Imbrication and Erosional Tectonics Recorded by Garnets in the Sikkim Himalayas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
Sample | Formation from [26] | Th-Pb Monazite Age (Ma, ±1σ) a | T-D Core P (kbar) b | T-D Core T (°C) b | T-D Rim P (kbar) c | T-D Rim T (°C) c | Conv Rim P (kbar) d | Conv. Rim T (°C) d |
---|---|---|---|---|---|---|---|---|
Greater Himalayan Crystallines | ||||||||
LCG542 | Kanchenjunga/Darjeeling | 25.6 ± 0.3 to 18.8 ± 0.5 | 3.5 ± 0.5 | 520 ± 5 | 4.4 | 675 | n.d. | 560 ± 25 |
LCG752 | Kanchenjunga/Darjeeling | n.d. | 8.2 ± 0.5 | 750 ± 10 | 10.0 | 780 | >10 | 700 ± 25 |
Main Central Thrust Shear Zone | ||||||||
CMP860 | Chungthang | 20.5 ± 0.5 to 10.3 ± 0.2 | 4.5 ± 0.2 | 580 ± 20 | 6.2 | 630 | 6.0 ± 1.0 | 650 ± 25 |
CMP862 | Chungthang | n.d. | 7.3 ± 0.5 | 560 ± 10 | 6.3 | 587 | >10 | 875 ± 50 |
LCG753 | Chungthang | n.d. | 6.1 ± 0.5 | 610 ± 20 | 6.4 | 617 | >10 | 900 ± 50 |
Lesser Himalayan Formation | ||||||||
KBP1062A | Gorubathan | 14.2 ± 1.1 to 10.5 ± 0.2 | 4.5 ± 0.5 | 540 ± 10 | 6.7 | 650 | 7.5 ± 0.5 | 610 ± 25 |
KBP1062C | Gorubathan | 18.3 ± 0.1 to 11.5 ± 0.2 | 4.8 ± 0.2 | 540 ± 5 | 5.7 | 633 | 8.2 ± 1.2 | 730 ± 40 |
CHG14102 | Lingtse Gneiss | n.d. | 4.7 ± 0.5 | 530 ± 10 | 5.3 | 578 | 9.6 ± 1.2 | 660 ± 40 |
CHG14103 | Gorubathan | 13.8 ± 0.5 to 11.9 ± 0.3 | 5.5 ± 0.5 | 560 ± 10 | 6.0 | 580 | 6.0 ± 1.0 | 525 ± 25 |
2.2. Analysis
2.3. Uncertainties in Approach
3. Results
3.1. LHF Samples
3.2. MCT Shear Zone Samples
3.3. GHC Samples
4. Discussion
4.1. P-T Paths and Conditions
4.2. Garnets as Recorders of Erosion
4.3. Implication for Models of the Himalayas
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Searle, M.P.; Szulc, A.G. Channel flow and ductile extrusion of the high Himalayan slab-the Kangchenjunga–Darjeeling profile, Sikkim Himalaya. J. Southeast Asian Earth Sci. 2005, 25, 173–185. [Google Scholar] [CrossRef]
- Bhattacharyya, K.; Mitra, G. A new kinematic evolutionary model for the growth of a duplex—An example from the Rangit duplex, Sikkim Himalaya, India. Gondwana Res. 2009, 16, 697–715. [Google Scholar] [CrossRef]
- Chakraborty, S.; Mukhopadhyay, D.K.; Chowdhury, P.; Rubatto, D.; Anczkiewicz, R.; Trepmann, C.; Gaidies, F.; Sorcar, N.; Dasgupta, S. Channel flow and localized fault bounded slice tectonics (LFBST): Insights from petrological, structural, geochronological and geospeedometric studies in the Sikkim Himalaya, NE India. Lithos 2017, 282–283, 464–482. [Google Scholar] [CrossRef]
- Bhattacharyya, K.; Mitra, G.; Kwon, S. Geometry and kinematics of the Darjeeling–Sikkim Himalaya, India: Implications for the evolution of the Himalayan fold-thrust belt. J. Southeast Asian Earth Sci. 2015, 113, 778–796. [Google Scholar] [CrossRef] [Green Version]
- Catlos, E.J.; Dubey, C.S.; Harrison, T.M.; Edwards, M.A. Late Miocene movement within the Himalayan Main Central Thrust shear zone, Sikkim, north-east India. J. Metamorph. Geol. 2004, 22, 207–226. [Google Scholar] [CrossRef]
- Dubey, C.S.; Catlos, E.J.; Sharma, B.K. Modeling P-T-t paths constrained by mineral chemistry and monazite dating of met-apelites ion relationship to MCT activity in Sikkim, eastern Himalayas. In Metamorphism and Crustal Evolution: Papers in Honor of Prof. R.S. Sharma; Thomas, H., Ed.; Atlantic Publishers and Distributors: New Delhi, India, 2005; pp. 250–282. [Google Scholar]
- Dasgupta, S.; Ganguly, J.; Neogi, S. Inverted metamorphic sequence in the Sikkim Himalayas: Crystallization history, P-T gradient and implications. J. Metamorph. Geol. 2004, 22, 395–412. [Google Scholar] [CrossRef]
- Ghosh, S.; Bose, S.; Mandal, N.; Dasgupta, S. Dynamic recrystallization mechanisms and their transition in the Daling Thrust (DT) zone, Darjeeling–Sikkim Himalaya. Tectonophysics 2016, 674, 166–181. [Google Scholar] [CrossRef]
- Chakraborty, S.; Mukul, M. New insights into the position and geometry of the Main Central Thrust from Sikkim, Eastern Himalaya. J. Geol. 2019, 127, 289–322. [Google Scholar] [CrossRef]
- Ghosh, P.; Bhattacharyya, K.; Parui, C. Tracking progressive deformation of an orogenic wedge through two successive internal thrusts: Insights from structure, deformation profile, strain, and vorticity of the Main Central thrust (MCT) and the Pelling-Munsiari thrust (PT), Sikkim Himalayan fold thrust belt. J. Struct. Geol. 2020, 140, 104120. [Google Scholar] [CrossRef]
- Das, D.; Mallik, J.; Das, S.; Deb, T.; Das, A.; Bandyopadhyay, K. Active thrust induced realignment of recent near-surface stresses in the Darjeeling-Sikkim Himalayas: Reasons and implications. J. Struct. Geol. 2021, 145, 104311. [Google Scholar] [CrossRef]
- Acharyya, S.K.; Ray, K.K. Geology of the Darjeeling–Sikkim Himalaya. Guide to Excursion No. 3. In Proceedings of the Fourth International Gondwana Symposium, Calcutta, India, 17–22 January 1977; Geological Survey of India: Kolkata, India; pp. 1–25. [Google Scholar]
- Ray, S.K. Culmination zones in Eastern Himalaya. Geol. Surv. India Spec. Pub. 2000, 55, 85–94. [Google Scholar]
- Mitra, G.; Bhattacharyya, K.; Mukul, M. The lesser Himalayan Duplex in Sikkim: Implications for variations in Himalayan shortening. J. Geol. Soc. India 2010, 75, 289–301. [Google Scholar] [CrossRef]
- Pavankumar, G.; Manglik, A. Complex tectonic setting and deep crustal seismicity of the Sikkim Himalaya: An electrical resistivity perspective. Phys. Chem. Earth Parts A/B/C 2021, 124, 103077. [Google Scholar] [CrossRef]
- Saha, D.; Sengupta, D.; Das, S. Along strike variation in the Himalayan orogen and its expression along major intracontinental thrusts—The case of MCT in Sikkim and Arunachal Pradesh, India. Geol. Soc. India Mem. 2011, 77, 1–18. [Google Scholar]
- Landry, K.R.; Coutand, I.; Whipp, D.M.; Grujic, D.; Hourigan, J.K. Late Neogene tectonically driven crustal exhumation of the Sikkim Himalaya: Insights from inversion of multithermochronologic data. Tectonics 2016, 35, 833–859. [Google Scholar] [CrossRef] [Green Version]
- Raoof, J.; Mukhopadhyay, S.; Koulakov, I.; Kayal, J.R. 3-D seismic tomography of the lithosphere and its geodynamic implications beneath the northeast India region. Tectonics 2017, 36, 962–980. [Google Scholar] [CrossRef]
- De, R. Seismotectonic Model of the Sikkim Himalaya: Constraint from Microearthquake Surveys. Bull. Seism. Soc. Am. 2003, 93, 1395–1400. [Google Scholar] [CrossRef]
- Patro, P.K.; Harinarayana, T. Deep geoelectric structure of the Sikkim Himalayas (NE India) using magnetotelluric studies. Phys. Earth Planet. Inter. 2009, 173, 171–176. [Google Scholar] [CrossRef]
- Nakata, T.; Otsuki, K.; Khan, S.H. Active faults, stress field, and plate motion along Indo-Eurasian plate boundary. Tectono-Physics 1990, 181, 83–95. [Google Scholar] [CrossRef]
- De, R.; Kayal, J. Seismic activity at the MCT in Sikkim Himalaya. Tectonophysics 2004, 386, 243–248. [Google Scholar] [CrossRef]
- Hazarika, P.; Kumar, M.R.; Srijayanthi, G.; Raju, P.S.; Rao, N.P.; Srinagesh, D. Transverse Tectonics in the Sikkim Himalaya: Evidence from Seismicity and Focal-Mechanism Data. Bull. Seism. Soc. Am. 2010, 100, 1816–1822. [Google Scholar] [CrossRef]
- Paul, H.; Mitra, S.; Bhattacharya, S.; Suresh, G. Active transverse faulting within underthrust Indian crust beneath the Sikkim Himalaya. Geophys. J. Int. 2015, 201, 1072–1083. [Google Scholar] [CrossRef] [Green Version]
- Thirunavukarasu, A.; Kumar, A.; Mitra, S. Lateral variation of seismic attenuation in Sikkim Himalaya. Geophys. J. Int. 2016, 208, 257–268. [Google Scholar] [CrossRef]
- Geology and Mineral Resources Map of Sikkim. Source: Geological Survey of India (GSI). 2011. Available online: http://www.sikenvis.nic.in/Database/GSI_4420.aspx (accessed on 11 March 2022).
- Gaidies, F.; Petley-Ragan, A.; Chakraborty, S.; Dasgupta, S.; Jones, P. Constraining the conditions of Barrovian metamorphism in Sikkim, India: P-T-t paths of garnet crystallization in the Lesser Himalayan Belt. J. Metamorph. Geol. 2015, 33, 23–44. [Google Scholar] [CrossRef]
- Mottram, C.; Argles, T.W.; Harris, N.; Parrish, R.R.; Horstwood, M.; Warren, C.; Gupta, S. Tectonic interleaving along the Main Central Thrust, Sikkim Himalaya. J. Geol. Soc. 2014, 171, 255–268. [Google Scholar] [CrossRef] [Green Version]
- Gangopadhyay, P.K. Intrafolial folds and associated structures in a progressive strain environment of Darjeeling-Sikkim Himalaya. J. Earth Syst. Sci. 1995, 104, 523–537. [Google Scholar] [CrossRef]
- Bose, S.; Mandal, N.; Acharyya, S.; Ghosh, S.; Saha, P. Orogen-transverse tectonic window in the Eastern Himalayan fold belt: A superposed buckling model. J. Struct. Geol. 2014, 66, 24–41. [Google Scholar] [CrossRef]
- Roberts, A.G.; Weinberg, R.F.; Hunter, N.J.R.; Ganade, C.E. Large-scale rotational motion within the Main Central Thrust Zone in the Darjeeling-Sikkim Himalaya, India. Tectonics 2020, 39, e2019TC005949. [Google Scholar] [CrossRef]
- Singh, A.; Kumar, M.R.; Raju, P.S. Seismic structure of the underthrusting Indian crust in Sikkim Himalaya. Tectonics 2010, 29, 2010TC6021. [Google Scholar] [CrossRef]
- Sunilkumar, T.C.; Earnest, A.; Silpa, K.; Andrews, R. Rupture of the Indian slab in the 2011 Mw 6.9 Sikkim Himalaya earth-quake and its tectonic implications. J. Geophys. Res. 2019, 124, 2623–2637. [Google Scholar] [CrossRef]
- Kellett, D.A.; Grujic, D.; Coutand, I.; Cottle, J.; Mukul, M. The South Tibetan detachment system facilitates ultra rapid cooling of granulite-facies rocks in Sikkim Himalaya. Tectonics 2013, 32, 252–270. [Google Scholar] [CrossRef]
- Mukul, M.; Jade, S.; Ansari, K.; Abdul, M. Seismotectonic implications of strike-slip earthquakes in the Darjiling—Sikkim Himalaya. Curr. Sci. 2014, 106, 198–210. [Google Scholar]
- Beaumont, C.; Nguyen, M.; Jamieson, R.; Ellis, S. Crustal flow modes in large hot orogens. In Channel Flow, Ductile Extrusion and Exhumation in Continental Collision Zones; Law, R.D., Searle, M.P., Godin, L., Eds.; The Geological Society: London, UK, 2006; Volume 268, pp. 91–146. [Google Scholar]
- Jamieson, R.A.; Beaumont, C. On the origin of orogens. GSA Bull. 2013, 125, 1671–1702. [Google Scholar] [CrossRef]
- Mukherjee, S. Higher Himalaya in the Bhagirathi section (NW Himalaya, India): Its structures, backthrusts and extrusion mechanism by both channel flow and critical taper mechanisms. Int. J. Earth Sci. 2013, 102, 1851–1870. [Google Scholar] [CrossRef]
- Iaccarino, S.; Montomoli, C.; Montemagni, C.; Massonne, H.-J.; Langone, A.; Jain, A.K.; Visonà, D.; Carosi, R. The Main Central Thrust zone along the Alaknanda and Dhauli Ganga valleys (Garhwal Himalaya, NW India): Insights into an inverted metamorphic sequence. Lithos 2020, 372–373, 105669. [Google Scholar] [CrossRef]
- Wang, J.-M.; Zhang, J.J.; Wang, X.X. Structural kinematics, metamorphic P-T profiles and zircon geochronology across the Greater Himalayan Crystalline Complex in south-central Tibet: Implication for a revised channel flow. J. Metamorph. Geol. 2013, 31, 607–628. [Google Scholar] [CrossRef]
- Larson, K.; Godin, L.; Price, R.A. Relationships between displacement and distortion in orogens: Linking the Himalayan foreland and hinterland in central Nepal. GSA Bull. 2010, 122, 1116–1134. [Google Scholar] [CrossRef]
- Cottle, J.M.; Larson, K.P.; Kellett, D. How does the mid-crust accommodate deformation in large, hot collisional orogens? A review of recent research in the Himalayan orogen. J. Struct. Geol. 2015, 78, 119–133. [Google Scholar] [CrossRef] [Green Version]
- Beaumont, C.; Jamieson, R.A. Himalayan-Tibetan orogeny: Channel flow versus (critical) wedge models, afalse dichotomy. In Proceedings for the 25th Himalaya-Karakoram-Tibet Workshop, Open-File Report 2010-1099; U.S. Geological Survey; U.S. Department of the Interior: San Francisco, CA, USA, 2010; 2p. Available online: https://pubs.usgs.gov/of/2010/1099/beaumont/of2010-1099_beaumont.pdf (accessed on 11 March 2022).
- Larson, K.P.; Gervais, F.; Kellett, D.A. A P–T–t–D discontinuity in east-central Nepal: Implications for the evolution of the Himalayan mid-crust. Lithos 2013, 179, 275–292. [Google Scholar] [CrossRef]
- Corrie, S.L.; Kohn, M.J.; McQuarrie, N.; Long, S.P. Flattening the Bhutan Himalaya. Earth Planet. Sci. Lett. 2012, 349–350, 67–74. [Google Scholar] [CrossRef]
- Dasgupta, S.; Chakraborty, S.; Neogi, S. Petrology of an inverted Barrovian sequence of metapelites in Sikkim Himalaya, India: Constraints on the tectonics of inversion. Am. J. Sci. 2009, 309, 43–84. [Google Scholar] [CrossRef]
- Anczkiewicz, R.; Chakraborty, S.; Dasgupta, S.; Mukhopadhyay, D.; Kołtonik, K. Timing, duration and inversion of prograde Barrovian metamorphism constrained by high resolution Lu–Hf garnet dating: A case study from the Sikkim Himalaya, NE India. Earth Planet. Sci. Lett. 2014, 407, 70–81. [Google Scholar] [CrossRef]
- Yin, A. Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation. Earth-Sci. Rev. 2006, 76, 1–131. [Google Scholar] [CrossRef]
- Catlos, E.J. Records of Himalayan metamorphism and compressional tectonics in the central Himalayas (Darondi Khola, Nepal). In Compressional Tectonics: Plate Convergence to Mountain Building; Cemen, I., Catlos, E.J., Eds.; AGU Books; American Geophysical Union: Washington, DC, USA, 2021; Volume II. [Google Scholar] [CrossRef]
- Waters, D.J. Metamorphic constraints on the tectonic evolution of the High Himalaya in Nepal: The art of the possible. In Himalayan Tectonics: A Modern Synthesis; Treloar, J., Searle, M., Eds.; Special Publications; Geological Society: London, UK, 2019; Volume 483, pp. 325–375. [Google Scholar] [CrossRef]
- Ganguly, J.; Dasgupta, S.; Cheng, W.; Neogi, S. Exhumation history of a section of the Sikkim Himalayas, India: Records in the metamorphic mineral equilibria and compositional zoning of garnet. Earth Planet. Sci. Lett. 2000, 183, 471–486. [Google Scholar] [CrossRef]
- Tewari, S.; Prakash, D.; Yadav, M.K.; Srivastava, V. Barrovian metamorphism of the metapelites in NE Sikkim (Eastern Himalaya): Constraints from chemographic projection and geothermobarometry. J. Southeast Asian Earth Sci. 2021, 208, 104673. [Google Scholar] [CrossRef]
- Catlos, E.J.; Lovera, O.M.; Kelly, E.D.; Ashley, K.T.; Harrison, T.M.; Etzel, T. Modeling High-Resolution Pressure-Temperature Paths Across the Himalayan Main Central Thrust (Central Nepal): Implications for the Dynamics of Collision. Tectonics 2018, 37, 2363–2388. [Google Scholar] [CrossRef]
- Catlos, E.J.; Perez, T.J.; Lovera, O.M.; Dubey, C.S.; Schmitt, A.K.; Etzel, T.M. High-Resolution P-T-Time Paths Across Himalayan Faults Exposed Along the Bhagirathi Transect NW India: Implications for the Construction of the Himalayan Orogen and Ongoing Deformation. Geochem. Geophys. Geosyst. 2020, 21, e2020GC009353. [Google Scholar] [CrossRef]
- Etzel, T.M.; Catlos, E.J.; Ataktürk, K.; Lovera, O.M.; Kelly, E.D.; Çemen, I.; Diniz, E. Implications for Thrust-Related Shortening Punctuated by Extension From P-T Paths and Geochronology of Garnet-Bearing Schists, Southern (Çine) Menderes Massif, SW Turkey. Tectonics 2019, 38, 1974–1998. [Google Scholar] [CrossRef] [Green Version]
- Etzel, T.M.; Catlos, E.J.; Cemen, I.; Ozerdem, C.; Oyman, T.; Miggins, D. Documenting Exhumation in the Central and Northern Menderes Massif (Western Turkey): New Insights from Garnet-Based P-T Estimates and K-Feldspar 40Ar/39Ar Geochronology. Lithosphere 2020, 2020, 8818289. [Google Scholar] [CrossRef]
- Daniel, C.G.; Hollister, L.S.; Parrish, R.R.; Grujic, D. Exhumation of the Main Central Thrust from Lower Crustal Depths, Eastern Bhutan Himalaya. J. Metamorph. Geol. 2003, 21, 317–334. [Google Scholar] [CrossRef]
- Ferry, J.M.; Spear, F.S. Experimental calibration of the partitioning of Fe and Mg between biotite and garnet. Contrib. Miner. Pet. 1978, 66, 113–117. [Google Scholar] [CrossRef]
- Berman, R.G. Mixing properties of Ca-Mg-Fe-Mn garnets. Am. Mineral. 1990, 75, 328–344. [Google Scholar]
- Hoisch, T.D. Empirical calibration of six geobarometers for the mineral assemblage quartz+muscovite+biotite+plagioclase+garnet. Contrib. Miner. Pet. 1990, 104, 225–234. [Google Scholar] [CrossRef]
- Saha, D. Lesser Himalayan sequences in Eastern Himalaya and their deformation: Implications for Paleoproterozoic tectonic activity along the northern margin of India. Geosci. Front. 2013, 4, 289–304. [Google Scholar] [CrossRef] [Green Version]
- Paul, D.K.; Chandy, K.C.; Bhalla, J.N.; Sengupta, N.R. Geochronology and geochemistry of Lingtse Gneiss, Darjeeling–Sikkim Himalayas. Indian J. Sci. 1982, 9, 11–17. [Google Scholar]
- Paul, D.K.; McNaughton, N.J.; Chattopadhyay, S.; Ray, K.K. Geochronology and geochemistry of the Lingtse gneiss, Darjee-ling—Sikkim Himalaya: Revisited. J. Geol. Soc. India 1996, 48, 497–506. [Google Scholar]
- Acharyya, S.K.; Ghosh, S.; Mandal, N.; Bose, S.; Pande, K. Pre-Himalayan tectono-magmatic imprints in the Darjeeling-Sikkim Himalaya (DSH) constrained by 40Ar/39Ar dating of muscovite. J. Southeast Asian Earth Sci. 2017, 146, 211–220. [Google Scholar] [CrossRef]
- Acharyya, S.K. Structural framework and tectonic evolution of the eastern Himalaya. Himal. Geol. 1980, 10, 412–439. [Google Scholar]
- Acharyya, S.K. The Daling Group, its nomenclature, tectono-stratigraphy and structural grain: With notes on their possible equivalents. Visesa Prakasana-Bharatiya Bhuvaijñanika Sarveksana 1989, 22, 5–13. [Google Scholar]
- Long, S.; McQuarrie, N.; Tobgay, T.; Grujic, D. Geometry and crustal shortening of the Himalayan fold–thrust belt, eastern and central Bhutan. Geol. Soc. Am. Bull. 2011, 123, 1427–1447. [Google Scholar] [CrossRef]
- Ray, K.K. Some problems of stratigraphy and tectonics of the Darjeeling and Sikkim Himalayas. Geol. Surv. Ind. Misc. Pub. 1976, 24, 279–394. [Google Scholar]
- Sinha-Roy, S.; Gupta, S.S. Precambrian deformed granites of possible basement in the Himalayas. Precambrian Res. 1986, 31, 209–235. [Google Scholar] [CrossRef]
- Ameen, S.M.; Wilde, S.A.; Kabir, Z.; Akon, E.; Chowdhury, K.R.; Khan, S.H. Paleoproterozoic granitoids in the basement of Bangladesh: A piece of the Indian shield or an exotic fragment of the Gondwana jigsaw? Gondwana Res. 2007, 12, 380–387. [Google Scholar] [CrossRef]
- Martin, A.J.; DeCelles, P.G.; Gehrels, G.E.; Patchett, P.J.; Isachsen, C. Isotopic and structural constraints on the location of the Main Central Thrust in the Annapurna Range, central Nepal Himalaya. Geol. Soc. Am. Bull. 2005, 117, 926–944. [Google Scholar] [CrossRef]
- Saha, S.; Roy, J.; Pradhan, B.; Hembram, T.K. Hybrid ensemble machine learning approaches for landslide susceptibility mapping using different sampling ratios at East Sikkim Himalayan, India. Adv. Space Res. 2021, 68, 2819–2840. [Google Scholar] [CrossRef]
- Bhasin, R.; Grimstad, E.; Larsen, J.O.; Dhawan, A.K.; Singh, R.; Verma, S.; Venkatachalam, K. Landslide hazards and mitigation measures at Gangtok, Sikkim Himalaya. Eng. Geol. 2002, 64, 351–368. [Google Scholar] [CrossRef]
- Biswakarma, P.; Barman, B.K.; Joshi, V.; Rao, K.S. Landslide susceptibility mapping in east Sikkim region of Sikkim Himalaya using high resolution remote sensing data and GIS techniques. Appl. Ecol. Environ. Sci. 2020, 8, 143–153. [Google Scholar]
- Sivasankar, T.; Ghosh, S.; Joshi, M. Exploitation of optical and SAR amplitude imagery for landslide identification: A case study from Sikkim, Northeast India. Environ. Monit. Assess. 2021, 193, 386. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, S.S.; Ali, A.; Bhattacharya, G.; De, P.; Roy, B.C.; Nambiar, K.V.; Khan, S.I.K. Geology and Mineral Resources of the States of India, Part XIX–SIKKIM. In Geological Survey of India Miscellaneous Publication; Government of India: Kolkata, India, 2012; Volume 30, 54p, Available online: http://www.sikenvis.nic.in/WriteReadData/UserFiles/file/GSI%20Miscpub30_Sikkim.pdf (accessed on 11 March 2022).
- de Capitani, C.; Brown, T.H. The computation of chemical equilibrium in complex systems containing non-ideal solutions. Geochim. Cosmochim. Acta 1987, 51, 2639–2652. [Google Scholar] [CrossRef]
- De Capitani, C.; Petrakakis, K. The computation of equilibrium assemblage diagrams with Theriak/Domino software. Am. Miner. 2010, 95, 1006–1016. [Google Scholar] [CrossRef]
- Holland, T.; Baker, J.; Powell, R. Mixing properties and activity-composition relationships of chlorites in the system MgO-FeO-Al2O3-SiO2-H2O. Eur. J. Miner. 1998, 10, 395–406. [Google Scholar] [CrossRef]
- Baldwin, J.A.; Powell, R.; Brown, M.; Moraes, R.; Fuck, R.A. Modelling of mineral equilibria in ultrahigh-temperature metamorphic rocks from the Anápolis-Itauçu Complex, central Brazil. J. Metamorph. Geol. 2005, 23, 511–531. [Google Scholar] [CrossRef]
- Powell, R.; Holland, T. Relating formulations of the thermodynamics of mineral solid solutions; activity modeling of pyroxenes, amphiboles, and micas. Am. Miner. 1999, 84, 1–14. [Google Scholar] [CrossRef]
- Mahar, E.M.; Baker, J.M.; Powell, R.; Holland, T.J.B.; Howell, N. The effect of Mn on mineral stability in metapelites. J. Metamorph. Geol. 1997, 15, 223–238. [Google Scholar] [CrossRef]
- White; Powell; Holland; Worley. The effect of TiO2 and Fe2O3 on metapelitic assemblages at greenschist and amphibolite facies conditions: Mineral equilibria calculations in the system K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2-Fe2O3. J. Metamorph. Geol. 2000, 18, 497–511. [Google Scholar] [CrossRef]
- White, R.W.; Pomroy, N.E.; Powell, R. An in situ metatexite-diatexite transition in upper amphibolite facies rocks from Broken Hill, Australia. J. Metamorph. Geol. 2005, 23, 579–602. [Google Scholar] [CrossRef]
- Zeh, A.; Holness, M.B. The Effect of Reaction Overstep on Garnet Microtextures in Metapelitic Rocks of the Ilesha Schist Belt, SW Nigeria. J. Pet. 2003, 44, 967–994. [Google Scholar] [CrossRef]
- Holland, T.; Powell, R. Activity-composition relations for phases in petrological calculations: An asymmetric multicomponent formulation. Contrib. Miner. Pet. 2003, 145, 492–501. [Google Scholar] [CrossRef]
- Coggon, R.; Holland, T.J.B. Mixing properties of phengitic micas and revised garnet-phengite thermobarometers. J. Metamorph. Geol. 2002, 20, 683–696. [Google Scholar] [CrossRef]
- Moynihan, D.P.; Pattison, D.R.M. An automated method for the calculation of P-T paths from garnet zoning, with application to metapelitic schist from the Kootenay Arc, British Columbia, Canada. J. Metamorph. Geol. 2013, 31, 525–548. [Google Scholar] [CrossRef]
- White, R.W.; Powell, R.; Holland, T.J.B.; Johnson, T.E.; Green, E.C.R. New mineral activity-composition relations for thermo-dynamic calculations in metapelitic systems. J. Metamorph. Geol. 2014, 32, 261–286. [Google Scholar] [CrossRef]
- Lanari, P.; Engi, M. Local Bulk Composition Effects on Metamorphic Mineral Assemblages. Rev. Miner. Geochem. 2017, 83, 55–102. [Google Scholar] [CrossRef] [Green Version]
- Spear, F.S.; Daniel, C.G. Three-dimensional imaging of garnet porphyroblast sizes and chemical zoning: Nucleation and growth history in the garnet zone. Geol. Mat. Res. 1998, 1, 44. [Google Scholar]
- Florence, F.P.; Spear, F.S. Effects of diffusional modification of garnet growth zoning on P-T path calculations. Contrib. Miner. Pet. 1991, 107, 487–500. [Google Scholar] [CrossRef]
- Hames, W.E.; Menard, T. Fluid-assisted modification of garnet composition along rims, cracks, and mineral inclusion bound-aries in samples of amphibolite facies schists. Am. Mineral. 1993, 78, 338–344. [Google Scholar]
- Kelly, E.D.; Hoisch, T.D.; Wells, M.L.; Vervoort, J.D.; Beyene, M.A. An Early Cretaceous garnet pressure–temperature path recording synconvergent burial and exhumation from the hinterland of the Sevier orogenic belt, Albion Mountains, Idaho. Contrib. Mineral. Petrol. 2015, 170, 1–22. [Google Scholar] [CrossRef]
- Affinati, S.C.; Hoisch, T.D.; Wells, M.L.; Vervoort, J.D. Pressure-temperature-time paths from the Funeral Mountains, California, reveal Jurassic retroarc underthrusting during early Sevier orogenesis. GSA Bull. 2019, 132, 1047–1065. [Google Scholar] [CrossRef]
- Lanari, P.; Vidal, O.; de Andrade, V.; Dubacq, B.; Lewin EGrosch, E.G.; Schwartz, S. XMapTools: A MATLAB©-based program for electron microprobe X-ray image processing and geothermobarometry. Comp. Geosci. 2014, 62, 227–240. [Google Scholar] [CrossRef] [Green Version]
- Whitney, D.; Evans, B.W. Abbreviations for names of rock-forming minerals. Am. Miner. 2009, 95, 185–187. [Google Scholar] [CrossRef]
- McLellan, E. Metamorphic Reactions in the Kyanite and Sillimanite Zones of the Barrovian Type Area. J. Pet. 1985, 26, 789–818. [Google Scholar] [CrossRef]
- Spear, F.S. Metamorphic Phase Equilibria and Pressure-Temperature-Time Paths; American Geophysical Union: Washington, DC, USA, 1995; Volume 1, pp. 1–799. ISBN 0-939950-34-0. [Google Scholar]
- Sorcar, N.; Hoppe, U.; Dasgupta, S.; Chakraborty, S. High-temperature cooling histories of migmatites from the High Himalayan Crystallines in Sikkim, India: Rapid cooling unrelated to exhumation? Contrib. Miner. Pet. 2014, 167, 957. [Google Scholar] [CrossRef]
- Mohan, A.; Windley, B.F.; Searle, M.P. Geothermobarometry and development of inverted metamorphism in the Darjeeling-Sikkim region of the eastern Himalayan. J. Metamorph. Geol. 1989, 7, 95–110. [Google Scholar] [CrossRef]
- Kohn, M. P-T-t data from central Nepal support critical taper and repudiate large-scale channel flow of the Greater Himalayan Sequence. GSA Bull. 2008, 120, 259–273. [Google Scholar] [CrossRef]
- Mottram, C.M.; Parrish, R.R.; Regis, D.; Warren, C.J.; Argles, T.W.; Harris, N.B.W.; Roberts, N.M.W. Using U-Th-Pb petrochronology to determine rates of ductile thrusting: Time windows into the Main Central Thrust, Sikkim Himalaya. Tectonics 2015, 34, 1355–1374. [Google Scholar] [CrossRef] [Green Version]
- Connolly, J.A.D. Multivariable phase diagrams; an algorithm based on generalized thermodynamics. Am. J. Sci. 1990, 290, 666–718. [Google Scholar] [CrossRef]
- Connolly, J.A.D. The geodynamic equation of state: What and how. Geochem. Geophys. Geosyst. 2009, 10, Q10014. [Google Scholar] [CrossRef]
- Holland, T.J.B.; Powell, R. An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. J. Metamorph. Geol. 2011, 29, 333–383. [Google Scholar] [CrossRef]
- Zeitler, P.K.; Meltzer, A.S.; Koons, P.O.; Craw, D.; Hallet, B.; Chamberlain, C.P.; Kidd, W.S.F.; Park, S.K.; Seeber, L.; Bishop, M.; et al. Erosion, Himalayan Geodynamics, and the Geomorphology of Metamorphism. GSA Today 2001, 11, 4–9. [Google Scholar] [CrossRef]
- Grujic, D.; Coutand, I.; Bookhagen, B.; Bonnet, S.; Blythe, A.; Duncan, C. Climatic forcing of erosion, landscape, and tectonics in the Bhutan Himalayas. Geology 2006, 34, 801–804. [Google Scholar] [CrossRef] [Green Version]
- Burbank, D.W.; Blythe, A.E.; Putkonen, J.; Pratt-Sitaula, B.; Gabet, E.; Oskin, M.; Barros, A.; Ojha, T.P. Decoupling of erosion and precipitation in the Himalayas. Nature 2003, 426, 652–655. [Google Scholar] [CrossRef] [PubMed]
- Whipple, K.X. Can erosion drive tectonics? Science 2014, 346, 918–919. [Google Scholar] [CrossRef] [PubMed]
- Abrahami, R.; van der Beek, P.; Huyghe, P.; Hardwick, E.; Carcaillet, J. Decoupling of long-term exhumation and short-term erosion rates in the Sikkim Himalaya. Earth Planet. Sci. Lett. 2016, 433, 76–88. [Google Scholar] [CrossRef]
- Tsering, T.; Wahed, M.S.A.; Iftekhar, S.; Sillanpää, M. Major ion chemistry of the Teesta River in Sikkim Himalaya, India: Chemical weathering and assessment of water quality. J. Hydrol. Reg. Stud. 2019, 24, 100612. [Google Scholar] [CrossRef]
- Goyal, M.K.; Goswami, U.P. Teesta River and Its Ecosystem. In The Indian Rivers. Springer Hydrogeology; Singh, D., Ed.; Springer: Singapore, 2018. [Google Scholar] [CrossRef]
- Adams, B.A.; Whipple, K.X.; Forte, A.M.; Heimsath, A.M.; Hodges, K.V. Climate controls on erosion in tectonically active landscapes. Sci. Adv. 2020, 6, eaaz3166. [Google Scholar] [CrossRef] [PubMed]
- Caddick, M.; Bickle, M.; Harris, N.; Holland, T.; Horstwood, M.; Parrish, R.; Ahmad, T. Burial and exhumation history of a Lesser Himalayan schist: Recording the formation of an inverted metamorphic sequence in NW India. Earth Planet. Sci. Lett. 2007, 264, 375–390. [Google Scholar] [CrossRef]
- Goswami-Banerjee, S.; Bhowmik, S.K.; Dasgupta, S.; Pant, N.C. Burial of thermally perturbed Lesser Himalayan mid-crust: Evidence from petrochemistry and P–T estimation of the western Arunachal Himalaya, India. Lithos 2014, 208–209, 298–311. [Google Scholar] [CrossRef]
- Arora, B.R.; Prajapati, S.K.; Reddy, C.D. Geophysical Constraints on the Seismotectonics of the Sikkim Himalaya. Bull. Seism. Soc. Am. 2014, 104, 2278–2287. [Google Scholar] [CrossRef]
- Vernant, P.; Bilham, R.; Szeliga, W.; Drupka, D.; Kalita, S.; Bhattacharyya, A.K.; Gaur, V.K.; Pelgay, P.; Cattin, R.; Berthet, T. Clockwise rotation of the Brahmaputra Valley relative to India: Tectonic convergence in the eastern Himalaya, Naga Hills, and Shillong Plateau. J. Geophys. Res. Solid Earth 2014, 119, 6558–6571. [Google Scholar] [CrossRef]
- Kayal, J.R. Microearthquake Seismology and Seismotectonics of South Asia; Springer: Dordrecht, The Netherlands; Capital Publishing Company: New Delhi, India, 2008; 248p. [Google Scholar]
Sample/ Analysis | KBP 1062A a | KBP 1062C | CHG 14102 | CHG 14103 a | CMP 860 | CMP 862 a | LCG 753 a | LCG 542 a | LCG 752 a |
---|---|---|---|---|---|---|---|---|---|
SiO2 | 62.330 | 66.825 | 52.008 | 61.417 | 72.826 | 43.516 | 62.663 | 55.157 | 42.202 |
Al2O3 | 20.633 | 17.571 | 28.856 | 21.795 | 14.126 | 31.232 | 21.839 | 23.894 | 20.390 |
Fe2O3 | 5.469 | 4.941 | 5.782 | 5.671 | 4.537 | 7.239 | 4.759 | 8.023 | 9.580 |
MnO | 0.075 | 0.023 | 0.067 | 0.035 | 0.041 | 0.082 | 0.110 | 0.174 | 0.113 |
MgO | 3.133 | 2.969 | 2.800 | 4.526 | 2.212 | 6.959 | 1.738 | 3.424 | 11.618 |
CaO | 0.543 | 0.190 | 0.500 | 0.534 | 0.342 | 0.219 | 2.876 | 2.696 | 2.240 |
Na2O | 2.670 | 0.688 | 3.189 | 2.029 | 0.819 | 3.527 | 2.885 | 2.782 | 1.679 |
K2O | 4.437 | 6.201 | 6.200 | 3.484 | 4.654 | 6.540 | 2.347 | 2.914 | 8.901 |
TiO2 | 0.544 | 0.483 | 0.526 | 0.407 | 0.363 | 0.653 | 0.612 | 0.851 | 2.797 |
P2O5 | 0.167 | 0.109 | 0.072 | 0.101 | 0.079 | 0.033 | 0.170 | 0.086 | 0.480 |
Total | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Catlos, E.J.; Dubey, C.S.; Etzel, T.M. Imbrication and Erosional Tectonics Recorded by Garnets in the Sikkim Himalayas. Geosciences 2022, 12, 146. https://doi.org/10.3390/geosciences12040146
Catlos EJ, Dubey CS, Etzel TM. Imbrication and Erosional Tectonics Recorded by Garnets in the Sikkim Himalayas. Geosciences. 2022; 12(4):146. https://doi.org/10.3390/geosciences12040146
Chicago/Turabian StyleCatlos, Elizabeth J., Chandra S. Dubey, and Thomas M. Etzel. 2022. "Imbrication and Erosional Tectonics Recorded by Garnets in the Sikkim Himalayas" Geosciences 12, no. 4: 146. https://doi.org/10.3390/geosciences12040146
APA StyleCatlos, E. J., Dubey, C. S., & Etzel, T. M. (2022). Imbrication and Erosional Tectonics Recorded by Garnets in the Sikkim Himalayas. Geosciences, 12(4), 146. https://doi.org/10.3390/geosciences12040146