Constraining the Timing of Evolution of Shear Zones in Two Collisional Orogens: Fusing Structural Geology and Geochronology
Abstract
:1. Introduction
2. Monazite Behavior during Metamorphism: A Synthesis
3. Geological Setting of the Southern Variscan Belt
4. The East Variscan Shear Zone
Shear Zone and Locality | Variscan Tectonic Domains | Sheared Lithotypes | Strike & Dip of Mylonitic Foliation | Trend & Plunge of Lineation | Sense of Shear | Syn Shear Metamorphism | Deformation Mechanisms and Deformation T | Flow Regime | Timing | Syn-Tectonic Monazite Features |
---|---|---|---|---|---|---|---|---|---|---|
PASZ (Sardinia) | Internal and External Zones (HGMC/MGMC) a | Medium- to high-grade schist, gneiss, and migmatite a,c | S2: subvertical oriented E-W a,c | L2: oriented E-W with a variable plunging from subhorizontal to subvertical a,c | top-to-the-NW a,c | Retrometamorphism from Amphibolite-facies to greenschist-facies a | GBM to SGR in quartz; T variable from ~600° to ~400° C b,c | pure shear dominated transpression to simple shear dominated transpression a,b,c | 325–300 Ma c | chemically homogeneous grains (high-Y) or zoned with a low-Y core and high-Y rim, sometimes a thin late low-Y rim is present c |
CF (Maures Massif) | Internal and External Zones (HGMC/MGMC) d,e | Medium- to high-grade schist, gneiss, and migmatite e | S2: subvertical oriented NNE-SSW or dipping at medium angle toward the WNW e | L2: oriented NW-SE and plunging at medium angle toward WNW e | top-to-the-NW e | Retrometamorphism from Amphibolite-facies to greenschist-facies d,e | GBM in quartz; T between ~550° and 615° C e | pure shear dominated transpression e | 323 Ma e | chemically homogeneous grains (high-Y) or zoned with a low-Y core and high-Y rim e |
FMSZ (Argentera Massif) | Internal Zone (Tinèe and Gesso-Stura-Vesubie complexes) f,g | Migmatite f | S2: subvertical oriented NW-Se f,g,h | L2: oriented NW-SE subhorizontal or moderately plunging toward the NW f,g,h | top-to-the-SE f,g,h | Retrometamorphism from HT Amphibolite-facies to greenschist-facies g,h | GBM to SGR in quartz; feldspars fractured in lower grade mylonite; T variable from ~650° to ~400° C h | pure shear dominated transpression to simple shear dominated transpression g,h | 340/330–305 Ma g,h | chemically homogeneous grains (high-Y) or zoned with a low-Y core and high-Y rim g,h |
EBSZ (Aiguilles Rouge Massif) | Internal Zone i | Medium- to high-grade schist, gneiss, and migmatite i | Sp: subvertical oriented NE-SW i | Lp: oriented NE-SW and plunging toward the NE at low angle i | top-to-the-SW i | Retrometamorphism from Amphibolite-facies to greenschist-facies i | GBM to local incipient SGR in quartz; T variable from ~650° to ~550° C i | pure shear dominated transpression i | 320 Ma i | chemically homogeneous grains (high-Y) or zoned with a low-Y core and high-Y rim i |
5. Geological Setting of the Himalaya
6. High Himalayan Discontinuity in Western and Central Himalaya
Shear Zone and Locality | Tectonics Unit | Sheared Lithotypes | Strike & Dip of Mylonitic Foliation | Trend & Plunge of Lineation | Sense of Shear | Syn Shear Metamorphism | Deformation Mechanisms and Deformation T | Timing of Shearing | Monazite Features |
---|---|---|---|---|---|---|---|---|---|
Badrinath s.z. (NW India) | Greater Himalayan Sequence | sillimanite-garnet-bearing migmatitic gneiss d | moderately dipping to the NE, oriented WNW-ESE d | trending NE-SW and plunging toward the NE at low- to moderate angle d | top-to-the-SW d | Retrometamorphism from Amphibolite-facies, T ~ 720–700 °C and P 0.80–0.65 GP d | GBMII in quartz & chessboard extinction in quartz; T > 650° d | 23–19 Ma d | Chemically homogeneous grains (high-Y+HREE), and zoned grains with a low-Y+HREE core and high-Y+HREE rim d |
Mangri s.z. (Mugu Karnali, W Nepal) | Greater Himalayan Sequence | sillimanite-garnet-bearing migmatitic gneiss a | S2: moderately dipping to the NE, oriented NW-SE a | L2: trending from NE-SW to ENE-WSW moderately plunging to the NE or ENE a | top-to-the-WSW/ SW a | Retrometamorphism at Amphibolite-facies, T~720–690 °C and P 0.80–0.7 GP a | GBMII & chessboard extinction in quartz; T > 650° a | 25–18 Ma a | Chemically zoned with a low-Y+HREE core and high-Y+HREE rim a |
Tojiem s.z. (W Nepal) | Greater Himalayan Sequence | sillimanite-garnet-bearing migmatitic gneiss b | S2: moderately dipping to the NE, oriented NW-SE b | L2: trending NE-SW and plunging at medium angle toward NE b | top-to-the-SW b | Retrometamorphism at Amphibolite-facies, T ~ 700–600 °C and P 0.70–0.55 GP b | GBMII in quartz; T > 650° d | 26–17 Ma b | Chemically heterogeneous grains, in which cores yield older than the rims b |
Chomrong Thrust (Central Nepal) | Greater Himalayan Sequence | kyanite-garnet-bearing migmatitic gneiss c | S2: moderately dipping to the NE, oriented NW-SE c | L2: trending NE-SW, shallowly or moderately plunging toward the NE c | top-to-the-SW c | Retrometamorphism from Amphibolite-facies, T~670–650° and P ~0.8–0.7 GPa c | GBMII in quartz & chessboard extinction in quartz T > 650° c | 25–18 Ma c | Zoned grains with intermediate-Y core, low-Y+HREE mantle and high-Y+HREE rim c |
7. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Müller, W.; Aerden, D.; Halliday, A.N. Isotopic Dating of Strain Fringe Increments: Duration and Rates of Deformation in Shear Zones. Science 2000, 288, 2195–2198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, M.L.; Jercinovic, M.J. Tectonic Interpretation of Metamorphic Tectonites: Integrating Compositional Mapping, Microstructural Analysis and in Situ Monazite Dating. J. Metamorph. Geol. 2012, 30, 739–752. [Google Scholar] [CrossRef]
- Williams, M.L.; Jercinovic, M.J. Microprobe Monazite Geochronology: Putting Absolute Time into Microstructural Analysis. J. Struct. Geol. 2002, 24, 1013–1028. [Google Scholar] [CrossRef]
- Passchier, C.W.; Trouw, R.A.J. Microtectonics, 2nd ed.; Springer: Berlin, Germany, 2005. [Google Scholar]
- Fossen, H.; Cavalcante, G.C.G. Shear Zones—A Review. Earth-Sci. Rev. 2017, 171, 434–455. [Google Scholar] [CrossRef]
- Di Vincenzo, G.; Carosi, R.; Palmeri, R. The Relationship between Tectono-Metamorphic Evolution and Argon Isotope Records in White Mica: Constraints from in Situ40Ar–39Ar Laser Analysis of the Variscan Basement of Sardinia. J. Petrol. 2004, 45, 1013–1043. [Google Scholar] [CrossRef]
- Villa, I.M. Diffusion in Mineral Geochronometers: Present and Absent. Chem. Geol. 2016, 420, 1–10. [Google Scholar] [CrossRef]
- Yund, R.A.; Tullis, J. Compositional Changes of Minerals Associated with Dynamic Recrystallizatin. Contrib. Mineral. Petrol. 1991, 108, 346–355. [Google Scholar] [CrossRef]
- Villa, I.M.; Hermann, J.; Müntener, O.; Trommsdorff, V. 39Ar−40Ar Dating of Multiply Zoned Amphibole Generations (Malenco, Italian Alps). Contrib. Mineral. Petrol. 2000, 140, 363–381. [Google Scholar] [CrossRef]
- Kohn, M.J. Metamorphic Chronology—A Tool for All Ages: Past Achievements and Future Prospects. Am. Mineral. 2016, 101, 25–42. [Google Scholar] [CrossRef]
- Bianco, C.; Godard, G.; Halton, A.; Brogi, A.; Liotta, D.; Caggianelli, A. The Lawsonite-Glaucophane Blueschists of Elba Island (Italy). Lithos 2019, 348–349, 105198. [Google Scholar] [CrossRef]
- Engi, M. Petrochronology Based on REE-Minerals: Monazite, Allanite, Xenotime, Apatite. Rev. Mineral. Geochem. 2017, 83, 365–418. [Google Scholar] [CrossRef]
- Kohn, M.J.; Engi, M.; Lanari, P. Petrochronology: Methods and Applications; De Gruyter: Berlin, Germany, 2017; Volume 83. [Google Scholar]
- Lanari, P.; Engi, M. On Metamorphic Mineral Assemblages. Rev. Mineral. Geochem. 2017, 83, 55–102. [Google Scholar] [CrossRef] [Green Version]
- Foster, G.; Parrish, R.R.; Horstwood, M.S.A.; Chenery, S.; Pyle, J.; Gibson, H.D. The Generation of Prograde P–T–t Points and Paths; A Textural, Compositional, and Chronological Study of Metamorphic Monazite. Earth Planet. Sci. Lett. 2004, 228, 125–142. [Google Scholar] [CrossRef]
- Gasser, D.; Bruand, E.; Rubatto, D.; Stüwe, K. The Behaviour of Monazite from Greenschist Facies Phyllites to Anatectic Gneisses: An Example from the Chugach Metamorphic Complex, Southern Alaska. Lithos 2012, 134–135, 108–122. [Google Scholar] [CrossRef]
- Alcock, J.; Muller, P.D.; Jercinovic, M.J. Monazite Ages and Pressure-Temperature-Time Paths from Anatectites in the Southern Ruby Range, Montana, USA: Evidence for Delamination, Ultramafic Magmatism, and Rapid Uplift at ca. 1780 Ma. Can. J. Earth Sci. 2013, 50, 1069–1084. [Google Scholar] [CrossRef]
- Massonne, H.J. Wealth of P-T-t Information in Medium-High Grade Metapelites: Example from the Jubrique Unit of the Betic Cordillera, S Spain. Lithos 2014, 208, 137–157. [Google Scholar] [CrossRef]
- Palin, R.M.; Searle, M.P.; St-Onge, M.R.; Waters, D.J.; Roberts, N.M.W.; Horstwood, M.S.A.; Parrish, R.R.; Weller, O.M.; Chen, S.; Yang, J. Monazite Geochronology and Petrology of Kyanite- and Sillimanite-Grade Migmatites from the Northwestern Flank of the Eastern Himalayan Syntaxis. Gondwana Res. 2014, 26, 323–347. [Google Scholar] [CrossRef]
- Faure, M.; Mézème, E.B.; Duguet, M.; Cartier, C.; Talbot, J.Y. Paleozoic Tectonic Evolution of Medio-Europa from the Example of the French Massif Central and Massif Armoricain. J. Virtual Explor. 2005, 19, 1–25. [Google Scholar] [CrossRef]
- Corsini, M.; Rolland, Y. Late Evolution of the Southern European Variscan Belt: Exhumation of the Lower Crust in a Context of Oblique Convergence. Comptes Rendus Geosci. 2009, 341, 214–223. [Google Scholar] [CrossRef]
- Guillot, S.; Ménot, R.P. Paleozoic Evolution of the External Crystalline Massifs of the Western Alps. Comptes Rendus Geosci. 2009, 341, 253–265. [Google Scholar] [CrossRef]
- Simonetti, M.; Carosi, R.; Montomoli, C.; Cottle, J.M.; Law, R.D. Transpressive Deformation in the Southern European Variscan Belt: New Insights from the Aiguilles Rouges Massif (Western Alps). Tectonics 2020, 39, e2020TC006153. [Google Scholar] [CrossRef]
- Weinberg, R.F. Himalayan Leucogranites and Migmatites: Nature, Timing and Duration of Anatexis. J. Metamorph. Geol. 2016, 34, 821–843. [Google Scholar] [CrossRef]
- Pyle, J.M.; Spear, F.S. Yttrium Zoning in Garnet: Coupling of Major and Accessory Phases during Metamorphic Reactions. Geol. Mater. Res. 1999, 1, 708. [Google Scholar]
- Pyle, J.M.; Spear, F.S. Four Generations of Accessory-Phase Growth in Low-Pressure Migmatites from SW New Hampshire. Am. Mineral. 2003, 88, 338–351. [Google Scholar] [CrossRef]
- Dahl, P.S.; Terry, M.P.; Jercinovic, M.J.; Williams, M.L.; Hamilton, M.A.; Foland, K.A.; Clement, S.M.; Friberg, L.V.M. Electron Probe (Ultrachron) Microchronometry of Metamorphic Monazite: Unraveling the Timing of Polyphase Thermotectonism in the Easternmost Wyoming Craton (Black Hills, South Dakota). Am. Mineral. 2005, 90, 1712–1728. [Google Scholar] [CrossRef]
- Dumond, G.; Goncalves, P.; Williams, M.L.; Jercinovic, M.J. Subhorizontal Fabric in Exhumed Continental Lower Crust and Implications for Lower Crustal Flow: Athabasca Granulite Terrane, Western Canadian Shield. Tectonics 2010, 29, TC2006. [Google Scholar] [CrossRef] [Green Version]
- Foster, G.; Gibson, H.D.; Parrish, R.; Horstwood, M.; Fraser, J.; Tindle, A. Textural, Chemical and Isotopic Insights into the Nature and Behaviour of Metamorphic Monazite. Chem. Geol. 2002, 191, 183–207. [Google Scholar] [CrossRef]
- Gibson, H.D.; Carr, S.D.; Brown, R.L.; Hamilton, M.A. Correlations between Chemical and Age Domains in Monazite, and Metamorphic Reactions Involving Major Pelitic Phases: An Integration of ID-TIMS and SHRIMP Geochronology with Y-Th-U X-ray Mapping. Chem. Geol. 2004, 211, 237–260. [Google Scholar] [CrossRef]
- Janots, E.; Engi, M.; Berger, A.; Allaz, J.; Schwarz, J.-O.; Spandler, C. Prograde Metamorphic Sequence of REE Minerals in Pelitic Rocks of the Central Alps: Implications for Allanite–Monazite–Xenotime Phase Relations from 250 to 610 °C. J. Metamorph. Geol. 2008, 26, 509–526. [Google Scholar] [CrossRef]
- Spear, F.S.; Pyle, J.M. Theoretical Modeling of Monazite Growth in a Low-Ca Metapelite. Chem. Geol. 2010, 273, 111–119. [Google Scholar] [CrossRef]
- Kohn, M.J.; Wieland, M.S.; Parkinson, C.D.; Upreti, B.N. Five Generations of Monazite in Langtang Gneisses: Implications for Chronology of the Himalayan Metamorphic Core. J. Metamorph. Geol. 2005, 23, 399–406. [Google Scholar] [CrossRef]
- Law, R.D. Deformation Thermometry Based on Quartz C-Axis Fabrics and Recrystallization Microstructures: A Review. J. Struct. Geol. 2014, 66, 129–161. [Google Scholar] [CrossRef]
- Stipp, M.; Stünitz, H.; Heilbronner, R.; Schmid, S.M. Dynamic Recrystallization of Quartz: Correlation between Natural and Experimental Conditions. Geol. Soc. Spec. Publ. 2002, 200, 171–190. [Google Scholar] [CrossRef]
- Tinkham, D.K.; Zuluaga, C.A.; Harold, H.S. Metapelite Phase Equilibria Modeling in MnNCKFMASH: The Effect of Variable Al2O3 and MgO/(MgO+FeO) on Mineral Sility. Geol. Mater. Res. 2001, 3, 1–42. [Google Scholar]
- Spear, F.S. Monazite-Allanite Phase Relations in Metapelites. Chem. Geol. 2010, 279, 55–62. [Google Scholar] [CrossRef]
- Whitney, D.L.; Evans, B.W. Abbreviations for Names of Rock-Forming Minerals. Am. Mineral. 2010, 95, 185–187. [Google Scholar] [CrossRef]
- Yakymchuk, C.; Brown, M. Behaviour of Zircon and Monazite during Crustal Melting. J. Geol. Soc. 2014, 171, 465–479. [Google Scholar] [CrossRef]
- Yakymchuk, C. Behaviour of Apatite during Partial Melting of Metapelites and Consequences for Prograde Suprasolidus Monazite Growth. Lithos 2017, 274–275, 412–426. [Google Scholar] [CrossRef] [Green Version]
- Regis, D.; Warren, C.J.; Mottram, C.M.; Roberts, N.M.W. Using Monazite and Zircon Petrochronology to Constrain the P–T–t Evolution of the Middle Crust in the Bhutan Himalaya. J. Metamorph. Geol. 2016, 34, 617–639. [Google Scholar] [CrossRef] [Green Version]
- Foster, G.; Parrish, R.R. Metamorphic Monazite and the Generation of P-T-t Paths. Geol. Soc. Spec. Publ. 2003, 220, 25–47. [Google Scholar] [CrossRef]
- Mahan, K.H.; Goncalves, P.; Williams, M.L.; Jercinovic, M.J. Dating Metamorphic Reactions and Fluid Flow: Application to Exhumation of High-P Granulites in a Crustal-Scale Shear Zone, Western Canadian Shield. J. Metamorph. Geol. 2006, 24, 193–217. [Google Scholar] [CrossRef]
- Shrestha, S.; Larson, K.P.; Duesterhoeft, E.; Soret, M.; Cottle, J.M. Thermodynamic Modelling of Phosphate Minerals and Its Implications for the Development of P-T-t Histories: A Case Study in Garnet—Monazite Bearing Metapelites. Lithos 2019, 334–335, 141–160. [Google Scholar] [CrossRef]
- Larson, K.P.; Shrestha, S.; Cottle, J.M.; Guilmette, C.; Johnson, T.A.; Gibson, H.D.; Gervais, F. Re-Evaluating Monazite as a Record of Metamorphic Reactions. Geosci. Front. 2021, 13, 101340. [Google Scholar] [CrossRef]
- Arthaud, F.; Matte, P. Late Paleozoic Strike-Slip Faulting in Southern Europe and Northern Africa: Result of a Right-Lateral Shear Zone between the Appalachians and the Urals. Geol. Soc. Am. Bull. 1977, 88, 1305–1320. [Google Scholar] [CrossRef]
- Burg, J.P.; Matte, P.J. A Cross Section through the French Massif Central and the Scope of Its Variscan Geodynamic Evolution. Z. Dtsch. Geol. Ges. 1978, 129, 429–460. [Google Scholar] [CrossRef]
- Tollmann, A. Grossraümiger Variszischer Deckenbau Im Moldanubikum Un Neue Gedanken Zum Variszikum Europas. Geotecton. Res. 1982, 64, 1–61. [Google Scholar]
- Matte, P. The Variscan Collage and Orogeny (480–290 Ma) and the Tectonic Definition of the Armorica Microplate: A Review. Terra Nova 2001, 13, 122–128. [Google Scholar] [CrossRef]
- Kroner, U.; Roscher, M.; Romer, R.L. Ancient Plate Kinematics Derived from the Deformation Pattern of Continental Crust: Paleo- and Neo-Tethys Opening Coeval with Prolonged Gondwana–Laurussia Convergence. Tectonophysics 2016, 681, 220–233. [Google Scholar] [CrossRef]
- Fluck, P.; Piqué, A.; Schneider, J.-L.; Whitechurch, H. Le Socle Vosgien/The Vosgian Basement. Sci. Géol. Bull. Mémoires 1991, 44, 207–235. [Google Scholar] [CrossRef]
- Ballèvre, M.; Bosse, V.; Ducassou, C.; Pitra, P. Palaeozoic History of the Armorican Massif: Models for the Tectonic Evolution of the Suture Zones. Comptes Rendus Geosci. 2009, 341, 174–201. [Google Scholar] [CrossRef]
- Faure, M.; Lardeaux, J.M.; Ledru, P. A Review of the Pre-Permian Geology of the Variscan French Massif Central. Comptes Rendus Geosci. 2009, 341, 202–213. [Google Scholar] [CrossRef] [Green Version]
- Skrzypek, E.; Tabaud, A.S.; Edel, J.B.; Schulmann, K.; Cocherie, A.; Guerrot, C.; Rossi, P. The Significance of Late Devonian Ophiolites in the Variscan Orogen: A Record from the Vosges Klippen Belt. Int. J. Earth Sci. 2012, 101, 951–972. [Google Scholar] [CrossRef]
- Schulmann, K.; Konopásek, J.; Janoušek, V.; Lexa, O.; Lardeaux, J.M.; Edel, J.B.; Štípská, P.; Ulrich, S. An Andean Type Palaeozoic Convergence in the Bohemian Massif. Comptes Rendus Geosci. 2009, 341, 266–286. [Google Scholar] [CrossRef]
- Matte, P. La Chaine Varisque Parmi Les Chaines Paleozoiques Peri Atlantiques, Modele d’evolution et Position des Grands Blocs Continentaux Au Permo-Carbonifere. Bull. Soc. Géol. Fr. 1986, 2, 9–24. [Google Scholar] [CrossRef]
- Matte, P.H.; Ribeiro, A. Forme et orientation de l’ellipsoide de deformation dans la virgation Hercynienne de Galice. Relations avec le plissement et hypothesessur la genese de l’arc Ibero-Americain. C. R. Acad. Sci. Paris 1975, 280, 2825–2828. [Google Scholar]
- Brun, J.P.; Burg, J.P. Combined Thrusting and Wrenching in the Ibero-Armorican Arc: A Corner Effect during Continental Collision. Earth Planet. Sci. Lett. 1982, 61, 319–332. [Google Scholar] [CrossRef]
- Dias, R.; Ribeiro, A. The Ibero-Armorican Arc: A Collision Effect against an Irregular Continent? Tectonophysics 1995, 246, 113–128. [Google Scholar] [CrossRef]
- Dias, R.; Ribeiro, A.; Romão, J.; Coke, C.; Moreira, N. A Review of the Arcuate Structures in the Iberian Variscides; Constraints and Genetic Models. Tectonophysics 2016, 681, 170–194. [Google Scholar] [CrossRef]
- Fernández-Lozano, J.; Pastor-Galán, D.; Gutiérrez-Alonso, G.; Franco, P. New Kinematic Constraints on the Cantabrian Orocline: A Paleomagnetic Study from the Peñalba and Truchas Synclines, NW Spain. Tectonophysics 2016, 681, 195–208. [Google Scholar] [CrossRef]
- Simonetti, M.; Carosi, R.; Montomoli, C.; Corsini, M.; Petroccia, A.; Cottle, J.M.; Iaccarino, S. Timing and Kinematics of Flow in a Transpressive Dextral Shear Zone, Maures Massif (Southern France). Int. J. Earth Sci. 2020, 109, 2261–2285. [Google Scholar] [CrossRef]
- Simonetti, M.; Carosi, R.; Montomoli, C.; Langone, A.; D’Addario, E.; Mammoliti, E. Kinematic and Geochronological Constraints on Shear Deformation in the Ferriere-Mollières Shear Zone (Argentera-Mercantour Massif, Western Alps): Implications for the Evolution of the Southern European Variscan Belt. Int. J. Earth Sci. 2018, 107, 2163–2189. [Google Scholar] [CrossRef]
- Bellot, J.-P. The Palaeozoic Evolution of the Maures Massif (France) and Its Potential Correlation with other Areas of the Variscan Belt: A Review. Artic. J. Virtual Explor. 2005, 19, 4. [Google Scholar] [CrossRef]
- Ballèvre, M.; Manzotti, P.; Dal Piaz, G.V. Pre-Alpine (Variscan) Inheritance: A Key for the Location of the Future Valaisan Basin (Western Alps). Tectonics 2018, 37, 786–817. [Google Scholar] [CrossRef] [Green Version]
- Carosi, R.; Montomoli, C.; Tiepolo, M.; Frassi, C. Geochronological Constraints on Post-Collisional Shear Zones in the Variscides of Sardinia (Italy). Terra Nova 2012, 24, 42–51. [Google Scholar] [CrossRef]
- Carosi, R.; Petroccia, A.; Iaccarino, S.; Simonetti, M.; Langone, A.; Montomoli, C. Kinematics and Timing Constraints in a Transpressive Tectonic Regime: The Example of the Posada-Asinara Shear Zone (NE Sardinia, Italy). Geosciences 2020, 10, 288. [Google Scholar] [CrossRef]
- Padovano, M.; Elter, F.M.; Pandeli, E.; Franceschelli, M. The East Variscan Shear Zone: New Insights into Its Role in the Late Carboniferous Collision in Southern Europe. Int. Geol. Rev. 2012, 54, 957–970. [Google Scholar] [CrossRef]
- Padovano, M.; Dörr, W.; Elter, F.M.; Gerdes, A. The East Variscan Shear Zone: Geochronological Constraints from the Capo Ferro Area (NE Sardinia, Italy). Lithos 2014, 196–197, 27–41. [Google Scholar] [CrossRef]
- García-Navarro, E.; Fernández, C. Final Stages of the Variscan Orogeny at the Southern Iberian Massif: Lateral Extrusion and Rotation of Continental Blocks. Tectonics 2004, 23, 1–20. [Google Scholar] [CrossRef]
- Pereira, M.F.; Apraiz, A.; Silva, J.B.; Chichorro, M. Tectonothermal Analysis of High-Temperature Mylonitization in the Coimbra–Córdoba Shear Zone (SW Iberian Massif, Ouguela Tectonic Unit, Portugal): Evidence of Intra-Continental Transcurrent Transport during the Amalgamation of Pangea. Tectonophysics 2008, 461, 378–394. [Google Scholar] [CrossRef]
- Tapponnier, P.; Molnar, P. Active Faulting and Tectonics in China. J. Geophys. Res. 1977, 82, 2905–2930. [Google Scholar] [CrossRef]
- Tapponier, P.; Peltzer, G.; Le Dain, A.Y.; Armijo, R.; Cobbold, P. Propagating Extrusion Tectonics in Asia: New Insights from Simple Experiments with Plasticine. Geology 1982, 10, 611–616. [Google Scholar] [CrossRef]
- Rosenbaum, G.; Lister, G.; Duboz, C. Reconstruction of the Tectonic Evolution of the Western Mediterranean since the Oligocene. Virtual Explor. 2002, 8, 6. [Google Scholar] [CrossRef]
- Stampfli, G.M.; Borel, G.D.; Marchant, R.; Mosar, J. Western Alps Geological Constraints on Western Tethyan Reconstructions. J. Virtual Explor. 2002, 8, 77–106. [Google Scholar] [CrossRef] [Green Version]
- Turco, E.; Macchiavelli, C.; Mazzoli, S.; Schettino, A.; Pierantoni, P.P. Kinematic Evolution of Alpine Corsica in the Framework of Mediterranean Mountain Belts. Tectonophysics 2012, 579, 193–206. [Google Scholar] [CrossRef]
- Advokaat, E.L.; van Hinsbergen, D.J.J.; Maffione, M.; Langereis, C.G.; Vissers, R.L.M.; Cherchi, A.; Schroeder, R.; Madani, H.; Columbu, S. Eocene Rotation of Sardinia, and the Paleogeography of the Western Mediterranean Region. Earth Planet. Sci. Lett. 2014, 401, 183–195. [Google Scholar] [CrossRef]
- Carosi, R.; Palmeri, R. Orogen-Parallel Tectonic Transport in the Variscan Belt of Northeastern Sardinia (Italy): Implications for the Exhumation of Medium-Pressure Metamorphic Rocks. Geol. Mag. 2002, 139, 497–511. [Google Scholar] [CrossRef]
- Elter, F.M.; Musumeci, G.; Pertusati, P.C. Late Hercynian Shear Zones in Sardinia. Tectonophysics 1990, 176, 387–404. [Google Scholar] [CrossRef]
- Iacopini, D.; Carosi, R.; Montomoli, C.; Passchier, C.W. Strain Analysis and Vorticity of Flow in the Northern Sardinian Variscan Belt: Recognition of a Partitioned Oblique Deformation Event. Tectonophysics 2008, 446, 77–96. [Google Scholar] [CrossRef]
- Frassi, C.; Carosi, R.; Montomoli, C.; Law, R.D. Kinematics and Vorticity of Flow Associated with Post-Collisional Oblique Transpression in the Variscan Inner Zone of Northern Sardinia (Italy). J. Struct. Geol. 2009, 31, 1458–1471. [Google Scholar] [CrossRef]
- Graziani, R.; Montomoli, C.; Iaccarino, S.; Menegon, L.; Nania, L.; Carosi, R. Structural Setting of a Transpressive Shear Zone: Insights from Geological Mapping, Quartz Petrofabric and Kinematic Vorticity Analysis in NE Sardinia (Italy). Geol. Mag. 2020, 157, 1898–1916. [Google Scholar] [CrossRef]
- Cruciani, G.; Franceschelli, M.; Massonne, H.-J.; Carosi, R.; Montomoli, C. Pressure–temperature and deformational evolution of high-pressure metapelites from Variscan Ne Sardinia, Italy. Lithos 2013, 175–176, 272–284. [Google Scholar] [CrossRef]
- Cruciani, G.; Franceschelli, M.; Groppo, C.; Oggiano, G.; Spano, M.E. Re-Equilibration History and P–T Path of Eclogites from Variscan Sardinia, Italy: A Case Study from the Medium-Grade Metamorphic Complex. Int. J. Earth Sci. 2015, 104, 797–814. [Google Scholar] [CrossRef]
- Scodina, M.; Cruciani, G.; Franceschelli, M. Metamorphic Evolution and P–T Path of the Posada Valley Amphibolites: New Insights on the Variscan High Pressure Metamorphism in NE Sardinia, Italy. Comptes Rendus Geosci. 2021, 353, 227–246. [Google Scholar] [CrossRef]
- Schneider, J.; Corsini, M.; Reverso-Peila, A.; Lardeaux, J.M. Thermal and Mechanical Evolution of an Orogenic Wedge during Variscan Collision: An Example in the Maures–Tanneron Massif (SE France). Geol. Soc. Lond. Spec. Publ. 2014, 405, 313–331. [Google Scholar] [CrossRef]
- Gerbault, M.; Schneider, J.; Reverso-Peila, A.; Corsini, M. Crustal Exhumation during Ongoing Compression in the Variscan Maures-Tanneron Massif, France-Geological and Thermo-Mechanical Aspects. Tectonophysics 2018, 746, 439–458. [Google Scholar] [CrossRef] [Green Version]
- Musumeci, G.; Colombo, F. Late Visean Mylonitic Granitoids in the Argentera Massif (Western Alps, Italy): Age and Kinematic Constraints on the Ferrière–Mollières Shear Zone. Comptes Rendus Geosci. 2002, 334, 213–220. [Google Scholar] [CrossRef]
- Rubatto, D.; Schaltegger, U.; Lombardo, D.; Colombo, F.; Compagnoni, R. Complex Paleozoic Magmatic and Metamorphic Evolution in the Argentera Massif (Western Alps). Schweiz. Mineral. Petrogr. Mitt. 2001, 81, 213–228. [Google Scholar]
- Rubatto, D.; Ferrando, S.; Compagnoni, R.; Lombardo, B. Carboniferous High-Pressure Metamorphism of Ordovician Protoliths in the Argentera Massif (Italy), Southern European Variscan Belt. Lithos 2010, 116, 65–76. [Google Scholar] [CrossRef]
- Jouffray, F.; Spalla, M.I.; Lardeaux, J.M.; Filippi, M.; Rebay, G.; Corsini, M.; Zanoni, D.; Zucali, M.; Gosso, G. Variscan Eclogites from the Argentera–Mercantour Massif (External Crystalline Massifs, SW Alps): A Dismembered Cryptic Suture Zone. Int. J. Earth Sci. 2020, 109, 1273–1294. [Google Scholar] [CrossRef]
- Bussy, F.; Péronnet, V.; Ulianov, A.; Epard, J.L.; von Raumer, J.F. Ordovician Magmatism in the External French Alps: Witness of a Peri-Gondwanan Active Continental Margin. Ordovician World 2011, 14, 567–574. [Google Scholar]
- Vanardois, J.; Roger, F.; Trap, P.; Goncalves, P.; Lanari, P.; Paquette, J.-L.; Marquer, D.; Cagnard, F.; Le Bayon, B.; Melleton, J.; et al. Exhumation of Deep Continental Crust in a Transpressive Regime: The Example of Variscan Eclogites from the Aiguilles-Rouges Massif (Western Alps). J. Metamorph. Geol. 2022, 1–34. [Google Scholar] [CrossRef]
- Simonetti, M.; Carosi, R.; Montomoli, C.; Law, R.D.; Cottle, J.M. Unravelling the Development of Regional-Scale Shear Zones by a Multidisciplinary Approach: The Case Study of the Ferriere-Mollières Shear Zone (Argentera Massif, Western Alps). J. Struct. Geol. 2021, 149, 104399. [Google Scholar] [CrossRef]
- Fossen, H. Structural Geology; Cambridge University Press: Cambridge, UK, 2016. [Google Scholar]
- Carosi, R.; D’Addario, E.; Mammoliti, E.; Montomoli, C.; Simonetti, M. Geology of the Northwestern Portion of the Ferriere-Mollieres Shear Zone, Argentera Massif, Italy. J. Maps 2016, 12, 466–475. [Google Scholar] [CrossRef] [Green Version]
- Genier, F.; Bussy, F.; Epard, J.L.; Baumgartner, L. Water-Assisted Migmatization of Metagraywackes in a Variscan Shear Zone, Aiguilles-Rouges Massif, Western Alps. Lithos 2008, 102, 575–597. [Google Scholar] [CrossRef]
- Oliot, E.; Melleton, J.; Schneider, J.; Corsini, M.; Gardien, V.; Yann, R. Variscan Crustal Thickening in the Maures-Tanneron Massif (South Variscan Belt, France): New in Situ Monazite U-Th-Pb Chemical Dating of High-Grade Rocks. Bull. Soc. Géol. Fr. 2015, 186, 145–169. [Google Scholar] [CrossRef]
- Grandjean, V.; Guillot, S.; Pecher, A. A New Record of the LP-HT Late-Variscan Metamorphism: The Peyre-Arguet Unit (Haut-Dauphine). Comptes Rendus L’Acad. Sci. Ser. Fasc. Sci. Terre Planetes 1996, 322, 189–195. [Google Scholar]
- Hu, X.; Garzanti, E.; Wang, J.; Huang, W.; An, W.; Webb, A. The Timing of India-Asia Collision Onset—Facts, Theories, Controversies. Earth-Sci. Rev. 2016, 160, 264–299. [Google Scholar] [CrossRef]
- Montomoli, C.; Carosi, R.; Rubatto, D.; Visonà, D.; Iaccarino, S. Tectonic Activity along the Inner Margin of the South Tibetan Detachment Constrained by Syntectonic Leucogranite Emplacement in Western Bhutan. Ital. J. Geosci. 2017, 136, 5–14. [Google Scholar] [CrossRef]
- Gansser, A. Geology of the Himalayas; Interscience: New York, NY, USA, 1964. [Google Scholar]
- Searle, M.P.; Law, R.D.; Godin, L.; Larson, K.P.; Streule, M.J.; Cottle, J.M.; Jessup, M.J. Defining the Himalayan Main Central Thrust in Nepal. J. Geol. Soc. 2008, 165, 523–534. [Google Scholar] [CrossRef]
- Iaccarino, S.; Montomoli, C.; Carosi, R.; Montemagni, C.; Massonne, H.J.; Langone, A.; Jain, A.K.; Visonà, D. Pressure-Temperature-Deformation-Time Constraints on the South Tibetan Detachment System in the Garhwal Himalaya (NW India). Tectonics 2017, 36, 2281–2304. [Google Scholar] [CrossRef]
- Burg, J.P.; Chen, G.M. Tectonics and Structural Zonation of Southern Tibet, China. Nature 1984, 311, 219–223. [Google Scholar] [CrossRef]
- Burchfiel, B.C.; Chen, Z.; Hodges, K.V.; Liu, Y.; Royden, L.H.; Changrong, D.; Xu, L. The South Tibetan Detachment System, Himalayan Orogen: Extension Contemporaneous with and Parallel to Shortening in a Collisional Mountain Belt. Spec. Pap. Geol. Soc. Am. 1992, 269, 1–41. [Google Scholar] [CrossRef]
- Searle, M.P.; Godin, L. The South Tibetan Detachment and the Manaslu Leucogranite: A Structural Reinterpretation and Restoration of the Annapurna-Manaslu Himalaya, Nepal. J. Geol. 2003, 111, 505–523. [Google Scholar] [CrossRef]
- Ambrose, T.K.; Larson, K.P.; Guilmette, C.; Cottle, J.M.; Buckingham, H.; Rai, S. Lateral Extrusion, Underplating, and out-of-Sequence Thrusting within the Himalayan Metamorphic Core, Kanchenjunga, Nepal. Lithosphere 2015, 7, 441–464. [Google Scholar] [CrossRef] [Green Version]
- Hodges, K.V.; Parrish, R.R.; Searle, M.P. Tectonic Evolution of the Central Annapurna Range, Nepalese Himalayas. Tectonics 1996, 15, 1264–1291. [Google Scholar] [CrossRef]
- Beaumont, C.; Jamieson, R.A.; Nguyen, M.H.; Lee, B. Himalayan Tectonics Explained by Extrusion of a Low-Viscosity Crustal Channel Coupled to Focused Surface Denudation. Nature 2001, 414, 738–742. [Google Scholar] [CrossRef]
- Grujic, D.; Casey, M.; Davidson, C.; Hollister, L.S.; Kündig, R.; Pavlis, T.; Schmid, S. Ductile Extrusion of the Higher Himalayan Crystalline in Bhutan: Evidence from Quartz Microfabrics. Tectonophysics 1996, 260, 21–43. [Google Scholar] [CrossRef]
- Godin, L.; Grujic, D.; Law, R.D.; Searle, M.P. Channel Flow, Ductile Extrusion and Exhumation in Continental Collision Zones: An Introduction. Geol. Soc. Spec. Publ. 2006, 268, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Cottle, J.M.; Larson, K.P.; Kellett, D.A. How Does the Mid-Crust Accommodate Deformation in Large, Hot Collisional Orogens? A Review of Recent Research in the Himalayan Orogen. J. Struct. Geol. 2015, 78, 119–133. [Google Scholar] [CrossRef] [Green Version]
- Webb, A.G.; Yin, A.; Harrison, T.M.; Célérier, J.; Burgess, W.P. The Leading Edge of the Greater Himalayan Crystalline Complex Revealed in the NW Indian Himalaya: Implications for the Evolution of the Himalayan Orogen. Geology 2007, 35, 955–958. [Google Scholar] [CrossRef] [Green Version]
- Kohn, M.J. P-T-t Data from Central Nepal Support Critical Taper and Repudiate Large-Scale Channel Flow of the Greater Himalayan Sequence. Geol. Soc. Am. Bull. 2008, 120, 259–273. [Google Scholar] [CrossRef]
- Montomoli, C.; Carosi, R.; Iaccarino, S. Tectonometamorphic Discontinuities in the Greater Himalayan Sequence: A Local or a Regional Feature? Geol. Soc. Lond. Spec. Publ. 2015, 412, 25–41. [Google Scholar] [CrossRef]
- Kaneko, Y. Two-Step Exhumation Model of the Himalayan Metamorphic Belt, Central Nepal. J. Geol. Soc. Jpn. 1997, 103, 203–226. [Google Scholar] [CrossRef] [Green Version]
- Hodges, K.V. Tectonics of the Himalaya and Southern Tibet from Two Perspectives. Geol. Soc. Am. Bull. 2000, 112, 324–350. [Google Scholar] [CrossRef]
- Waters, D.J. Metamorphic Constraints on the Tectonic Evolution of the High Himalaya in Nepal: The Art of the Possible. Geol. Soc. Lond. Spec. Publ. 2019, 483, 325–375. [Google Scholar] [CrossRef]
- Carosi, R.; Montomoli, C.; Rubatto, D.; Visonà, D. Late Oligocene High-Temperature Shear Zones in the Core of the Higher Himalayan Crystallines (Lower Dolpo, Western Nepal). Tectonics 2010, 29, TC4029. [Google Scholar] [CrossRef]
- Iaccarino, S.; Montomoli, C.; Carosi, R.; Massonne, H.J.; Visonà, D. Geology and Tectono-Metamorphic Evolution of the Himalayan Metamorphic Core: Insights from the Mugu Karnali Transect, Western Nepal (Central Himalaya). J. Metamorph. Geol. 2017, 35, 301–325. [Google Scholar] [CrossRef] [Green Version]
- Vannay, J.C.; Hodges, K.V. Tectonometamorphic Evolution of the Himalayan Metamorphic Core between the Annapurna and Dhaulagiri, Central Nepal. J. Metamorph. Geol. 1996, 14, 635–656. [Google Scholar] [CrossRef]
- Carosi, R.; Montomoli, C.; Visonà, D. A Structural Transect in the Lower Dolpo: Insights on the Tectonic Evolution of Western Nepal. J. Asian Earth Sci. 2007, 29, 407–423. [Google Scholar] [CrossRef]
- Montomoli, C.; Iaccarino, S.; Carosi, R.; Langone, A.; Visonà, D. Tectonometamorphic Discontinuities within the Greater Himalayan Sequence in Western Nepal (Central Himalaya): Insights on the Exhumation of Crystalline Rocks. Tectonophysics 2013, 608, 1349–1370. [Google Scholar] [CrossRef]
- Iaccarino, S.; Montomoli, C.; Carosi, R.; Massonne, H.J.; Langone, A.; Visonà, D. Pressure-Temperature-Time-Deformation Path of Kyanite-Bearing Migmatitic Paragneiss in the Kali Gandaki Valley (Central Nepal): Investigation of Late Eocene-Early Oligocene Melting Processes. Lithos 2015, 231, 103–121. [Google Scholar] [CrossRef]
- Parsons, A.J.; Law, R.D.; Searle, M.P.; Phillips, R.J.; Lloyd, G.E. Geology of the Dhaulagiri-Annapurna-Manaslu Himalaya, Western Region, Nepal. 1:200,000. J. Maps 2016, 12, 100–110. [Google Scholar] [CrossRef]
- Carosi, R.; Montomoli, C.; Iaccarino, S. 20 Years of Geological Mapping of the Metamorphic Core across Central and Eastern Himalayas. Earth-Sci. Rev. 2018, 177, 124–138. [Google Scholar] [CrossRef]
- Benetti, B.; Montomoli, C.; Iaccarino, S.; Langone, A.; Carosi, R. Mapping Tectono-Metamorphic Discontinuities in Orogenic Belts: Implications for Mid-Crust Exhumation in NW Himalaya. Lithos 2021, 392–393, 106129. [Google Scholar] [CrossRef]
- Carosi, R.; Montomoli, C.; Langone, A.; Turina, A.; Cesare, B.; Iaccarino, S.; Fascioli, L.; Visonà, D.; Ronchi, A.; Rai, S.M. Eocene Partial Melting Recorded in Peritectic Garnets from Kyanite-Gneiss, Greater Himalayan Sequence, Central Nepal. Geol. Soc. Lond. Spec. Publ. 2015, 412, 111–129. [Google Scholar] [CrossRef]
- Carosi, R.; Montomoli, C.; Iaccarino, S.; Visonà, D. Structural Evolution, Metamorphism and Melting in the Greater Himalayan Sequence in Central-Western Nepal. Geol. Soc. Lond. Spec. Publ. 2019, 483, 305–323. [Google Scholar] [CrossRef]
- Wang, J.M.; Zhang, J.J.; Liu, K.; Zhang, B.; Wang, X.X.; Rai, S.M.; Scheltens, M. Spatial and Temporal Evolution of Tectonometamorphic Discontinuities in the Central Himalaya: Constraints from P-T Paths and Geochronology. Tectonophysics 2016, 679, 41–60. [Google Scholar] [CrossRef]
- Long, S.P.; Kohn, M.J. Distributed ductile thinning during thrust emplacement: A commonly overlooked exhumation mechanism. Geology 2020, 48, 368–373. [Google Scholar] [CrossRef]
- Carosi, R.; Montomoli, C.; Iaccarino, S.; Massonne, H.J.; Rubatto, D.; Langone, A.; Gemignani, L.; Visonà, D. Middle to Late Eocene Exhumation of the Greater Himalayan Sequence in the Central Himalayas: Progressive Accretion from the Indian Plate. Geol. Soc. Am. Bull. 2016, 128, 1571–1592. [Google Scholar] [CrossRef]
- Montemagni, C.; Montomoli, C.; Iaccarino, S.; Carosi, R.; Jain, A.K.; Massonne, H.J.; Villa, I.M. Dating Protracted Fault Activities: Microstructures, Microchemistry and Geochronology of the Vaikrita Thrust, Main Central Thrust Zone, Garhwal Himalaya, NW India. Geol. Soc. Lond. Spec. Publ. 2018, 481, 127–146. [Google Scholar] [CrossRef]
- Montemagni, C.; Carosi, R.; Fusi, N.; Iaccarino, S.; Montomoli, C.; Villa, I.M.; Zanchetta, S. Three-dimensional Vorticity and Time-constrained Evolution of the Main Central Thrust Zone, Garhwal Himalaya (NW India). Terra Nova 2020, 32, 215–224. [Google Scholar] [CrossRef]
- Montemagni, C.; Villa, I.M. Geochronology of Himalayan Shear Zones: Unravelling the Timing of Thrusting from Structurally Complex Fault Rocks. J. Geol. Soc. 2021, 178, 235. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carosi, R.; Montomoli, C.; Iaccarino, S.; Benetti, B.; Petroccia, A.; Simonetti, M. Constraining the Timing of Evolution of Shear Zones in Two Collisional Orogens: Fusing Structural Geology and Geochronology. Geosciences 2022, 12, 231. https://doi.org/10.3390/geosciences12060231
Carosi R, Montomoli C, Iaccarino S, Benetti B, Petroccia A, Simonetti M. Constraining the Timing of Evolution of Shear Zones in Two Collisional Orogens: Fusing Structural Geology and Geochronology. Geosciences. 2022; 12(6):231. https://doi.org/10.3390/geosciences12060231
Chicago/Turabian StyleCarosi, Rodolfo, Chiara Montomoli, Salvatore Iaccarino, Beatriz Benetti, Alessandro Petroccia, and Matteo Simonetti. 2022. "Constraining the Timing of Evolution of Shear Zones in Two Collisional Orogens: Fusing Structural Geology and Geochronology" Geosciences 12, no. 6: 231. https://doi.org/10.3390/geosciences12060231
APA StyleCarosi, R., Montomoli, C., Iaccarino, S., Benetti, B., Petroccia, A., & Simonetti, M. (2022). Constraining the Timing of Evolution of Shear Zones in Two Collisional Orogens: Fusing Structural Geology and Geochronology. Geosciences, 12(6), 231. https://doi.org/10.3390/geosciences12060231