Comparative Evaluation of Empirical Approaches and Artificial Intelligence Techniques for Predicting Uniaxial Compressive Strength of Rock
Abstract
:1. Introduction
2. Review the Related Works for Forecasting Rock UCS
2.1. Existing Empirical Equations to Estimate UCS
2.2. Existing Artificial Intelligence Models for Estimating UCS
3. Rock Data Preparation and Performance Indices
4. Performance Evaluation of the Proposed Models in the UCS Estimation
4.1. Empirical Approaches
4.2. AI Methods
4.2.1. RF Model
4.2.2. Hybrid MHO-RF Model Development
5. Comparison of Prediction Performance
6. Conclusions and Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aladejare, A.E. Evaluation of empirical estimation of uniaxial compressive strength of rock using measurements from index and physical tests. J. Rock Mech. Geotech. Eng. 2020, 12, 256–268. [Google Scholar] [CrossRef]
- Aladejare, A.E.; Wang, Y. Estimation of rock mass deformation modulus using indirect information from multiple sources. Tunn. Undergr. Space Technol. 2019, 85, 76–83. [Google Scholar] [CrossRef]
- Mahmoodzadeh, A.; Mohammadi, M.; Ibrahim, H.H.; Abdulhamid, S.N.; Salim, S.G.; Ali, H.F.H.; Majeed, M.K. Artificial intelligence forecasting models of uniaxial compressive strength. Transp. Geotech. 2021, 27, 100499. [Google Scholar] [CrossRef]
- Gunsallus, K.T.; Kulhawy, F.H. A comparative evaluation of rock strength measures. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1984, 21, 233–248. [Google Scholar] [CrossRef]
- Tuğrul, A.; Zarif, I.H. Correlation of mineralogical and textural characteristics with engineering properties of selected granitic rocks from Turkey. Eng. Geol. 1999, 51, 303–317. [Google Scholar] [CrossRef]
- Gokceoglu, C.; Zorlu, K. A fuzzy model to predict the uniaxial compressive strength and the modulus of elasticity of a problematic rock. Eng. Appl. Artif. Intell. 2004, 17, 61–72. [Google Scholar] [CrossRef]
- Kahraman, S.; Gunaydin, O. The effect of rock classes on the relation between uniaxial compressive strength and point load index. Bull. Eng. Geol. Environ. 2009, 68, 345–353. [Google Scholar] [CrossRef]
- Dehghan, S.; Sattari, G.H.; Chelgani, S.C.; Aliabadi, M.A. Prediction of uniaxial compressive strength and modulus of elasticity for Travertine samples using regression and artificial neural networks. Min. Sci. Technol. 2010, 20, 41–46. [Google Scholar] [CrossRef]
- Armaghani, D.J.; Tonnizam Mohamad, E.; Momeni, E.; Monjezi, M.; Sundaram Narayanasamy, M. Prediction of the strength and elasticity modulus of granite through an expert artificial neural network. Arab. J. Geosci. 2016, 9, 48. [Google Scholar] [CrossRef]
- Armaghani, D.J.; Tonnizam Mohamad, E.; Hajihassani, M.; Yagiz, S.; Motaghedi, H. Application of several non-linear prediction tools for estimating uniaxial compressive strength of granitic rocks and comparison of their performances. Eng. Comput. 2016, 32, 189–206. [Google Scholar] [CrossRef]
- Aliyu, M.M.; Shang, J.; Murphy, W.; Lawrence, J.A.; Collier, R.; Kong, F.; Zhao, Z. Assessing the uniaxial compressive strength of extremely hard cryptocrystalline flint. Int. J. Rock Mech. Min. Sci. 2019, 113, 310–321. [Google Scholar] [CrossRef]
- Momeni, E.; Armaghani, D.J.; Hajihassani, M.; Amin, M.F.M. Prediction of uniaxial compressive strength of rock samples using hybrid particle swarm optimization-based artificial neural networks. Measurement 2015, 60, 50–63. [Google Scholar] [CrossRef]
- Heidari, M.; Mohseni, H.; Jalali, S.H. Prediction of uniaxial compressive strength of some sedimentary rocks by fuzzy and regression models. Geotech. Geol. Eng. 2018, 36, 401–412. [Google Scholar] [CrossRef]
- Wang, Y.; Aladejare, A.E. Bayesian characterization of correlation between uniaxial compressive strength and Young’s modulus of rock. Int. J. Rock Mech. Min. Sci. 2016, 85, 10–19. [Google Scholar] [CrossRef]
- Aladejare, A.E.; Alofe, E.D.; Onifade, M.; Lawal, A.I.; Ozoji, T.M.; Zhang, Z.X. Empirical estimation of uniaxial compressive strength of rock: Database of simple, multiple, and artificial intelligence-based regressions. Geotech. Geol. Eng. 2021, 39, 4427–4455. [Google Scholar] [CrossRef]
- Rabbani, E.; Sharif, F.; Salooki, M.K.; Moradzadeh, A. Application of neural network technique for prediction of uniaxial compressive strength using reservoir formation properties. Int. J. Rock Mech. Min. Sci. 2012, 56, 100–111. [Google Scholar] [CrossRef]
- Torabi-Kaveh, M.; Naseri, F.; Saneie, S.; Sarshari, B. Application of artificial neural networks and multivariate statistics to predict UCS and E using physical properties of Asmari limestones. Arab. J. Geosci. 2015, 8, 2889–2897. [Google Scholar] [CrossRef]
- Madhubabu, N.; Singh, P.K.; Kainthola, A.; Mahanta, B.; Tripathy, A.; Singh, T.N. Prediction of compressive strength and elastic modulus of carbonate rocks. Measurement 2016, 88, 202–213. [Google Scholar] [CrossRef]
- Yilmaz, I.; Yuksek, G. Prediction of the strength and elasticity modulus of gypsum using multiple regression, ANN, and ANFIS models. Int. J. Rock Mech. Min. Sci. 2009, 46, 803–810. [Google Scholar] [CrossRef]
- Barzegar, R.; Sattarpour, M.; Nikudel, M.R.; Moghaddam, A.A. Comparative evaluation of artificial intelligence models for prediction of uniaxial compressive strength of travertine rocks, case study: Azarshahr area, NW Iran. Model. Earth Syst. Environ. 2016, 2, 76. [Google Scholar] [CrossRef]
- Ceryan, N. Application of support vector machines and relevance vector machines in predicting uniaxial compressive strength of volcanic rocks. J. Afr. Earth Sci. 2014, 100, 634–644. [Google Scholar] [CrossRef]
- Çelik, S.B. Prediction of uniaxial compressive strength of carbonate rocks from nondestructive tests using multivariate regression and LS-SVM methods. Arab. J. Geosci. 2019, 12, 193–210. [Google Scholar] [CrossRef]
- Asheghi, R.; Abbaszadeh Shahri, A.; Khorsand Zak, M. Prediction of uniaxial compressive strength of different quarried rocks using metaheuristic algorithm. Arab. J. Sci. Eng. 2019, 44, 8645–8659. [Google Scholar] [CrossRef]
- Matin, S.S.; Farahzadi, L.; Makaremi, S.; Chelgani, S.C.; Sattari, G.H. Variable selection and prediction of uniaxial compressive strength and modulus of elasticity by random forest. Appl. Soft Comput. 2018, 70, 980–987. [Google Scholar] [CrossRef]
- Dai, Y.; Khandelwal, M.; Qiu, Y.; Zhou, J.; Monjezi, M.; Yang, P. A hybrid metaheuristic approach using random forest and particle swarm optimization to study and evaluate backbreak in open-pit blasting. Neural Comput. Appl. 2022, 34, 6273–6288. [Google Scholar] [CrossRef]
- Mohamad, E.T.; Jahed Armaghani, D.; Momeni, E.; Alavi Nezhad Khalil Abad, S.V. Prediction of the unconfined compressive strength of soft rocks: A PSO-based ANN approach. Bull. Eng. Geol. Environ. 2015, 74, 745–757. [Google Scholar] [CrossRef]
- Sun, Y.; Li, G.; Zhang, N.; Chang, Q.; Xu, J.; Zhang, J. Development of ensemble learning models to evaluate the strength of coal-grout materials. Int. J. Min. Sci. Technol. 2021, 31, 153–162. [Google Scholar] [CrossRef]
- Xu, C.; Nait Amar, M.; Ghriga, M.A.; Ouaer, H.; Zhang, X.; Hasanipanah, M. Evolving support vector regression using Grey Wolf optimization; forecasting the geomechanical properties of rock. Eng. Comput. 2022, 38, 1819–1833. [Google Scholar] [CrossRef]
- Zhou, J.; Huang, S.; Zhou, T.; Armaghani, D.J.; Qiu, Y. Employing a genetic algorithm and grey wolf optimizer for optimizing RF models to evaluate soil liquefaction potential. Artif. Intell. Rev. 2022, 55, 5673–5705. [Google Scholar] [CrossRef]
- Fattahi, H. Applying soft computing methods to predict the uniaxial compressive strength of rocks from schmidt hammer rebound values. Comput. Geosci. 2017, 21, 665–681. [Google Scholar] [CrossRef]
- Zhang, J.; Li, D.; Wang, Y. Toward intelligent construction: Prediction of mechanical properties of manufactured-sand concrete using tree-based models. J. Clean. Prod. 2020, 258, 120665. [Google Scholar] [CrossRef]
- Zhou, J.; Huang, S.; Qiu, Y. Optimization of random forest through the use of MVO, GWO and MFO in evaluating the stability of underground entry-type excavations. Tunn. Undergr. Space Technol. 2022, 124, 104494. [Google Scholar] [CrossRef]
- Yu, Z.; Shi, X.; Qiu, X.; Zhou, J.; Chen, X.; Gou, Y. Optimization of postblast ore boundary determination using a novel sine cosine algorithm-based random forest technique and Monte Carlo simulation. Eng. Optim. 2021, 53, 1467–1482. [Google Scholar] [CrossRef]
- Ghasemi, E.; Kalhori, H.; Bagherpour, R.; Yagiz, S. Model tree approach for predicting uniaxial compressive strength and Young’s modulus of carbonate rocks. Bull. Eng. Geol. Environ. 2018, 77, 331–343. [Google Scholar] [CrossRef]
- Basu, A.; Kamran, M. Point load test on schistose rocks and its applicability in predicting uniaxial compressive strength. Int. J. Rock Mech. Min. Sci. 2010, 47, 823–828. [Google Scholar] [CrossRef]
- Mishra, D.A.; Basu, A. Use of the block punch test to predict the compressive and tensile strengths of rocks. Int. J. Rock Mech. Min. Sci. 2012, 51, 119–127. [Google Scholar] [CrossRef]
- Xie, S.; Lin, H.; Duan, H.; Chen, Y. Modeling description of interface shear deformation: A theoretical study on damage statistical distributions. Constr. Build. Mater. 2023, 394, 132052. [Google Scholar] [CrossRef]
- Gupta, V. Non-destructive testing of some Higher Himalayan Rocks in the Satluj Valley. Bull. Eng. Geol. Environ. 2009, 68, 409–416. [Google Scholar] [CrossRef]
- Tsiambaos, G.; Sabatakakis, N. Considerations on strength of intact sedimentary rocks. Eng. Geol. 2004, 72, 261–273. [Google Scholar] [CrossRef]
- Kohno, M.; Maeda, H. Relationship between point load strength index and uniaxial compressive strength of hydrothermally altered soft rocks. Int. J. Rock Mech. Min. Sci. 2012, 50, 147–157. [Google Scholar] [CrossRef]
- Palchik, V.; Hatzor, Y.H. The influence of porosity on tensile and compressive strength of porous chalks. Rock Mech. Rock Eng. 2004, 37, 331–341. [Google Scholar] [CrossRef]
- Diamantis, K.; Gartzos, E.; Migiros, G. Study on uniaxial compressive strength, point load strength index, dynamic and physical properties of serpentinites from Central Greece: Test results and empirical relations. Eng. Geol. 2009, 108, 199–207. [Google Scholar] [CrossRef]
- Mishra, D.A.; Basu, A. Estimation of uniaxial compressive strength of rock materials by index tests using regression analysis and fuzzy inference system. Eng. Geol. 2013, 160, 54–68. [Google Scholar] [CrossRef]
- Entwisle, D.C.; Hobbs, P.R.N.; Jones, L.D.; Gunn, D.; Raines, M.G. The relationships between effective porosity, uniaxial compressive strength and sonic velocity of intact Borrowdale Volcanic Group core samples from Sellafield. Geotech. Geol. Eng. 2005, 23, 793–809. [Google Scholar] [CrossRef]
- Beiki, M.; Majdi, A.; Givshad, A.D. Application of genetic programming to predict the uniaxial compressive strength and elastic modulus of carbonate rocks. Int. J. Rock Mech. Min. Sci. 2013, 63, 159–169. [Google Scholar] [CrossRef]
- Aydin, A.; Basu, A. The Schmidt hammer in rock material characterization. Eng. Geol. 2005, 81, 1–14. [Google Scholar] [CrossRef]
- Kılıç, A.; Teymen, A. Determination of mechanical properties of rocks using simple methods. Bull. Eng. Geol. Environ. 2008, 67, 237–244. [Google Scholar] [CrossRef]
- Çobanoğlu, İ.; Çelik, S.B. Estimation of uniaxial compressive strength from point load strength, Schmidt hardness and P-wave velocity. Bull. Eng. Geol. Environ. 2008, 67, 491–498. [Google Scholar] [CrossRef]
- Ali, E.; Guang, W.; Ibrahim, A. Empirical relations between compressive strength and microfabric properties of amphibolites using multivariate regression, fuzzy inference and neural networks: A comparative study. Eng. Geol. 2014, 183, 230–240. [Google Scholar] [CrossRef]
- Cheshomi, A.; Mousavi, E.; Ahmadi-Sheshde, E. Evaluation of single particle loading test to estimate the uniaxial compressive strength of sandstone. J. Pet. Sci. Eng. 2015, 135, 421–428. [Google Scholar] [CrossRef]
- Selçuk, L.; Kayabali, K. Evaluation of the unconfined compressive strength of rocks using nail guns. Eng. Geol. 2015, 195, 164–171. [Google Scholar] [CrossRef]
- Uyanık, O.; Sabbağ, N.; Uyanık, N.A.; Öncü, Z. Prediction of mechanical and physical properties of some sedimentary rocks from ultrasonic velocities. Bull. Eng. Geol. Environ. 2019, 78, 6003–6016. [Google Scholar] [CrossRef]
- Karakus, M.; Tutmez, B. Fuzzy and multiple regression modelling for evaluation of intact rock strength based on point load, Schmidt hammer and sonic velocity. Rock Mech. Rock Eng. 2006, 39, 45–57. [Google Scholar] [CrossRef]
- Ng, I.T.; Yuen, K.V.; Lau, C.H. Predictive model for uniaxial compressive strength for Grade III granitic rocks from Macao. Eng. Geol. 2015, 199, 28–37. [Google Scholar] [CrossRef]
- Jalali, S.H.; Heidari, M.; Mohseni, H. Comparison of models for estimating uniaxial compressive strength of some sedimentary rocks from Qom Formation. Environ. Earth Sci. 2017, 76, 1–15. [Google Scholar] [CrossRef]
- Sharma, L.K.; Vishal, V.; Singh, T.N. Developing novel models using neural networks and fuzzy systems for the prediction of strength of rocks from key geomechanical properties. Measurement 2017, 102, 158–169. [Google Scholar] [CrossRef]
- Aboutaleb, S.; Behnia, M.; Bagherpour, R.; Bluekian, B. Using non-destructive tests for estimating uniaxial compressive strength and static Young’s modulus of carbonate rocks via some modeling techniques. Bull. Eng. Geol. Environ. 2018, 77, 1717–1728. [Google Scholar] [CrossRef]
- Zhou, J.; Huang, S.; Wang, M.; Qiu, Y. Performance evaluation of hybrid GA–SVM and GWO–SVM models to predict earthquake-induced liquefaction potential of soil: A multi-dataset investigation. Eng. Comput. 2021, 38, 4197–4215. [Google Scholar] [CrossRef]
- Zhou, J.; Qiu, Y.; Zhu, S.; Armaghani, D.J.; Li, C.; Nguyen, H.; Yagiz, S. Optimization of support vector machine through the use of metaheuristic algorithms in forecasting TBM advance rate. Eng. Appl. Artif. Intell. 2021, 97, 104015. [Google Scholar] [CrossRef]
- Zhou, J.; Qiu, Y.; Armaghani, D.J.; Zhang, W.; Li, C.; Zhu, S.; Tarinejad, R. Predicting TBM penetration rate in hard rock condition: A comparative study among six XGB-based metaheuristic techniques. Geosci. Front. 2021, 12, 101091. [Google Scholar] [CrossRef]
- Li, C.; Zhou, J.; Armaghani, D.J.; Li, X. Stability analysis of underground mine hard rock pillars via combination of finite difference methods, neural networks, and Monte Carlo simulation techniques. Undergr. Space 2021, 6, 379–395. [Google Scholar] [CrossRef]
- Li, C.; Zhou, J.; Armaghani, D.J.; Cao, W.; Yagiz, S. Stochastic assessment of hard rock pillar stability based on the geological strength index system. Geomech. Geophys. Geo-Energy Geo-Resour. 2021, 7, 47. [Google Scholar] [CrossRef]
- Li, C.; Zhou, J.; Tao, M.; Du, K.; Wang, S.; Armaghani, D.J.; Mohamad, E.T. Developing hybrid ELM-ALO, ELM-LSO and ELM-SOA models for predicting advance rate of TBM. Transp. Geotech. 2022, 36, 100819. [Google Scholar] [CrossRef]
- Li, C.; Zhou, J.; Khandelwal, M.; Zhang, X.; Monjezi, M.; Qiu, Y. Six novel hybrid extreme learning machine–swarm intelligence optimization (ELM–SIO) models for predicting backbreak in open-pit blasting. Nat. Resour. Res. 2022, 31, 3017–3039. [Google Scholar] [CrossRef]
- Mei, X.; Li, C.; Sheng, Q.; Cui, Z.; Zhou, J.; Dias, D. Development of a hybrid artificial intelligence model to predict the uniaxial compressive strength of a new aseismic layer made of rubber-sand concrete. Mech. Adv. Mater. Struct. 2022, 30, 2185–2202. [Google Scholar] [CrossRef]
- Zhou, J.; Aghili, N.; Ghaleini, E.N.; Bui, D.T.; Tahir, M.M.; Koopialipoor, M. A Monte Carlo simulation approach for effective assessment of flyrock based on intelligent system of neural network. Eng. Comput. 2020, 36, 713–723. [Google Scholar] [CrossRef]
- Zhou, J.; Koopialipoor, M.; Murlidhar, B.R.; Fatemi, S.A.; Tahir, M.M.; Jahed Armaghani, D.; Li, C. Use of intelligent methods to design effective pattern parameters of mine blasting to minimize flyrock distance. Nat. Resour. Res. 2020, 29, 625–639. [Google Scholar] [CrossRef]
- Xie, S.; Lin, H.; Duan, H. A novel criterion for yield shear displacement of rock discontinuities based on renormali-zation group theory. Eng. Geol. 2023, 314, 107008. [Google Scholar] [CrossRef]
- Xie, C.; Nguyen, H.; Bui, X.N.; Nguyen, V.T.; Zhou, J. Predicting roof displacement of roadways in underground coal mines using adaptive neuro-fuzzy inference system optimized by various physics-based optimization algorithms. J. Rock Mech. Geotech. Eng. 2021, 13, 1452–1465. [Google Scholar] [CrossRef]
- Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef]
- Mirjalili, S. Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowl.-Based Syst. 2015, 89, 228–249. [Google Scholar] [CrossRef]
- Xue, J.; Shen, B. A novel swarm intelligence optimization approach: Sparrow search algorithm. Syst. Sci. Control Eng. 2020, 8, 22–34. [Google Scholar] [CrossRef]
- Liu, S.; Yang, Y.; Zhou, Y. A swarm intelligence algorithm-lion swarm optimization. Pattern Recognit. Artif. Intell. 2018, 31, 431–441. [Google Scholar]
- Ho, T.K. Random decision forests. In Proceedings of the 3rd International Conference on Document Analysis and Recognition, Montreal, QC, Canada, 14–16 August 1995; Volume 1, pp. 278–282. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Shariati, M.; Mafipour, M.S.; Ghahremani, B.; Azarhomayun, F.; Ahmadi, M.; Trung, N.T.; Shariati, A. A novel hybrid extreme learning machine–grey wolf optimizer (ELM-GWO) model to predict compressive strength of concrete with partial replacements for cement. Eng. Comput. 2022, 38, 757–779. [Google Scholar] [CrossRef]
Variable | Single Equation | Samples | Lithologies | Reference |
---|---|---|---|---|
PLS | 188 | sedimentary | Tsiambaos and Sabatakakis [39] | |
121 | sedimentary | Yilmaz and Yuksek [19] | ||
44 | igneous | Kohno and Maeda [40] | ||
71 | igneous | Armaghani et al. [9] | ||
104 | sedimentary | Aliyu et al. [11] | ||
Pn | 12 | sedimentary | Palchik and Hatzor [41] | |
32 | metamorphic | Diamantis et al. [42] | ||
20 | sedimentary | Mishra and Basu [43] | ||
71 | igneous | Armaghani et al. [9] | ||
71 | igneous | Armaghani et al. [10] | ||
Vp | 171 | igneous | Entwisle et al. [44] | |
32 | metamorphic | Diamantis et al. [42] | ||
72 | sedimentary | Beiki et al. [45] | ||
45 | igneous | Armaghani et al. [9] | ||
71 | igneous | Armaghani et al. [9] | ||
SHR | 40 | igneous | Aydin and Basu [46] | |
19 | igneous, sedimentary metamorphic | Kılıç and Teymen [47] | ||
29 | igneous, metamorphic | Gupta [38] | ||
71 | igneous | Armaghani et al. [9] | ||
60 | igneous, sedimentary metamorphic | Aladejare [1] |
Variable | Multiple Equation | Samples | Lithologies | Reference |
---|---|---|---|---|
PLS, Vp, SHR | 90 | igneous, sedimentary metamorphic | Karakus et al. [53] | |
PLS, Vp, SHR | 15 | sedimentary | Çobanoğlu and Çelik [48] | |
PLS, Vp | 32 | metamorphic | Diamantis et al. [42] | |
PLS, Pn, Vp, SHR | 30 | sedimentary | Dehghan et al. [8] | |
PLS, Vp | 85 | igneous | Ng et al. [54] | |
PLS, Pn, Vp, SHR | 71 | igneous | Armaghani et al. [9] | |
PLS, Vp, SHR | 124 | igneous | Armaghani et al. [10] |
Variable | AI Models | Samples | Lithologies | Reference |
---|---|---|---|---|
PLS, Pn, Vp, SHR | ANN | 30 | sedimentary | Dehghan et al. [8] |
PLS, Pn, Vp, SHR | PSO-BPNN | 66 | sedimentary, igneous | Momeni et al. [12] |
PLS, Pn, Vp, SHR | ICA-ANN | 71 | igneous | Armaghani et al. [9] |
PLS, Vp, SHR | ANFIS | 124 | igneous | Armaghani et al. [10] |
PLS, Vp, SHR, BPI | FIS | 108 | sedimentary | Heidari et al. [13] |
PLS, Pn, Vp, SHR | GPR | 170 | igneous, sedimentary, metamorphic | Mahmoodzadeh et al. [3] |
Lithologies | Variables | Types | Minimum | Maximum | Mean | Median | St. D |
---|---|---|---|---|---|---|---|
igneous | PLS (MPa) | input | 0.89 | 11.73 | 4.08 | 3.97 | 1.76 |
Pn (%) | input | 0.10 | 7.23 | 1.48 | 0.98 | 1.51 | |
Vp (km/s) | input | 1.16 | 7.94 | 4.76 | 4.70 | 1.19 | |
SHR | input | 16.80 | 65.57 | 45.57 | 46.00 | 8.01 | |
UCS (MPa) | output | 20.30 | 211.90 | 78.32 | 62.30 | 44.73 | |
sedimentary | PLS (MPa) | input | 0.89 | 14.13 | 3.98 | 3.29 | 2.33 |
Pn (%) | input | 0.06 | 16.80 | 3.53 | 0.54 | 4.28 | |
Vp (km/s) | input | 2.73 | 7.61 | 5.35 | 5.47 | 0.95 | |
SHR | input | 25.46 | 67.07 | 40.95 | 42.00 | 12.13 | |
UCS (MPa) | output | 12.01 | 215.21 | 86.51 | 77.04 | 53.31 | |
metamorphic | PLS (MPa) | input | 0.86 | 9.08 | 4.58 | 3.72 | 2.09 |
Pn (%) | input | 0.12 | 14.67 | 3.58 | 1.54 | 4.06 | |
Vp (km/s) | input | 2.99 | 7.94 | 5.24 | 5.23 | 0.96 | |
SHR | input | 26.13 | 61.00 | 42.90 | 46.00 | 11.35 | |
UCS (MPa) | output | 23.45 | 154.30 | 73.71 | 77.30 | 35.24 | |
All samples | PLS (MPa) | input | 0.86 | 14.13 | 4.07 | 3.57 | 2.04 |
Pn (%) | input | 0.06 | 16.80 | 2.49 | 0.85 | 3.32 | |
Vp (km/s) | input | 1.16 | 47.94 | 5.04 | 5.09 | 1.12 | |
SHR | input | 16.80 | 67.07 | 43.44 | 45.00 | 10.38 | |
UCS (MPa) | output | 12.01 | 215.21 | 81.43 | 65.30 | 48.07 |
Model | Regression Types | Variable | Function | R2 | RMSE |
---|---|---|---|---|---|
SR-1 | Exponential | PLS | 0.0483 | 48.3071 | |
SR-2 | Pn | 0.3356 | 39.1339 | ||
SR-3 | Vp | 0.4748 | 34.7941 | ||
SR-4 | SHR | 0.4555 | 35.4278 | ||
SR-5 | Linear | PLS | 0.0544 | 46.6861 | |
SR-6 | Pn | 0.3247 | 39.4528 | ||
SR-7 | Vp | 0.4792 | 34.6478 | ||
SR-8 | SHR | 0.4773 | 34.7107 | ||
SR-9 | Logarithmic | PLS | 0.0419 | 46.9929 | |
SR-10 | Pn | 0.6676 | 27.6785 | ||
SR-11 | Vp | 0.4105 | 36.8604 | ||
SR-12 | SHR | 0.4529 | 35.5103 | ||
SR-13 | Power | PLS | 0.0465 | 48.6029 | |
SR-14 | Pn | 0.7222 | 25.3029 | ||
SR-15 | Vp | 0.4315 | 36.1995 | ||
SR-16 | SHR | 0.4591 | 35.3090 |
Reference | Eqs. | R2 | RMSE | WI | VAF (%) |
---|---|---|---|---|---|
This study | Equation (6) | 0.7446 | 24.2627 | 0.9187 | 74.4828 |
Equation (7) | 0.7774 | 22.6503 | 0.9328 | 77.7455 |
Model | Swarm Size | R2 | RMSE | Time (Sec.) | ||
Training | Testing | Training | Testing | |||
GWO-RF | 20 | 0.9194 | 0.8909 | 13.8053 | 15.3570 | 189 |
40 | 0.9188 | 0.8994 | 13.8564 | 14.7512 | 401 | |
60 | 0.9243 | 0.8854 | 13.1171 | 15.7414 | 575 | |
80 | 0.9229 | 0.8912 | 13.5070 | 15.3364 | 781 | |
100 | 0.9250 | 0.8803 | 13.3191 | 16.0884 | 946 | |
150 | 0.9303 | 0.8762 | 12.8409 | 16.3657 | 1350 | |
Model | Swarm Size | R2 | RMSE | Time (Sec.) | ||
Training | Testing | Training | Testing | |||
MFO-RF | 20 | 0.9219 | 0.8936 | 13.5943 | 15.1714 | 246 |
40 | 0.9302 | 0.8867 | 12.8499 | 15.6517 | 375 | |
60 | 0.9209 | 0.8943 | 13.6767 | 15.1157 | 589 | |
80 | 0.9213 | 0.8916 | 13.6483 | 15.3081 | 741 | |
100 | 0.9203 | 0.8960 | 13.7304 | 14.9954 | 1052 | |
150 | 0.9297 | 0.8772 | 12.9008 | 16.2968 | 1489 | |
Model | Swarm Size | R2 | RMSE | Time (Sec.) | ||
Training | Testing | Training | Testing | |||
LSO-RF | 20 | 0.9207 | 0.8948 | 13.6983 | 15.0811 | 305 |
40 | 0.9175 | 0.8957 | 13.9726 | 15.0169 | 463 | |
60 | 0.9200 | 0.8997 | 13.7545 | 14.7261 | 687 | |
80 | 0.9284 | 0.8876 | 13.0185 | 15.5939 | 912 | |
100 | 0.9208 | 0.8895 | 13.6929 | 15.4621 | 1150 | |
150 | 0.9141 | 0.8910 | 14.2522 | 15.3516 | 1560 | |
Model | Swarm Size | R2 | RMSE | Time (Sec.) | ||
Training | Testing | Training | Testing | |||
SSA-RF | 20 | 0.9208 | 0.8927 | 13.6911 | 15.2358 | 315 |
40 | 0.9252 | 0.8854 | 13.3036 | 15.7461 | 578 | |
60 | 0.9224 | 0.8975 | 13.5502 | 14.8865 | 821 | |
80 | 0.9309 | 0.8837 | 12.7861 | 15.8606 | 1021 | |
100 | 0.9279 | 0.8818 | 13.0633 | 15.9858 | 1468 | |
150 | 0.9219 | 0.8922 | 13.5977 | 15.2656 | 2020 |
Model | Performance | |||
---|---|---|---|---|
R2 | RMSE | WI | VAF (%) | |
SR-1 | −0.0135 | 48.9683 | 0.4249 | 5.6413 |
SR-2 | 0.3257 | 39.9415 | 0.6215 | 36.3621 |
SR-3 | 0.4764 | 35.1956 | 0.7901 | 50.4493 |
SR-4 | 0.4386 | 36.4466 | 0.7835 | 45.8063 |
SR-5 | 0.0527 | 47.3417 | 0.3047 | 5.2738 |
SR-6 | 0.3140 | 40.2879 | 0.6754 | 31.3986 |
SR-7 | 0.4903 | 34.7257 | 0.8046 | 49.0569 |
SR-8 | 0.4584 | 35.7952 | 0.7860 | 45.8463 |
SR-9 | 0.0340 | 47.8060 | 0.2633 | 3.4053 |
SR-10 | 0.6441 | 29.0187 | 0.8823 | 64.4087 |
SR-11 | 0.4457 | 36.2127 | 0.7606 | 44.5739 |
SR-12 | 0.4361 | 36.5261 | 0.7696 | 43.6100 |
SR-13 | −0.032 | 49.4143 | 0.3749 | 4.0102 |
SR-14 | 0.7090 | 26.2379 | 0.8974 | 71.9010 |
SR-15 | 0.4361 | 36.5269 | 0.7369 | 47.2350 |
SR-16 | 0.4405 | 36.3845 | 0.7654 | 46.1874 |
MR-1 | 0.7237 | 25.5679 | 0.9119 | 72.3698 |
MR-2 | 0.7559 | 24.0312 | 0.9265 | 75.5940 |
GWO-RF | 0.9188 | 13.8564 | 0.9777 | 91.8895 |
MFO-RF | 0.9203 | 13.7304 | 0.9782 | 92.0332 |
LSO-RF | 0.9200 | 13.7545 | 0.9781 | 92.0076 |
SSA-RF | 0.9224 | 13.5502 | 0.9788 | 92.2401 |
Model | Performance | |||
---|---|---|---|---|
R2 | RMSE | WI | VAF (%) | |
SR-1 | −0.0098 | 46.7317 | 0.4345 | 5.5412 |
SR-2 | 0.3606 | 37.1863 | 0.6458 | 40.1272 |
SR-3 | 0.4704 | 33.8411 | 0.7747 | 49.2392 |
SR-4 | 0.4984 | 32.9345 | 0.8200 | 51.3333 |
SR-5 | 0.0585 | 45.1232 | 0.3118 | 5.8600 |
SR-6 | 0.3695 | 36.9274 | 0.6870 | 36.9966 |
SR-7 | 0.4620 | 34.1114 | 0.7871 | 46.4566 |
SR-8 | 0.5267 | 31.9917 | 0.8265 | 52.6895 |
SR-9 | 0.0618 | 45.0435 | 0.2880 | 6.1913 |
SR-10 | 0.7281 | 24.2508 | 0.9150 | 72.8103 |
SR-11 | 0.3845 | 36.4828 | 0.7284 | 38.8996 |
SR-12 | 0.5127 | 32.4624 | 0.8129 | 51.3004 |
SR-13 | −0.0067 | 46.6596 | 0.3949 | 6.2356 |
SR-14 | 0.7558 | 22.9797 | 0.9218 | 76.4239 |
SR-15 | 0.4197 | 35.4256 | 0.7186 | 44.6975 |
SR-16 | 0.5065 | 32.6688 | 0.8078 | 52.5023 |
MR-1 | 0.7978 | 20.9114 | 0.9358 | 80.0131 |
MR-2 | 0.8321 | 19.0525 | 0.9488 | 83.3190 |
GWO-RF | 0.8994 | 14.7512 | 0.9729 | 90.0986 |
MFO-RF | 0.8960 | 14.9954 | 0.9720 | 89.7520 |
LSO-RF | 0.8997 | 14.7261 | 0.9731 | 90.2630 |
SSA-RF | 0.8975 | 14.8865 | 0.9723 | 89.9029 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Zhou, J.; Dias, D.; Du, K.; Khandelwal, M. Comparative Evaluation of Empirical Approaches and Artificial Intelligence Techniques for Predicting Uniaxial Compressive Strength of Rock. Geosciences 2023, 13, 294. https://doi.org/10.3390/geosciences13100294
Li C, Zhou J, Dias D, Du K, Khandelwal M. Comparative Evaluation of Empirical Approaches and Artificial Intelligence Techniques for Predicting Uniaxial Compressive Strength of Rock. Geosciences. 2023; 13(10):294. https://doi.org/10.3390/geosciences13100294
Chicago/Turabian StyleLi, Chuanqi, Jian Zhou, Daniel Dias, Kun Du, and Manoj Khandelwal. 2023. "Comparative Evaluation of Empirical Approaches and Artificial Intelligence Techniques for Predicting Uniaxial Compressive Strength of Rock" Geosciences 13, no. 10: 294. https://doi.org/10.3390/geosciences13100294
APA StyleLi, C., Zhou, J., Dias, D., Du, K., & Khandelwal, M. (2023). Comparative Evaluation of Empirical Approaches and Artificial Intelligence Techniques for Predicting Uniaxial Compressive Strength of Rock. Geosciences, 13(10), 294. https://doi.org/10.3390/geosciences13100294