Rain, Snow and Frozen Soil: Open Questions from a Porescale Perspective with Implications for Geohazards
Abstract
:1. Introduction
2. Documented Hazard Events Containing Precipitation, Snow, and Frozen Soil
- Several destructive massive floods happened, e.g., in 1987, in Switzerland [30,31,32] and in Austria [33], 2000, in the Central European Alps [13], in Central Europe in Spring, 2006, in the Danube River basin [12], or in November, 2019, in the south-eastern part of Austria. These are just some examples of the negatives impacts that have their starting point in high altitudes. The events in Switzerland, 1987, were attributable to a blockage of water beneath perennial snow patches. Melting snow was considered to be the main reason for several debris flow events. A following subsequent warm rainfall event intensified this situation and led to over 600 debris flows during summer, 1987 [31,32]. Bardou and Delaloye [13] showed that debris flow presence depended on ice formation in the ground before the event, or on the presence of snow coverage (from snow avalanche or snow precipitation).
- In 1999 and 2011, several floods were triggered on the Swiss plateau due to rain-on-snow events when intense rainfall fell on a pre-existing snowpack during elevated temperatures [34]. As a consequence, rivers flooded major cities in low altitude regions [35,36]. The event in 1999 also affected southern Germany and northern Austria in the first half of May [37]. The so-called Pentecost-flood resulted from the combination of high precipitation and snow melting, which both saturated the soils. The following heavy rain could not infiltrate and become runoff eventually. Moreover, high temperatures melted the snow cover in altitudes up to 2000 m asl. Among others, Bayerisches Landesamt für Wasserwirtschaft [37] reported that at the German mountain Wendelstein (1835 m asl) snow depth decreased by 35 cm from 19 May 1999 to the beginning of June. Amplifying precipitation caused massive floods in the rivers Isar, Amper, Ammer, Wertach, Lech, Iller, Vils, Inn, and Danube.
- A similar event happened in November, 2019. Heavy snowfall was followed by heavy rain events in the eastern and south-eastern parts of Austria, in particular, Salzburg, Styria, Carinthia. The rain fell onto an already wetted snow cover inducing wet snow avalanches, debris flows, and landslides (P. Wagner, Bavarian Environment Agency, personal communication, 9 March 2021). The pattern repeated at an earlier event in January, 2004, in the Valais Alps, where rain fell onto a snow-covered area at high altitude [13]. Beniston and Stoffel [3] reported that in May, 2015, an intense rainfall occurred under very mild conditions in the Mont-Blanc region and fell on an already existing thick snowpack. This event provoked highly exceeded discharges of the Arve River causing urban flooding in the City of Geneva (University district). Other communities, further to the east, suffered from multiple debris-flows resulting in high damage costs to infrastructure.
- Specific rain-on-snow events were reported for the south-western part of Bavaria in January 2018 [7]. Heavy rainfalls occurred after a phase of rich accumulation of snow. With air temperatures in the range −0.14 C ≤ T ≤ 8.65 C, rain intensities were roughly between 32 and 49 mm with a duration of 20 to 35 h. Moran-Tejeda et al. [38] analysed temporal and spatial patterns of rain-on-snow events between 1972 and 2012 in Switzerland. According to their results, the reported rain-on-snow events occurred mainly during the winter months at low elevations or during summer months at high elevations.
- Rain-on-snow events outside Europe have been reported, e.g., by Surfleet and Tullos [39] investigating the relationship between such specific precipitation events and peak daily flow events against the background of climate change within the Santiam River Basin, Oregon. Heavy winter precipitation and a sequence of snowfall and snowmelt in 2018 triggered several landslides in the Andean paraglacial environment (Yerba Loca landslide, central Chile) [40].
3. Possible Scenarios and Characteristics
4. Thermo-Hydraulic Processes at Microscale
4.1. Theoretical Considerations
4.2. Experimental Investigations and Field Measurements
4.3. Numerical Challenges
5. Discussion
- The coincidence of melting snow on a (partly) frozen soil and rainfall has caused severe natural hazards in the past in the European Alps. Climate change predictions indicate an increased frequency of such events.
- The type of triggered gravitational mass flow, its size, and the evolved phases depend on numerous variations of properties and the history of the associated variables.
- Physical processes at porescale control the thermo-hydraulic state of the system with a strong coupling between separate phases, as well as between the hydraulic flow conditions, and the heat transport.
- Water infiltration into a snowpack or frozen soil possesses a local thermal non-equilibrium (LTNE) situation through the initially strongly diverging phase temperatures. An accurate description of heat transfer processes increases the complexity of mathematical models and currently lacks sufficient parameters.
- The hydraulic systems of soil and snow are strongly heterogeneous. Preferential pathways are key to water infiltration as macropores experience a substantially different freezing behaviour than micropores.
- Former laboratory studies mostly focused on single processes at idealised geometries. Studies of more complex scenarios and in more complex geometries are needed to better understand the coupling between processes and phases. Field investigations might provide required complementary data from natural conditions.
- Obtaining required system variables and parameters from field or laboratory investigations demands sophisticated measurement techniques and a thorough control or logging of environmental conditions.
- Current theoretical and numerical models provide various possibilities for improvement, such as the incorporation of preferential pathways, macroscopic heterogeneity, and anisotropy, heat transfer between phases, or coupling to surface flow and slope stability.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Georgi, B.; Swart, R.; Marinova, N.; van Hove, B.; Jacobs, C.; Klostermann, J.; Kazmierczak, A.; Peltonen, L.; Kopperoinen, L.; Oinonen, K.; et al. Urban Adaptation to Climate Change in Europe: Challenges and Opportunities for Cities Together with Supportive National and European Policies; EEA Report; European Environment Agency: Copenhagen, Denmark, 2012; Volume 2. [Google Scholar]
- IPCC. Summary for policymakers. In Climate Change 2014; Field, C.B., Barros, V.R., Dokken, D.J., Mach, K.J., Mastrandrea, M.D., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 1–32. [Google Scholar]
- Beniston, M.; Stoffel, M. Rain-on-snow events, floods and climate change in the Alps: Events may increase with warming up to 4 °C and decrease thereafter. Sci. Total Environ. 2016, 571, 228–236. [Google Scholar] [CrossRef] [PubMed]
- Beniston, M. Impacts of climatic change on water and associated economic activities in the Swiss Alps. J. Hydrol. 2012, 412–413, 291–296. [Google Scholar] [CrossRef] [Green Version]
- Beniston, M.; Farinotti, D.; Stoffel, M.; Andreassen, L.M.; Coppola, E.; Eckert, N.; Fantini, A.; Giacona, F.; Hauck, C.; Huss, M.; et al. The European mountain cryosphere: A review of its current state, trends, and future challenges. Cryosphere 2018, 12, 759–794. [Google Scholar] [CrossRef] [Green Version]
- Stoffel, M.; Corona, C. Future winters glimpsed in the Alps. Nat. Geosci. 2018, 11, 458–460. [Google Scholar] [CrossRef]
- Disse, M.; Kopp, M.; Stoermer, J. ProMoS—Prozessbasierte Modellierung von Schneeprozessen in der Einzugsgebietsskala: Endbericht; Technische Universität München: München, Germany, 2019. [Google Scholar]
- Clague, J.J.; Roberts, N.J.; Stead, D. Landslide hazard and risk. In Landslides; Clague, J.J., Stead, D., Eds.; Cambridge University Press: Cambridge, UK, 2012; pp. 1–23. [Google Scholar]
- Gobiet, A.; Kotlarski, S.; Beniston, M.; Heinrich, G.; Rajczak, J.; Stoffel, M. 21st century climate change in the European Alps—A review. Sci. Total Environ. 2014, 493, 1138–1151. [Google Scholar] [CrossRef]
- Wagner, T.; Themeßl, M.; Schüppel, A.; Gobiet, A.; Stigler, H.; Birk, S. Impacts of climate change on stream flow and hydro power generation in the Alpine region. Environ. Earth Sci. 2017, 76. [Google Scholar] [CrossRef] [Green Version]
- Freudiger, D.; Kohn, I.; Stahl, K.; Weiler, M. Large-scale analysis of changing frequencies of rain-on-snow events with flood-generation potential. Hydrol. Earth Syst. Sci. 2014, 18, 2695–2709. [Google Scholar] [CrossRef]
- Seibert, J.; Jenicek, M.; Huss, M.; Ewen, T. Snow and Ice in the Hydrosphere: Chapter 4. In Snow and Ice-Related Hazards, Risks, and Disasters; Haeberli, W., Whiteman, C.A., Shroder, J.F., Eds.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 99–137. [Google Scholar]
- Bardou, E.; Delaloye, R. Effects of ground freezing and snow avalanche deposits on debris flows in alpine environments. Nat. Hazards Earth Syst. Sci. 2004, 4, 519–530. [Google Scholar] [CrossRef]
- Anderson, S.A.; Sitar, N. Analysis of Rainfall-Induced Debris Flows. J. Geotech. Eng. 1995, 121, 544–552. [Google Scholar] [CrossRef]
- Iverson, R.M. The physics of debris flows. Rev. Geophys. 1997, 35, 245–296. [Google Scholar] [CrossRef] [Green Version]
- Klubertanz, G.; Laloui, L.; Vulliet, L. Parameters governing debris flow initiation. In Proceedings of the 2nd International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment; Wieczorek, G.F., Ed.; Balkema: Rotterdam, The Netherlands, 2000; pp. 73–79. [Google Scholar]
- Pudasaini, S.P.; Hutter, K. Avalanche Dynamics: Dynamics of Rapid Flows of Dense Granular Avalanches; Springer: Berlin, Germany; New York, NY, USA, 2007. [Google Scholar]
- Baselt, I.; de Oliveira, G.Q.; Fischer, J.T.; Pudasaini, S.P. Evolution of stony debris flows in laboratory experiments. Geomorphology 2021, 372, 107431. [Google Scholar] [CrossRef]
- Haupt, H.F. Infiltration, overland flow, and soil movement on frozen and snow-covered plots. Water Resour. Res. 1967, 3, 145–161. [Google Scholar] [CrossRef]
- Bundesamt für Wasser und Geologie BWG. Hochwasser 2000—Les Crues 2000: Ereignisanalyse/Fallbeispiele; Bundesamt für Bauten und Logistik: Bern, Switzerland, 2002. [Google Scholar]
- Dirksen, C.; Miller, R.D. Closed-System Freezing of Unsaturated Soil. Soil Sci. Soc. Am. J. 1966, 30, 168–173. [Google Scholar] [CrossRef]
- Lugon, R.; Gardaz, J.M.; Vonder Mühll, D. The partial collapse of the Dolent glacier moraine (Swiss Alps, Mont Blanc Range). Z. Geomorphol. 2000, 122, 191–208. [Google Scholar]
- Gatto, L.W.; Halvorson, J.J.; McCool, D.K.; Palazzo, A.J. Effects Of Freeze-Thaw Cycling On Soil Erosion. In Landscape Erosion and Evolution Modeling; Harmon, R.S., Doe, W.W., Eds.; Springer: Boston, MA, USA, 2001; pp. 29–55. [Google Scholar] [CrossRef]
- Wei, W.; Gao, C. Studies of ice-snow melt debris flows in the western Tian shan Mountains, China. In Erosion, Debris Flows and Environment in Mountain Regions; Des Walling, E., Ed.; IAHS Press: Wallington, UK, 1992; pp. 329–336. [Google Scholar]
- Huggel, C.; Kääb, A.; Haeberli, W.; Krummenacher, B. Regional-scale GIS-models for assessment of hazards from glacier lake outbursts: Evaluation and application in the Swiss Alps. Nat. Hazards Earth Syst. Sci. 2003, 3, 647–662. [Google Scholar] [CrossRef] [Green Version]
- Savage, D. Snowmelt-Induced Debris Flow Literature Search. 2005. Available online: www.nohrsc.noaa.gov/technology/pdf/Snow_Induced_Debris_Flows_1.pdf (accessed on 4 September 2021).
- Beniston, M. August 2005 intense rainfall event in Switzerland: Not necessarily an analog for strong convective events in a greenhouse climate. Geophys. Res. Lett. 2006, 33, L05701. [Google Scholar] [CrossRef] [Green Version]
- Stoffel, M.; Beniston, M. On the incidence of debris flows from the early Little Ice Age to a future greenhouse climate: A case study from the Swiss Alps. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef] [Green Version]
- Stoffel, M.; Mendlik, T.; Schneuwly-Bollschweiler, M.; Gobiet, A. Possible impacts of climate change on debris-flow activity in the Swiss Alps. Clim. Chang. 2014, 122, 141–155. [Google Scholar] [CrossRef] [Green Version]
- Zimmermann, M. Debris flows 1987 in Switzerland: Geomorphological and meteorological aspects. In Hydrology in Mountainous Regions—Artificial Reservoirs, Water and Slopes, Proceedings of Two International Symposia, Lausanne, Switzerland, 27 August–1 September 1990; Sinninger, R.O., Ed.; International Association of Hydrological Sciences: Oxfordshire, UK, 1990; Volume 194, pp. 387–393. [Google Scholar]
- Rickenmann, D.; Zimmermann, M. The 1987 debris flows in Switzerland: Documentation and analysis. Geomorphology 1993, 8, 175–189. [Google Scholar] [CrossRef]
- Braun, M. Hydrometeorological Triggers of Debris Flows: Evolution of the Temporal Occurrence of Debris Flows between 1900 and 2008. Diploma Thesis, Universität für Bodenkultur, Vienna, Austria, 2014. [Google Scholar]
- Baur, M.; Edmaier, B.; Spaun, G. Talzuschübe als Geschiebeherde für Murgangereignisse in Saalbach und Rauris (Land Salzburg). In International Symposium Interpraevent; Hochwasserbekämpfung, F.F.V., Ed.; Birkäuser Verlag: Bern, Switzerland, 1992; pp. 165–180. [Google Scholar]
- Rössler, O.; Froidevaux, P.; Börst, U.; Rickli, R.; Martius, O.; Weingartner, R. Retrospective analysis of a nonforecasted rain-on-snow flood in the Alps—A matter of model limitations or unpredictable nature? Hydrol. Earth Syst. Sci. 2014, 18, 2265–2285. [Google Scholar] [CrossRef] [Green Version]
- Bezzola, G.R.; Hegg, C.; Koschni, A. The Floods of 2005 in Switzerland: Synthesis Report on the Event Analysis; Federal Office for the Environment (FOEN): Bern, Switzerland, 2008; Available online: www.bafu.admin.ch/publikationen/publikation/00819/index.html (accessed on 4 September 2021).
- Hilker, N.; Badoux, A.; Hegg, C. The Swiss flood and landslide damage database 1972–2007. Nat. Hazards Earth Syst. Sci. 2009, 9, 913–925. [Google Scholar] [CrossRef] [Green Version]
- Bayerisches Landesamt für Wasserwirtschaft. Hochwasser Mai 1999: Gewässerkundliche Beschreibung. Available online: www.lfu.bayern.de/wasser/hw_ereignisse/1999/doc/bericht_pfingsten99.pdf (accessed on 4 September 2021).
- Morán-Tejeda, E.; López-Moreno, J.I.; Stoffel, M.; Beniston, M. Rain-on-snow events in Switzerland: Recent observations and projections for the 21st century. Clim. Res. 2016, 71, 111–125. [Google Scholar] [CrossRef]
- Surfleet, C.G.; Tullos, D. Variability in effect of climate change on rain-on-snow peak flow events in a temperate climate. J. Hydrol. 2013, 479, 24–34. [Google Scholar] [CrossRef] [Green Version]
- Sepúlveda, S.A.; Alfaro, A.; Lara, M.; Carrasco, J.; Olea-Encina, P.; Rebolledo, S.; Garcés, M. An active large rock slide in the Andean paraglacial environment: The Yerba Loca landslide, central Chile. Landslides 2021, 18, 697–705. [Google Scholar] [CrossRef]
- Gustafsson, D.; Waldner, P.A.; Stähli, M. Factors Governing the Formation and Persistence of Layers in a Subalpine Snowpack. Hydrol. Process. 2004, 18, 1165–1183. [Google Scholar] [CrossRef]
- Mazurkiewicz, A.B.; Callery, D.G.; McDonnell, J.J. Assessing the Controls of the Snow Energy Balance and Water Available for Runoff in a Rain-on-Snow Environment. J. Hydrol. 2008, 354, 1–14. [Google Scholar] [CrossRef]
- Lundberg, A.; Ala-Aho, P.; Eklo, O.; Klöve, B.; Kvaerner, J.; Stumpp, C. Snow and Frost: Implications for Spatiotemporal Infiltration Patterns —A Review: Snow and Frost: Implications for Infiltration. Hydrol. Process. 2016, 30, 1230–1250. [Google Scholar] [CrossRef]
- Iwata, Y.; Nemoto, M.; Hasegawa, S.; Yanai, Y.; Kuwao, K.; Hirota, T. Influence of Rain, Air Temperature, and Snow Cover on Subsequent Spring-Snowmelt Infiltration into Thin Frozen Soil Layer in Northern Japan. J. Hydrol. 2011, 401, 165–176. [Google Scholar] [CrossRef]
- Stadler, D.; Sta¨hli, M.; Aeby, P.; Flu¨hler, H. Dye Tracing and Image Analysis for Quantifying Water Infiltration into Frozen Soils. Soil Sci. Soc. Am. J. 2000, 64, 505–516. [Google Scholar] [CrossRef]
- Zhang, S.; Meurey, C.; Calvet, J.C. Identification of Soil-Cooling Rains in Southern France from Soil Temperature and Soil Moisture Observations. Atmos. Chem. Phys. 2019, 19, 5005–5020. [Google Scholar] [CrossRef] [Green Version]
- Weigert, A.; Schmidt, J. Water transport under winter conditions. Catena 2005, 64, 193–208. [Google Scholar] [CrossRef]
- Morales, V.L.; Parlange, J.Y.; Steenhuis, T.S. Are Preferential Flow Paths Perpetuated by Microbial Activity in the Soil Matrix? A Review. J. Hydrol. 2010, 393, 29–36. [Google Scholar] [CrossRef]
- Gerke, H.H.; van Genuchten, M.T. A Dual-Porosity Model for Simulating the Preferential Movement of Water and Solutes in Structured Porous Media. Water Resour. Res. 1993, 29, 305–319. [Google Scholar] [CrossRef]
- van Genuchten, M.T. A Closed-Form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef] [Green Version]
- Brooks, R.; Corey, T. Hydraulic properties of porous media. Hydrol. Pap. Colo. State Univ. 1964, 24, 37. [Google Scholar]
- Hansson, K.; Šimůnek, J.; Mizoguchi, M.; Lundin, L.C.; van Genuchten, M.T. Water Flow and Heat Transport in Frozen Soil: Numerical Solution and Freeze-Thaw Applications. Vadose Zone J. 2004, 3, 693–704. [Google Scholar] [CrossRef] [Green Version]
- Kurylyk, B.L.; Watanabe, K. The Mathematical Representation of Freezing and Thawing Processes in Variably-Saturated, Non-Deformable Soils. Adv. Water Resour. 2013, 60, 160–177. [Google Scholar] [CrossRef]
- Spaans, E.J.A.; Baker, J.M. The Soil Freezing Characteristic: Its Measurement and Similarity to the Soil Moisture Characteristic. Soil Sci. Soc. Am. J. 1996, 60, 13–19. [Google Scholar] [CrossRef]
- Dall’Amico, M.; Endrizzi, S.; Gruber, S.; Rigon, R. A Robust and Energy-Conserving Model of Freezing Variably-Saturated Soil. Cryosphere 2011, 5, 469–484. [Google Scholar] [CrossRef] [Green Version]
- Lundin, L.C. Hydraulic Properties in an Operational Model of Frozen Soil. J. Hydrol. 1990, 118, 289–310. [Google Scholar] [CrossRef]
- Mohammed, A.A.; Kurylyk, B.L.; Cey, E.E.; Hayashi, M. Snowmelt Infiltration and Macropore Flow in Frozen Soils: Overview, Knowledge Gaps, and a Conceptual Framework. Vadose Zone J. 2018, 17, 180084. [Google Scholar] [CrossRef]
- Watanabe, K.; Flury, M. Capillary Bundle Model of Hydraulic Conductivity for Frozen Soil: Capillary Bundle Model for Frozen Soil. Water Resour. Res. 2008, 44. [Google Scholar] [CrossRef]
- Dash, J.G.; Fu, H.; Wettlaufer, J.S. The Premelting of Ice and Its Environmental Consequences. Rep. Prog. Phys. 1995, 58, 115–167. [Google Scholar] [CrossRef]
- Watanabe, K.; Kugisaki, Y. Effect of Macropores on Soil Freezing and Thawing with Infiltration: Effect of Macropores on Soil Freezing and Thawing with Infiltration. Hydrol. Process. 2017, 31, 270–278. [Google Scholar] [CrossRef]
- Jame, Y.W.; Norum, D.I. Heat and Mass Transfer in a Freezing Unsaturated Porous Medium. Water Resour. Res. 1980, 16, 811–819. [Google Scholar] [CrossRef]
- Painter, S.L. Three-Phase Numerical Model of Water Migration in Partially Frozen Geological Media: Model Formulation, Validation, and Applications. Comput. Geosci. 2011, 15, 69–85. [Google Scholar] [CrossRef]
- Grenier, C.; Anbergen, H.; Bense, V.; Chanzy, Q.; Coon, E.; Collier, N.; Costard, F.; Ferry, M.; Frampton, A.; Frederick, J.; et al. Groundwater Flow and Heat Transport for Systems Undergoing Freeze-Thaw: Intercomparison of Numerical Simulators for 2D Test Cases. Adv. Water Resour. 2018, 114, 196–218. [Google Scholar] [CrossRef]
- Nield, D.A.; Bejan, A. Heat Transfer Through a Porous Medium. In Convection in Porous Media; Springer: New York, NY, USA, 2013; pp. 31–46. [Google Scholar] [CrossRef]
- Shaik, A.R.; Rahman, S.S.; Tran, N.H.; Tran, T. Numerical Simulation of Fluid-Rock Coupling Heat Transfer in Naturally Fractured Geothermal System. Appl. Therm. Eng. 2011, 31, 1600–1606. [Google Scholar] [CrossRef]
- Hamidi, S.; Heinze, T.; Galvan, B.; Miller, S. Critical Review of the Local Thermal Equilibrium Assumption in Heterogeneous Porous Media: Dependence on Permeability and Porosity Contrasts. Appl. Therm. Eng. 2019, 147, 962–971. [Google Scholar] [CrossRef]
- Heinze, T.; Hamidi, S.; Galvan, B.; Miller, S.A. Numerical Simulation of the 2008 West-Bohemian Earthquake Swarm. Tectonophysics 2017, 694, 436–443. [Google Scholar] [CrossRef]
- Heinze, T.; Blöcher, J.R. A Model of Local Thermal Non-Equilibrium during Infiltration. Adv. Water Resour. 2019, 132, 103394. [Google Scholar] [CrossRef]
- Gossler, M.A.; Bayer, P.; Rau, G.C.; Einsiedl, F.; Zosseder, K. On the Limitations and Implications of Modeling Heat Transport in Porous Aquifers by Assuming Local Thermal Equilibrium. Water Resour. Res. 2020, 56. [Google Scholar] [CrossRef]
- Xu, F.; Zhang, Y.; Jin, G.; Li, B.; Kim, Y.S.; Xie, G.; Fu, Z. Three Phase Heat and Mass Transfer Model for Unsaturated Soil Freezing Process: Part 1—Model Development. Open Phys. 2018, 16, 75–83. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Xu, F.; Li, B.; Kim, Y.S.; Zhao, W.; Xie, G.; Fu, Z. Three Phase Heat and Mass Transfer Model for Unsaturated Soil Freezing Process: Part 2—Model Validation. Open Phys. 2018, 16, 84–92. [Google Scholar] [CrossRef] [Green Version]
- Peng, Z.; Tian, F.; Wu, J.; Huang, J.; Hu, H.; Darnault, C.J.G. A Numerical Model for Water and Heat Transport in Freezing Soils with Nonequilibrium Ice-Water Interfaces: Modeling Water Movement in Freezing Soils. Water Resour. Res. 2016, 52, 7366–7381. [Google Scholar] [CrossRef]
- Wakao, N.; Funazkri, T. Effect of Fluid Dispersion Coefficients on Particle-to-Fluid Mass Transfer Coefficients in Packed Beds. Chem. Eng. Sci. 1978, 33, 1375–1384. [Google Scholar] [CrossRef]
- Roshan, H.; Cuthbert, M.; Andersen, M.; Acworth, R. Local Thermal Non-Equilibrium in Sediments: Implications for Temperature Dynamics and the Use of Heat as a Tracer. Adv. Water Resour. 2014, 73, 176–184. [Google Scholar] [CrossRef] [Green Version]
- Heinze, T. Constraining the Heat Transfer Coefficient of Rock Fractures. Renew. Energy 2021, 177, 433–447. [Google Scholar] [CrossRef]
- Kelleners, T.J.; Koonce, J.; Shillito, R.; Dijkema, J.; Berli, M.; Young, M.H.; Frank, J.M.; Massman, W. Numerical Modeling of Coupled Water Flow and Heat Transport in Soil and Snow. Soil Sci. Soc. Am. J. 2016, 80, 247–263. [Google Scholar] [CrossRef]
- Kelleners, T.J.; Chandler, D.G.; McNamara, J.P.; Gribb, M.M.; Seyfried, M.S. Modeling the Water and Energy Balance of Vegetated Areas with Snow Accumulation. Vadose Zone J. 2009, 8, 1013–1030. [Google Scholar] [CrossRef] [Green Version]
- Illangasekare, T.H.; Walter, R.J.; Meier, M.F.; Pfeffer, W.T. Modeling of Meltwater Infiltration in Subfreezing Snow. Water Resour. Res. 1990, 26, 1001–1012. [Google Scholar] [CrossRef]
- Würzer, S.; Wever, N.; Juras, R.; Lehning, M.; Jonas, T. Modelling Liquid Water Transport in Snow under Rain-on-Snow Conditions—Considering Preferential Flow. Hydrol. Earth Syst. Sci. 2017, 21, 1741–1756. [Google Scholar] [CrossRef] [Green Version]
- Conway, H.; Benedict, R. Infiltration of water into snow. Water Resour. Res. 1994, 30, 641–649. [Google Scholar] [CrossRef]
- Stähli, M.; Jansson, P.E.; Lundin, L.C. Soil moisture redistribution and infiltration in frozen sandy soils. Water Resour. Res. 1999, 35, 95–103. [Google Scholar] [CrossRef]
- Stähli, M.; Bayard, D.; Wydler, H.; Flühler, H. Snowmelt Infiltration into Alpine Soils Visualized by Dye Tracer Technique. Arctic Antarct. Alp. Res. 2004, 36, 128–135. [Google Scholar] [CrossRef]
- Webb, R.W.; Fassnacht, S.R.; Gooseff, M.N. Hydrologic flow path development varies by aspect during spring snowmelt in complex subalpine terrain. Cryosphere 2018, 12, 287–300. [Google Scholar] [CrossRef] [Green Version]
- Wright, S.; Novakowski, K. Field Observations of Rapid Midwinter Recharge in a Seasonally Frozen Bedrock Aquifer; EGU General Assembly 2020: Vienna, Austria, 2020; Available online: https://meetingorganizer.copernicus.org/EGU2020/EGU2020-10763.html (accessed on 4 September 2021). [CrossRef]
- Church, M.; Miles, M.J. Meteorological antecedents to debris flow in southwestern British Columbia; Some case studies. In Debris Flows/Avalanches: Process, Recognition, and Mitigation; Reviews in Engineering Geology; Costa, J.E., Wieczorek, G.F., Eds.; Geological Society of America: Boulder, CO, USA, 1987; Volume 7, pp. 63–80. [Google Scholar] [CrossRef]
- Blodgett, J.; Poeschel, K.; Osterkamp, W. Characteristics of Debris Flows of Noneruptive Origin on Mount Shasta, Northern California: USGS Open-File Report 96-144; U.S. Geological Survey: Sacramento, CA, USA, 1996.
- Chiarle, M.; Iannotti, S.; Mortara, G.; Deline, P. Recent debris flow occurrences associated with glaciers in the Alps. Glob. Planet. Chang. 2007, 56, 123–136. [Google Scholar] [CrossRef]
- Reid, M.E.; LaHusen, R.G.; Iverson, R.M. Debris-flow initiation experiments using diverse hydrologic triggers. In Debris-Flow Hazards Mitigation; Chen, C.L., Ed.; American Society of Civil Engineers: New York, NY, USA, 1997; pp. 1–11. [Google Scholar]
- Iverson, R.M. Landslide triggering by rain infiltration. Water Resour. Res. 2000, 36, 1897–1910. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Sassa, K. Pore-pressure generation and movement of rainfall-induced landslides: Effects of grain size and fine-particle content. Eng. Geol. 2003, 69, 109–125. [Google Scholar] [CrossRef]
- Moriwaki, H.; Inokuchi, T.; Hattanji, T.; Sassa, K.; Ochiai, H.; Wang, G. Failure processes in a full-scale landslide experiment using a rainfall simulator. Landslides 2004, 1, 277–288. [Google Scholar] [CrossRef]
- Huang, C.C.; Ju, Y.J.; Hwu, L.K.; Lee, J.L. Internal soil moisture and piezometric responses to rainfall-induced shallow slope failures. J. Hydrol. 2009, 370, 39–51. [Google Scholar] [CrossRef]
- Chen, R.H.; Kuo, K.J.; Chang, C.M. Experiment on the Stabilty of Granular Soil Slopes by Rainfall Infiltration. In 5th International Conference on Debris-Flow Hazards: Mitigation Mechanics, Prediction and Assessment; Italian Journal of Engineering Geology and Environment; Genevois, R., Ed.; Casa Editrice Università La Sapienza: Rome, Italy, 2011; pp. 303–311. [Google Scholar] [CrossRef]
- Reid, M.E.; Iverson, R.M.; Logan, M.; LaHusen, R.G.; Godt, J.W.; Griswold, J.P. Entrainment of bed sediment by debris flows: Results from large-scale experiments. In 5th International Conference on Debris-Flow Hazards: Mitigation Mechanics, Prediction and Assessment; Italian Journal of Engineering Geology and Environment; Genevois, R., Ed.; Casa Editrice Università La Sapienza: Rome, Italy, 2011; pp. 367–374. [Google Scholar] [CrossRef]
- Cui, Y.F.; Zhou, X.J.; Guo, C.X. Experimental study on the moving characteristics of fine grains in wide grading unconsolidated soil under heavy rainfall. J. Mt. Sci. 2017, 14, 417–431. [Google Scholar] [CrossRef]
- Lee, K.; Suk, J.; Kim, H.; Jeong, S. Modeling of rainfall-induced landslides using a full-scale flume test. Landslides 2021, 18, 1153–1162. [Google Scholar] [CrossRef]
- McClymont, A.F.; Hayashi, M.; Bentley, L.R.; Christensen, B.S. Geophysical Imaging and Thermal Modeling of Subsurface Morphology and Thaw Evolution of Discontinuous Permafrost. J. Geophys. Res. Earth Surf. 2013, 118, 1826–1837. [Google Scholar] [CrossRef]
- Jansson, P.E. CoupModel: Model Use, Calibration, and Validation. Trans. ASABE 2012, 55, 1337–1346. [Google Scholar] [CrossRef]
- Flerchinger, G.N. The Simultaneous Heat and Water (SHAW) Model: Technical Documentation; Northwest Watershed Research Center USDA Agricultural Research Service: Boise, ID, USA, 2000. Available online: www.ars.usda.gov/ARSUserFiles/20520000/shawdocumentation.pdf (accessed on 4 September 2021).
- Magnin, F.; Josnin, J.Y.; Ravanel, L.; Pergaud, J.; Pohl, B.; Deline, P. Modelling Rock Wall Permafrost Degradation in the Mont Blanc Massif from the LIA to the End of the 21st Century. Cryosphere 2017, 11, 1813–1834. [Google Scholar] [CrossRef] [Green Version]
- Langford, J.E.; Schincariol, R.A.; Nagare, R.M.; Quinton, W.L.; Mohammed, A.A. Transient and Transition Factors in Modeling Permafrost Thaw and Groundwater Flow. Groundwater 2020, 58, 258–268. [Google Scholar] [CrossRef] [PubMed]
- Karra, S.; Painter, S.L.; Lichtner, P.C. Three-Phase Numerical Model for Subsurface Hydrology in Permafrost-Affected Regions (PFLOTRAN-ICE v1.0). Cryosphere 2014, 8, 1935–1950. [Google Scholar] [CrossRef] [Green Version]
- Wever, N.; Würzer, S.; Fierz, C.; Lehning, M. Simulating Ice Layer Formation under the Presence of Preferential Flow in Layered Snowpacks. Cryosphere 2016, 10, 2731–2744. [Google Scholar] [CrossRef] [Green Version]
- Lehning, M.; Völksch, I.; Gustafsson, D.; Nguyen, T.A.; Stähli, M.; Zappa, M. ALPINE3D: A Detailed Model of Mountain Surface Processes and Its Application to Snow Hydrology. Hydrol. Process. 2006, 20, 2111–2128. [Google Scholar] [CrossRef]
- Heinze, T.; Hamidi, S. Heat Transfer and Parameterization in Local Thermal Non-Equilibrium for Dual Porosity Continua. Appl. Therm. Eng. 2017, 114, 645–652. [Google Scholar] [CrossRef]
- Moradi, S.; Huisman, J.; Class, H.; Vereecken, H. The Effect of Bedrock Topography on Timing and Location of Landslide Initiation Using the Local Factor of Safety Concept. Water 2018, 10, 1290. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baselt, I.; Heinze, T. Rain, Snow and Frozen Soil: Open Questions from a Porescale Perspective with Implications for Geohazards. Geosciences 2021, 11, 375. https://doi.org/10.3390/geosciences11090375
Baselt I, Heinze T. Rain, Snow and Frozen Soil: Open Questions from a Porescale Perspective with Implications for Geohazards. Geosciences. 2021; 11(9):375. https://doi.org/10.3390/geosciences11090375
Chicago/Turabian StyleBaselt, Ivo, and Thomas Heinze. 2021. "Rain, Snow and Frozen Soil: Open Questions from a Porescale Perspective with Implications for Geohazards" Geosciences 11, no. 9: 375. https://doi.org/10.3390/geosciences11090375
APA StyleBaselt, I., & Heinze, T. (2021). Rain, Snow and Frozen Soil: Open Questions from a Porescale Perspective with Implications for Geohazards. Geosciences, 11(9), 375. https://doi.org/10.3390/geosciences11090375