The Role of the Water Level in the Assessment of Seismic Vulnerability for the 23 November 1980 Irpinia–Basilicata Earthquake
Abstract
:1. Background
2. The Irpinia–Basilicata Earthquake
3. Methodology
4. Results
4.1. Soil Results
4.2. Foundation Results
4.3. Structural Results
5. Discussion
6. Conclusions
Funding
Conflicts of Interest
References
- Wang, C.Y.; Dreger, D.S.; Wang, C.H.; Mayeri, D.; Berryman, J.G. Field relations among coseismic ground motion, water level change and liquefaction for the 1999 Chi-Chi (Mw 7.5) earthquake, Taiwan. Geophys. Res. Lett. 2003, 30. [Google Scholar] [CrossRef]
- Charlie, W.A.; Doehring, D.O. Groundwater table mounding, pore pressure, and liquefaction induced by explosions: Energy-distance relations. Rev. Geophys. 2007, 45. [Google Scholar] [CrossRef] [Green Version]
- Nishiwaki, K.; Yasuhara, K.; Komine, H.; Murakami, S. Displacement and countermeasures for existing structure with rising groundwater levels. In Proceedings of the 8th Japan National Symposium on Environmental Geotechnology, Shanghai, China, 2–5 June 2009; pp. 381–384. [Google Scholar]
- Yasuda, S.; Ishikawa, K. Effect of lowering the ground water table as the countermeasure against liquefaction-induced damage to houses. J. Jpn. Assoc. Earthq. Eng. 2015, 15, 205–219. [Google Scholar]
- Hartantyo, E.; Brotopuspito, S.K. Sismanto; Waluyo. Correlation of shallow groundwater levels with the liquefaction occurrence cause by May 2006 earthquake in the south volcanic-clastic sediments Yogyakarta, Indonesia. Int. J. Appl. Sci. 2014, 5, 1–8. [Google Scholar]
- Chung, J.W.; Rogers, J.D. Influence of assumed groundwater depth on mapping liquefaction potential. Environ. Eng. Geosci. 2013, 19, 377–389. [Google Scholar] [CrossRef]
- Santisi d’Avila, M.P.; Lenti, L.; Martino, S.; Romeo, R.W. Nonlinear Numerical Simulation of the Soil Seismic Response to the 2012 Mw 5.9 Emilia Earthquake Considering the Variability of the Water Table Position. Bull. Seismol. Soc. Am. 2019, 109, 505–524. [Google Scholar] [CrossRef]
- Morgan, C.P.; Stolt, M.H. A comparison of several approaches to monitor water-table fluctuation. Soil Sci. Soc. Am. J. 2004, 68, 562–566. [Google Scholar] [CrossRef]
- Calzolari, C.; Ungaro, F. Predicting shallow water table depth at regional scale from rainfall and soil data. J. Hydrol. 2012, 414, 374–387. [Google Scholar] [CrossRef]
- Simonson, G.H.; Boersma, L. Soil morphology and water table relations: II. Correlaion between annual water table fluctuations and profile features. Soil Sci. Soc. Am. J. 1972, 36, 649–653. [Google Scholar] [CrossRef]
- Morgan, C.P.; Stolt, M.H. Soil morphology-water table cumulative duration relationships in Southern New England. Soil Sci. Soc. Am. J. 2006, 70, 816–823. [Google Scholar] [CrossRef] [Green Version]
- He, X.; Vepraskas, M.J.; Skaggs, R.W.; Lindbo, D.L. Adapting a drainage model to simulate water table levels in coastal plain soils. Soil Sci. Soc. Am. J. 2002, 67, 1722–1731. [Google Scholar] [CrossRef]
- Westaway, R.; Jackson, J. Surface faulting in the Southern Italian Campania-Basilicata earthquake of 23 November 1980. Nature 1984, 312, 436–438. [Google Scholar] [CrossRef]
- Cotecchia, V. Ground deformations and slope instability produced by the earthquake of 23 November 1980 in Campania and Basilicata. In Proceedings of the International Symposium Engineering Geology Problems in Seismic Areas, Bari, Italy, 13–19 April 1986; Volume 5, pp. 31–100. [Google Scholar]
- Del Prete, M. Examples of mudslides hazard in Southern Apennines (Italy). Ann. Geofisica 1993, 36, 71–80. [Google Scholar]
- Esposito, E.; Gargiulo, A.; Iaccarino, G.; Porfido, S. Distribuzione dei fenomeni franosi riattivati dai terremoti dell’Appennino meridionale. Censimento delle frane del terremoto del 1980. In Proceedings of the International Convention on Prevention of Hydrogeological Hazards, Torino, Italy; 1998; pp. 409–429. [Google Scholar]
- Pantosti, D.; Valensise, G. Source geometry and long-term behavior of the 1980 fault based on field geologic observations. Ann. Geofisica 1993, 36, 41–49. [Google Scholar]
- Gizzi, F.T.; Potenza, M.R.; Zotta, C. 23 November 1980 Irpinia–Basilicata earthquake (Southern Italy): Towards a full knowledge of the seismic effects. Bull. Earthq. Eng. 2012, 10, 1109–1131. [Google Scholar] [CrossRef]
- Nunziata, C.; Costa, G.; Marrara, F.; Panza, F. Validted Estimation of Response Spectra for the 1980 Irpinia Earthquake in the Eastern Area of Naples. Earthquake Spectra 2000, 16. [Google Scholar] [CrossRef]
- Ameri, G.; Emolo, A.; Pacor, F.; Gallovič, F. Ground-Motion Simulations for the 1980 M 6.9 Irpinia Earthquake (Southern Italy) and Scenario Events. Bull. Seismol. Soc. Am. 2011, 101, 1136–1151. [Google Scholar] [CrossRef] [Green Version]
- Westaway, R.; Jackson, J. The earthquake of 1980 November 23 in Campania–Basilicata (Southern Italy). Geophys. J. R. Astron. Soc. 1987, 90, 375–443. [Google Scholar] [CrossRef] [Green Version]
- Bernard, P.; Zollo, A. The Irpinia (Italy) 1980 earthquake: Detailed analysis of a complex normal faulting. J. Geophys. Res. 1989, 94, 1631–1648. [Google Scholar] [CrossRef]
- Porfido, S.; Esposito, E.; Michetti, A.M.; Blumetti, A.M.; Vittori, E.; Tranfaglia, G.; Guerrieri, L.; Ferreli, L.; Serva, L. Areal distribution of ground effects induced by strong earthquakes in the Southern Apennines (Italy). Surv. Geophys. 2002, 23, 529–562. [Google Scholar] [CrossRef]
- Porfido, S.; Alessio, G.; Gaudiosi, G.; Nappi, R.; Spiga, E. The resilience of some villages 36 years after the Irpinia-Basilicata (Southern Italy) 1980 earthquake. In Proceedings of the 4th WLF, Ljubljana, Slovenia, 29 May–2 June 2017; Mikoš, M., Vilímek, V., Yin, Y., Sassa, K., Eds.; Springer: Cham, Switzerland, 2017; pp. 121–133. [Google Scholar] [CrossRef]
- Pingue, F.; De Natale, G. Fault mechanism of the 40 seconds subevent of the 1980 Irpinia (Southern Italy) earthquake from levelling data. Geophys. Res. Lett. 1993, 20, 911–914. [Google Scholar] [CrossRef]
- Ascione, A.; Mazzoli, S.; Petrosino, P.; Valente, E. A decoupled kinematic model for active normal faults: Insights from the 1980, MS = 6.9 Irpinia earthquake, Southern Italy. Geol. Soc. Am. Bull. 2013, 125, 1239–1259. [Google Scholar] [CrossRef]
- Mina, D.; Forcellini, D. Soil–Structure Interaction Assessment of the 23 November 1980 Irpinia Basilicata Earthquake. Geosciences 2020, 10, 152. [Google Scholar] [CrossRef] [Green Version]
- Khosravikia, F.; Mahsuli, M.; Ghannad, M.A. The effect of soil—Structure interaction on the seismic risk to buildings. Bull. Earthq. Eng 2018, 16, 3653–3673. [Google Scholar] [CrossRef]
- Cavalieri, F.; Correia, A.A.; Crowley, H.; Pinho, R. Dynamic soil-structure interaction models for fragility characterisation of buildings with shallow foundations. Soil Dyn. Earthq. Eng. 2020, 132, 106004. [Google Scholar] [CrossRef]
- Dashti, S.; Bray, J.D.; Pestana, J.M.; Riemer, M.; Wilson, D. Mechanisms of seismically induced settlement of buildings with shallow foundations on liquefiable soil. J. Geotech. Geoenviron. Eng. ASCE 2010, 136, 151–164. [Google Scholar] [CrossRef] [Green Version]
- Gizzi, F.; Masini, N. Il terremoto irpino del 23 Novembre 1980 a Tursi: Dal dato parametrico a quello descrittivo. In Tursi, La Rabatana; Fonseca, C.D., Ed.; Fondazione Sassi Matera: Matera, Italy, 2004; pp. 305–316. [Google Scholar]
- Benedetti, D.; Petrini, V. On seismic vulnerability of masonry buildings: Proposal of an evaluation procedure. L’Industria Costr. 1984, 18, 66–78. [Google Scholar]
- Postpischl, D.; Branno, A.; Esposito, E.; Ferrari, G.; Marturano, A.; Porfido, S.; Rinaldis, V.; Stucchi, M. The Irpinia earthquake of November 23, 1980. Atlas Isoseismal Maps Ital. Earthq. 1985, 114, 152–157. [Google Scholar]
- Porfido, S.; Esposito, E.; Vittori, E.; Tranfaglia, G.; Michetti, A.M.; Blumetti, M.; Ferreli, L.; Guerrieri, L.; Serva, L. The geological evidence for earthquakes induced effects in the Southern Apennines (Italy). Surv. Geophys. 2002, 23, 529–562. [Google Scholar] [CrossRef]
- Locati, M.; Camassi, R.; Rovida, A.; Ercolani, E.; Bernardini, F.; Castelli, V.; Caracciolo, C.H.; Tertulliani, A.; Rossi, A.; Azzaro, R.; et al. DBMI15, the 2015 Version of the Italian Macroseismic Database; INGV: Rome, Italy, 2016. [Google Scholar] [CrossRef]
- Porfido, S.; Alessio, G.; Avallone, P.; Gaudiosi, G.; Lombardi, G.; Nappi, R.; Salvemini, R.; Spiga, E. The 1980 Irpinia-Basilicata earthquake: The environmental phenomena and the choices of reconstruction. In Proceedings of the EGU General Assembly 2016, Vienna, Austria, 17–22 April 2016. [Google Scholar]
- Serva, L.; Esposito, E.; Guerrieri, L.; Porfido, S.; Vittori, E.; Comerci, V. Environmental Effects from some historical earthquakes in Southern Apennines (Italy) and macroseismic intensity assessment. Contribution to INQUA EEE scale project. Quat. Int. 2007, 173, 30–44. [Google Scholar] [CrossRef]
- Porfido, S.; Esposito, E.; Guerrieri, L.; Vittori, E.; Tranfaglia, G.; Pece, R. Seismically induced ground effects of the 1805, 1930 and 1980 earthquakes in the Southern Apennines, Italy. Ital. J. Geosci. 2007, 126, 333–346. [Google Scholar]
- Blumetti, A.M.; Esposito, E.; Ferreli, L.; Michetti, A.M.; Porfido, S.; Serva, L.; Vittori, E. New data on the novembre 23, 1980, M 6.9, Irpinia-Lucania earthquake (Southern Apennine) coseismic surface effects. Studi Geol. Camerti 2002, 2002, 19–27. [Google Scholar]
- Carulli, G.B.; Migliacci, A.; Onofri, R.; Porfido, S. Indagini geologiche ed ingegneristiche in prospettiva sismica a S. Michele di Serino (AV). Rend. Della Soc. Geol. Ital. 1981, 4, 161–164. [Google Scholar]
- Cotecchia, V.; Nuzzo, G. Hydrological study of the upper valley of the Sele and Ofanto River struck by the Novembre 23, 1980 earthquake. Geol. Appl. Idrogeol. 1986, 21, 65–95. [Google Scholar]
- Esposito, E.; Pece, R.; Porfido, S.; Tanfaglia, G. Hydrological anomalies connected to earthquakes in Southern Apennines (Italy). Nat. Hazards Earth Syst. Sci. 2001, 1, 137–144. [Google Scholar] [CrossRef] [Green Version]
- Galli, P. New empirical relationships between magnitude and distance for liquefaction. Tectonophysics 2000, 324, 169–187. [Google Scholar] [CrossRef]
- Rossi, M. Situazione, Problemi e Prospettive Dell’area più Colpita dal Terremoto del 23/11/1980; Einaudi: Torino, Italy, 1981. [Google Scholar]
- Verderosa, A. Legge 219/81 Ovvero la Distruzione Legalizzata Dei Centri Storici. In Civiltà Altirpina; Trimestrale, Anno I/lug-dic.90; 1990. Available online: http://verderosa.files.wordpress.com/2008/01/civilto-altirpinia1990.pdf (accessed on 13 June 2020).
- AAVV. Indagini di Microzonazione Sismica CNR-PFG; CNR-PFG: Rome, Italy, 1983; p. 221. [Google Scholar]
- Gimma, M.G. I Piani di Recupero nei Centri Storici, in Atti del Convegno e Mostra Roma; Bema Editrice: Roma, Italy, 1987. [Google Scholar]
- Giuffrè, A. Centri storici in Zona Sismica, Analisi Tipologica Della Danneggiabilità e tecnichedi Intervento Conservativo, Castelvetere sul Calore; in Studi e ricerche. Sulla sicurezza sismica dei Monumenti. Master’s Thesis, Università La Sapienza, Facoltà di Architettura, Roma, Italy, 1988. [Google Scholar]
- Ordine Architetti Avellino. Immagini di architettura 1980−1990; Jacelli: Avellino, Italy, 1991. [Google Scholar]
- ITACA. ITalian ACcelerometric Archive (1972−2011); Version1.1. 2011. Available online: http://itaca.mi.ingv.it/ItacaNet/ (accessed on 13 June 2020).
- Zienkiewicz, O.C.; Chan, A.H.C.; Pastor, M.; Paul, D.K.; Shiomi, T. Static and dynamic behavior of soils: A rational approach to quantitative solutions: I. Fully saturated problems. Proc. R. Soc. Lond. Ser. A 1990, 429, 285–309. [Google Scholar]
- Elgamal, A.; Lu, J.; Forcellini, D. Mitigation of Liquefaction-Induced lateral deformation in sloping stratum: Three-dimensional Numerical Simulation. J. Geotech. Geoenvironmental Eng. 2009, 135, 1672–1682. [Google Scholar] [CrossRef]
- Lu, J.; Elgamal, A.; Yang, Z. OpenSeesPL: 3D Lateral Pile-Ground Interaction, User Manual, Beta 1.0; 2011. Available online: http://soilquake.net/openseespl/ (accessed on 13 June 2020).
- Mazzoni, S.; McKenna, F.; Scott, M.H.; Fenves, G.L. Open System for Earthquake Engineering Simulation, User Command-Language Manual; OpenSees Version 2.0; Pacific Earthquake Engineering Research Center, University of California, Berkeley: Berkeley, CA, USA, 2009; Available online: http://opensees.berkeley.edu/OpenSees/manuals/usermanual (accessed on 13 June 2020).
- Yang, Z.; Elgamal, A.; Parra, E. A computational model for cyclic mobility and associated shear deformation. J. Geotech. Geoenviron. Eng. 2003, 129, 1119–1127. [Google Scholar] [CrossRef]
- Kramer, S.L. Geotechnical Earthquake Engineering; International Series in Civil Engineering and Engineering Mechanics; William, J., Ed.; Prentice-Hall: Upper Saddle River, NJ, USA, 1996. [Google Scholar]
- Forcellini, D.; Gobbi, S.; Mina, D. Numerical Simulations of Ordinary Buildings with Soil Structure Interaction. In Proceedings of the SEMC 2016, Alphose Zingoni, Insights and Innovations in Structural Engineering, Mechanics and Computation, Cape Town, South Africa, 5–7 September 2016; pp. 364–369, ISBN 978-1-138-02927-9. [Google Scholar]
- Forcellini, D. Cost Assessment of isolation technique applied to a benchmark bridge with soil structure interaction. Bull. Earthq. Eng. 2017. [Google Scholar] [CrossRef]
- Forcellini, D. Seismic Assessment of a benchmark based isolated ordinary building with soil structure interaction. Bull. Earthq. Eng. 2018. [Google Scholar] [CrossRef]
- Forcellini, D. Numerical simulations of liquefaction on an ordinary building during Italian (20 May 2012) earthquake. Bull. Earthq. Eng. 2019. [Google Scholar] [CrossRef]
- Forcellini, D. Soil-structure interaction analyses of shallow-founded structures on a potential-liquefiable soil deposit. Soil Dyn. Earthq. Eng. 2020, 133, 106108. [Google Scholar] [CrossRef]
- Furtado, A.T.; Rodrigues, H.; Arede, A.; Varum, H.; Grubisic, M.; Sipos, T.K. Prediction of the earthquake response of a three-storey infilled RC structure. Eng. Struct. 2018, 171, 214–235. [Google Scholar] [CrossRef]
Soil | S1 | S2 | S3 | S4 |
---|---|---|---|---|
Density (Mg/m3) | 1.7 | 1.9 | 1.9 | 2.1 |
Reference shear modulus (kPa) | 3.83 × 104 | 4.28 × 104 | 5.50 × 104 | 1.32 × 105 |
Reference bulk modulus (kPa) | 1.50 × 105 | 2.00 × 105 | 2.00 × 105 | 3.90 × 105 |
Shear wave velocity (m/s) | 150 | 150 | 170 | 250 |
Soil fundamental period (s) | 0.53 | 0.53 | 0.47 | 0.32 |
Cohesion (kPa) | 5 | 5 | 5 | 5 |
Friction angle (°) | 27 | 29 | 35 | 40 |
Horizontal permeability (m/s) | 1.0 × 10−7 | 1.0 × 10−7 | 1.0 × 10−7 | 1.0 × 10−7 |
Vertical permeability (m/s) | 1.0 × 10−7 | 1.0 × 10−7 | 1.0 × 10−7 | 1.0 × 10−7 |
Models | T1 (s) | T2 (s) | T3 (s) |
---|---|---|---|
RC | 0.301 | 0.107 | 0.073 |
RC with IMWs | 0.209 | 0.074 | 0.049 |
Parameters | Concrete |
---|---|
Density (Mg/m3) | 2.4 |
Reference Shear Modulus (kPa) | 1.25 × 107 |
Reference Bulk Modulus (kPa) | 1.67 × 107 |
Soil | S1 |
---|---|
Density (Mg/m3) | 1.7 |
Reference shear modulus (kPa) | 3.83 × 104 |
Reference bulk modulus (kPa) | 1.50 × 105 |
Shear wave velocity (m/s) | 150 |
Cohesion (kPa) | 5 |
Friction angle (°) | 27 |
Horizontal permeability (m/s) | 1.0 × 10−7 |
Vertical permeability (m/s) | 1.0 × 10−7 |
Models | Settlement (cm) |
---|---|
Model-0 m | 1.49 |
Model-2 m | 1.29 |
Model-6 m | 0.99 |
Model-10 m | 0.64 |
Model-15 m | 0.43 |
Model-20 m | 0.33 |
Models | Max. Displacement (cm) |
---|---|
Model-0 m | 1.67 |
Model-2 m | 1.30 |
Model-6 m | 1.15 |
Model-10 m | 1.22 |
Model-15 m | 0.93 |
Model-20 m | 0.39 |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Forcellini, D. The Role of the Water Level in the Assessment of Seismic Vulnerability for the 23 November 1980 Irpinia–Basilicata Earthquake. Geosciences 2020, 10, 229. https://doi.org/10.3390/geosciences10060229
Forcellini D. The Role of the Water Level in the Assessment of Seismic Vulnerability for the 23 November 1980 Irpinia–Basilicata Earthquake. Geosciences. 2020; 10(6):229. https://doi.org/10.3390/geosciences10060229
Chicago/Turabian StyleForcellini, Davide. 2020. "The Role of the Water Level in the Assessment of Seismic Vulnerability for the 23 November 1980 Irpinia–Basilicata Earthquake" Geosciences 10, no. 6: 229. https://doi.org/10.3390/geosciences10060229
APA StyleForcellini, D. (2020). The Role of the Water Level in the Assessment of Seismic Vulnerability for the 23 November 1980 Irpinia–Basilicata Earthquake. Geosciences, 10(6), 229. https://doi.org/10.3390/geosciences10060229