M.S.; Abdelhafiez, H.E. Seismo-Lineaments in Egypt: Analysis and Implications for Active Tectonic Structures and Earthquake Magnitudes. Remote Sens. 2022, 14, 6151. [Google Scholar] [CrossRef]
- Romero-Andrade, R.; Trejo-Soto, M.E.; Nayak, K.; Hernández-Andrade, D.; Bojorquez-Pacheco, N. Lineament analysis as a seismic precursor: The El Mayor Cucapah earthquake of April 4, 2010 (MW7. 2), Baja California, Mexico. Geod. Geodyn. 2023, 14, 121–129. [Google Scholar] [CrossRef]
- Ohsawa, Y. Regional Seismic Information Entropy to Detect Earthquake Activation Precursors. Entropy 2018, 20, 861. [Google Scholar] [CrossRef]
- Calais, E.; Minster, J.B. GPS detection of ionospheric perturbations following the January 17, 1994, Northridge earthquake. Geophys. Res. Lett. 1995, 22, 1045–1048. [Google Scholar] [CrossRef]
- Hayakawa, M.; Molchanov, O. Seismo Electromagnetics: Lithosphere-Atmosphere-Ionosphere Coupling; Terrapub: Tokyo, Japan, 2002. [Google Scholar]
- Pulinets, S. Ionospheric precursors of earthquakes; recent advances in theory and practical applications. Terr. Atmos. Ocean. Sci. 2004, 15, 413–436. [Google Scholar] [CrossRef]
- Ho, Y.-Y.; Jhuang, H.-K.; Su, Y.-C.; Liu, J.-Y. Seismo-ionospheric anomalies in total electron content of the GIM and electron density of DEMETER before the 27 February 2010 M8. 8 Chile earthquake. Adv. Space Res. 2013, 51, 2309–2315. [Google Scholar] [CrossRef]
- Sharma, G.; Ray, P.C.; Mohanty, S.; Kannaujiya, S. Ionospheric TEC modelling for earthquakes precursors from GNSS data. Quat. Int. 2017, 462, 65–74. [Google Scholar] [CrossRef]
- Melgarejo-Morales, A.; Vazquez-Becerra, G.E.; Millan-Almaraz, J.R.; Pérez-Enríquez, R.; Martínez-Félix, C.A.; Gaxiola-Camacho, J.R. Examination of seismo-ionospheric anomalies before earthquakes of Mw ≥ 5.1 for the period 2008–2015 in Oaxaca, Mexico using GPS-TEC. Acta Geophys. 2020, 68, 1229–1244. [Google Scholar] [CrossRef]
- Shah, M.; Shahzad, R.; Ehsan, M.; Ghaffar, B.; Ullah, I.; Jamjareegulgarn, P.; Hassan, A.M. Seismo Ionospheric Anomalies around and over the Epicenters of Pakistan Earthquakes. Atmosphere 2023, 14, 601. [Google Scholar] [CrossRef]
- Birouk, A.; Ibenbrahim, A.; El Mouraouah, A.; Kasmi, M. New integrated networks for monitoring seismic and tsunami activity in Morocco. Ann. Geophys. 2020, 63, SE220. [Google Scholar] [CrossRef]
- Le, H.; Liu, J.Y.; Liu, L. A statistical analysis of ionospheric anomalies before 736 M6.0+ earthquakes during 2002–2010. J. Geophys. Res. Space Phys. 2011, 116. [Google Scholar] [CrossRef]
- Liu, C.-Y.; Liu, J.-Y.; Chen, Y.-I.; Qin, F.; Chen, W.-S.; Xia, Y.-Q.; Bai, Z.-Q. Statistical analyses on the ionospheric total electron content related to M ≥ 6.0 earthquakes in China during 1998–2015. Terr. Atmos. Ocean. Sci. 2018, 29, 485–498. [Google Scholar] [CrossRef]
- Ulukavak, M.; Yalçınkaya, M.; Kayıkçı, E.T.; Öztürk, S.; Kandemir, R.; Karslı, H. Analysis of ionospheric TEC anomalies for global earthquakes during 2000–2019 with respect to earthquake magnitude (Mw ≥ 6.0). J. Geodyn. 2020, 135, 101721. [Google Scholar] [CrossRef]
- Picozza, P.; Conti, L.; Sotgiu, A. Looking for earthquake precursors from space: A critical review. Front. Earth Sci. 2021, 9, 676775. [Google Scholar] [CrossRef]
- Mannucci, A.J.; Iijima, B.; Sparks, L.; Pi, X.; Wilson, B.; Lindqwister, U. Assessment of global TEC mapping using a three-dimensional electron density model. J. Atmos. Sol. Terr. Phys. 1999, 61, 1227–1236. [Google Scholar] [CrossRef]
- Ogwala, A.; Somoye, E.O.; Ogunmodimu, O.; Adeniji-Adele, R.A.; Onori, E.O.; Oyedokun, O. Diurnal, seasonal and solar cycle variation in total electron content and comparison with IRI-2016 model at Birnin Kebbi. Ann. Geophys. 2019, 37, 775–789. [Google Scholar] [CrossRef]
- Liu, L.; Wan, W.; Chen, Y.; Le, H. Solar activity effects of the ionosphere: A brief review. Chin. Sci. Bull. 2011, 56, 1202–1211. [Google Scholar] [CrossRef]
- Idosa, C.; Shogile, K. Variations of ionospheric TEC due to coronal mass ejections and geomagnetic storm over New Zealand. New Astron. 2023, 99, 101961. [Google Scholar] [CrossRef]
- Dong, Y.; Gao, C.; Long, F.; Yan, Y. Suspected Seismo-Ionospheric Anomalies before Three Major Earthquakes Detected by GIMs and GPS TEC of Permanent Stations. Remote Sens. 2021, 14, 20. [Google Scholar] [CrossRef]
- Brack, A.; Männel, B.; Wickert, J.; Schuh, H. Operational multi-GNSS global ionosphere maps at GFZ derived from uncombined code and phase observations. Radio Sci. 2021, 56, 1–14. [Google Scholar] [CrossRef]
- de Souza, A.L.C.; Jerez, G.O.; Camargo, P.d.O.; Alves, D.B.M. Assessment of GPS positioning performance using different signals in the context of ionospheric scintillation: A month-long case study on São José dos Campos, Brazil. Bol. Ciênc. Geod. 2022, 28, e2022018. [Google Scholar] [CrossRef]
- López-Urias, C.; Vazquez-Becerra, G.E.; Nayak, K.; López-Montes, R. Analysis of Ionospheric Disturbances during X-Class Solar Flares (2021–2022) Using GNSS Data and Wavelet Analysis. Remote Sens. 2023, 15, 4626. [Google Scholar] [CrossRef]
- Grevemeyer, I.; Gràcia, E.; Villaseñor, A.; Leuchters, W.; Watts, A.B. Seismicity and active tectonics in the Alboran Sea, Western Mediterranean: Constraints from an offshore-onshore seismological network and swath bathymetry data. J. Geophys. Res. Solid Earth 2015, 120, 8348–8365. [Google Scholar] [CrossRef]
- Sébrier, M.; Siame, L.; Zouine, E.M.; Winter, T.; Missenard, Y.; Leturmy, P. Active tectonics in the moroccan high atlas. Comptes Rendus Geosci. 2006, 338, 65–79. [Google Scholar] [CrossRef]
- Herman, M.W.; Hayes, G.P.; Smoczyk, G.M.; Turner, R.; Turner, B.; Jenkins, J.; Davies, S.; Parker, A.; Sinclair, A.; Benz, H.M.; et al. Seismicity of the Earth 1900–2013, Mediterranean Sea and Vicinity; U.S. Geological Survey Open-File Report 2010–1083-Q, scale 1:10,000,000; U.S. Geological Survey: Reston, VA, USA, 2015. [Google Scholar] [CrossRef]
- Buforn, E.; de Galdeano, C.S.; Udías, A. Seismotectonics of the Ibero-Maghrebian region. Tectonophysics 1995, 248, 247–261. [Google Scholar] [CrossRef]
- An, Q.; Feng, G.; He, L.; Xiong, Z.; Lu, H.; Wang, X.; Wei, J. Three-Dimensional Deformation of the 2023 Turkey Mw 7.8 and Mw 7.7 Earthquake Sequence Obtained by Fusing Optical and SAR Images. Remote Sens. 2023, 15, 2656. [Google Scholar] [CrossRef]
- Sboras, S.; Lazos, I.; Bitharis, S.; Pikridas, C.; Galanakis, D.; Fotiou, A.; Chatzipetros, A.; Pavlides, S. Source modelling and stress transfer scenarios of the October 30, 2020 Samos earthquake: Seismotectonic implications. Turk. J. Earth Sci. 2021, 30, 699–717. [Google Scholar] [CrossRef]
- Li, S.; Wang, X.; Tao, T.; Zhu, Y.; Qu, X.; Li, Z.; Huang, J.; Song, S. Source Model of the 2023 Turkey Earthquake Sequence Imaged by Sentinel-1 and GPS Measurements: Implications for Heterogeneous Fault Behavior along the East Anatolian Fault Zone. Remote Sens. 2023, 15, 2618. [Google Scholar] [CrossRef]
- Tudor, M.; Ramos-Pereira, A.; Costa, P.J.M. A Possible Tsunami Deposit Associated to the CE 1755 Lisbon Earthquake on the Western Coast of Portugal. Geosciences 2020, 10, 257. [Google Scholar] [CrossRef]
- Scicchitano, G.; Gambino, S.; Scardino, G.; Barreca, G.; Gross, F.; Mastronuzzi, G.; Monaco, C. The enigmatic 1693 AD tsunami in the eastern Mediterranean Sea: New insights on the triggering mechanisms and propagation dynamics. Sci. Rep. 2022, 12, 9573. [Google Scholar] [CrossRef] [PubMed]
- Pino, N.A.; Piatanesi, A.; Valensise, G.; Boschi, E. The 28 December 1908 Messina Straits earthquake (Mw 7.1): A great earthquake throughout a century of seismology. Seism. Res. Lett. 2009, 80, 243–259. [Google Scholar] [CrossRef]
- Akilan, A.; Azeez, K.K.A.; Schuh, H.; Yuvraaj, N. Large-Scale Present-Day Plate Boundary Deformations in the Eastern Hemisphere Determined from VLBI Data: Implications for Plate Tectonics and Indian Ocean Growth. Pure Appl. Geophys. 2015, 172, 2643–2655. [Google Scholar] [CrossRef]
- Dobrovolsky, I.P.; Zubkov, S.I.; Miachkin, V.I. Estimation of the size of earthquake preparation zones. Pure Appl. Geophys. 1979, 117, 1025–1044. [Google Scholar] [CrossRef]
- Sharifi, M.A.; Farzaneh, S. Local ionospheric modeling using the localized global ionospheric map and terrestrial GPS. Acta Geophys. 2016, 64, 237–252. [Google Scholar] [CrossRef]
- Brunini, C.; Camilion, E.; Azpilicueta, F. Simulation study of the influence of the ionospheric layer height in the thin layer ionospheric model. J. Geod. 2011, 85, 637–645. [Google Scholar] [CrossRef]
- Leenaers, H.; Okx, J.; Burrough, P. Comparison of spatial prediction methods for mapping floodplain soil pollution. CATENA 1990, 17, 535–550. [Google Scholar] [CrossRef]
- Myers, D.E. Interpolation and estimation with spatially located data. Chemom. Intell. Lab. Syst. 1991, 11, 209–228. [Google Scholar] [CrossRef]
- Milczarek, W. Application of a Small Baseline Subset Time Series Method with Atmospheric Correction in Monitoring Results of Mining Activity on Ground Surface and in Detecting Induced Seismic Events. Remote Sens. 2019, 11, 1008. [Google Scholar] [CrossRef]
- Pulinets, S.; Ouzounov, D. Lithosphere–Atmosphere–Ionosphere Coupling (LAIC) model–An unified concept for earthquake precursors validation. J. Asian Earth Sci. 2011, 41, 371–382. [Google Scholar] [CrossRef]
ID | Lat | Long | Array | ID | Lat | Long | Array |
---|---|---|---|---|---|---|---|
RABT | 33.998 | −6.854 | IGS | MADR | 40.429 | −4.25 | IGS |
SFER | 36.464 | −6.206 | IGS | CEBR | 40.453 | −4.368 | IGS |
EBRE | 40.821 | 0.492 | IGS | FUNC | 32.648 | −16.90 | IGS |
LLAG | 28.482 | −16.32 | IGS | LPAL | 28.764 | −17.89 | IGS |
YEBE | 40.525 | −3.089 | IGS | MAS1 | 27.764 | −15.63 | IGS |
VILL | 40.444 | −3.952 | IGS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nayak, K.; López-Urías, C.; Romero-Andrade, R.; Sharma, G.; Guzmán-Acevedo, G.M.; Trejo-Soto, M.E. Ionospheric Total Electron Content (TEC) Anomalies as Earthquake Precursors: Unveiling the Geophysical Connection Leading to the 2023 Moroccan 6.8 Mw Earthquake. Geosciences 2023, 13, 319. https://doi.org/10.3390/geosciences13110319
Nayak K, López-Urías C, Romero-Andrade R, Sharma G, Guzmán-Acevedo GM, Trejo-Soto ME. Ionospheric Total Electron Content (TEC) Anomalies as Earthquake Precursors: Unveiling the Geophysical Connection Leading to the 2023 Moroccan 6.8 Mw Earthquake. Geosciences. 2023; 13(11):319. https://doi.org/10.3390/geosciences13110319
Chicago/Turabian StyleNayak, Karan, Charbeth López-Urías, Rosendo Romero-Andrade, Gopal Sharma, German Michel Guzmán-Acevedo, and Manuel Edwiges Trejo-Soto. 2023. "Ionospheric Total Electron Content (TEC) Anomalies as Earthquake Precursors: Unveiling the Geophysical Connection Leading to the 2023 Moroccan 6.8 Mw Earthquake" Geosciences 13, no. 11: 319. https://doi.org/10.3390/geosciences13110319
APA StyleNayak, K., López-Urías, C., Romero-Andrade, R., Sharma, G., Guzmán-Acevedo, G. M., & Trejo-Soto, M. E. (2023). Ionospheric Total Electron Content (TEC) Anomalies as Earthquake Precursors: Unveiling the Geophysical Connection Leading to the 2023 Moroccan 6.8 Mw Earthquake. Geosciences, 13(11), 319. https://doi.org/10.3390/geosciences13110319