Linking Soil Hydrology and Creep: A Northern Andes Case
Abstract
1. Introduction
2. Field Site Description
2.1. Geology and Geomorphology
2.2. Pedostratigraphy
2.3. Soil Creep
3. Data and Methods
3.1. Hydrological Instrumentation
3.2. Positioning Surveys
4. Results
4.1. Hydrological Behavior: Water Table, Runoff and Percolation
4.2. Soil Moisture
4.3. Measurement of Movement
5. Discussion
6. Summary and Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Aristizábal, E.; Roser, B.; Yokota, S. Tropical chemical weathering of hillslope deposits and bedrock source in the Aburrá Valley, northern Colombian Andes. Eng. Geol. 2005, 81, 389–406. [Google Scholar] [CrossRef]
- Echeverri, A.; Vélez, A.E.; Werthmann, C. Re Habitar la Ladera: Operaciones en Áreas de Riesgo y Asentamiento Precario en Medellín; Urbam (Centro de Estudios Urbanos y Ambientales—Universidad EAFIT): Medellín, Colombia; Harvard Design School: Cambridge, Mass, USA, 2012; pp. 1–70. [Google Scholar]
- Aristizábal, E.; Gómez, J. Inventario de emergencias y desastres en el Valle de Aburrá. Originados por fenómenos naturales y antrópicos en el periodo 1880–2007. Gestión y Ambiente 2007, 10, 17–30. [Google Scholar]
- García Londoño, C. Estado del conocimiento de los depósitos de vertiente del Valle de Aburrá. Boletín de Ciencias de la Tierra 2006, 19, 1–10. [Google Scholar]
- Loaiza-Úsuga, J.C.; Pauwels, V.R.N. Utilización de sensores de humedad para la determinación del contenido de humedad del suelo (Ecuaciones de Calibración). Suelos Ecuat. 2008, 38, 24–33. [Google Scholar]
- Pawlik, Ł.; Šamonil, P. Soil creep: The driving factors, evidence and significance for biogeomorphic and pedogenic domains and systems—A critical literature review. Earth-Sci. Rev. 2018, 178, 257–278. [Google Scholar] [CrossRef]
- Sidle, R.; Ochiai, H. Landslides: Processes, Prediction, and Land Use; America Geophysical Union, Water Resources Monograph No. 18: Washington, DC, USA, 2006; p. 312. [Google Scholar]
- Bayer, B.; Simoni, A.; Mulas, M.; Corsini, A.; Schmidt, D. Deformation responses of slow moving landslides to seasonal rainfall in the Northern Apennines, measured by InSAR. Geomorphology 2018, 308, 293–306. [Google Scholar] [CrossRef]
- Handwerger, A.L.; Roering, J.J.; Schmidt, D.A. Controls on the seasonal deformation of slow-moving landslides. Earth Planet. Sci. Lett. 2013, 377-378, 239–247. [Google Scholar] [CrossRef]
- Giovanni, C.; Frattini, P. Rainfall-induced landslides and debris flows. Int. Food Res. J. 2008, 22, 473–477. [Google Scholar] [CrossRef]
- Aristizábal, E.; Martínez, H.; Vélez, J.I. Una revisión sobre el estudio de movimientos en masa detonados por lluvias. Rev. de La Acad. Colomb. de Cienc. 2010, 34, 209–227. [Google Scholar]
- Rodríguez-Iturbe, I.; Porporato, A. Ecohydrology of Water-Controlled Ecosystems: Soil Moisture and Plant Dynamics, 1st ed.; Cambridge University Press: Cambridge, UK, 2005; pp. 1–464. [Google Scholar] [CrossRef]
- Malik, I.; Wistuba, M.; Migoń, P.; Fajer, M. Activity of slow-moving landslides recorded in eccentric tree rings of Norway spruce trees (Picea Abies Karst.)—An example from the kamienne MTS. (Sudetes MTS., Central Europe). Geochronometria 2016, 43, 24–37. [Google Scholar] [CrossRef]
- Šilhán, K. Dendrogeomorphic chronologies of landslides: Dating of true slide movements? Earth Surf. Process. Landf. 2017, 42, 2109–2118. [Google Scholar] [CrossRef]
- Gariano, S.L.; Guzzetti, F. Landslides in a changing climate. Earth-Sci. Rev. 2016, 162, 227–252. [Google Scholar] [CrossRef]
- Sidle, R.C.; Bogaard, T.A. Dynamic earth system and ecological controls of rainfall-initiated landslides. Earth-Sci. Rev. 2016, 159, 275–291. [Google Scholar] [CrossRef]
- Loaiza-Úsuga, J.C.; Monsalve, G.; Pertuz-Paz, A.; Arce-Monsalve, L.; Sanín, M.; Ramirez-Hoyos, L.F.; Sidle, R.C. Unraveling the Dynamics of a Creeping Slope in Northwestern Colombia: Hydrological Variables, and Geoelectrical and Seismic Signatures. Water 2018, 10, 1498. [Google Scholar] [CrossRef]
- Young, A. Soil movement by denudational processes on slopes. Nature 1960, 188, 120–122. [Google Scholar] [CrossRef]
- Gravenor, C.P.; Kupsch, W.O. Ice-Disintegration Features in Western Canada. J. Geol. 1959, 67, 48–64. [Google Scholar] [CrossRef]
- Wilding, L.P.; Smeck, N.E.; Hall, G.F. Pedogenesis and Soil Taxonomy, I. Concepts and Interactions, 1st ed.; Elsevier Science: Amsterdam, The Netherlands, 1983; Volume 11A, pp. 1–302. [Google Scholar]
- Pennock, D.J.; Zebarth, B.J.; De Jong, E. Landform classification and soil distribution in hummocky terrain, Saskatchewan, Canada. Geoderma 1987, 40, 297–315. [Google Scholar] [CrossRef]
- Soil Survey Staff–SSS. Keys to Soil Taxonomy, 12th ed.; Soil Survey Staff (SSS), United States Department of Agriculture, Natural Resources Conservation Service: Washington, DC, USA, 2014; pp. 1–372. [Google Scholar]
- Instituto Geográfico Agustín Codazzi—IGAC. Estudio General de Suelos y Zonificación de Tierras. Departamento de Antioquia. Tomo 2; Instituto Geografico Agustin Codazzi (IGAC): Bogotá, Colombia, 2007; pp. 664–672. [Google Scholar]
- Lindbo, D.L.; Stolt, M.H.; Vepraskas, M.J. Redoximorphic features. In Interpretation of Micromorphological Features of Soils and Regoliths; Stoops, G., Marcelino, V., Mees, F., Eds.; Elsevier: Amsterdam, The Netherlands, 2010; pp. 129–147. [Google Scholar]
- Espinal, S. Geografia Ecológica de Antioquia. Zonas de Vida; EALON—Universidad Nacional de Colombia: Medellin, Colombia, 1992; pp. 1–146. [Google Scholar]
- Heimsath, A.M.; Jungers, M.C. Processes, Transport, Deposition, and Landforms: Quantifying Creep. Treatise Geomorphol. 2013, 7, 138–151. [Google Scholar] [CrossRef]
- Carson, M.A.; Kirkby, M.J. Hillslope form and Process; Cambridge University Press: Cambridge, UK, 1972; pp. 1–476. [Google Scholar]
- Huggett, R. Fundamentals of Geomorphology, 4th ed.; Routledge: London, UK, 2016; pp. 1–578. [Google Scholar]
- Kirkby, M.J. Measurement and theory of soil creep. J. Geol. 1967, 75, 359–378. [Google Scholar] [CrossRef]
- Saunders, I.; Young, A. Rates of surface processes on slopes, slope retreat and denudation. Earth Surf. Process. Landf. 1983, 8, 473–501. [Google Scholar] [CrossRef]
- Parizek, E.; Woodruff, J. A Clarification of the Definition and Classification of Soil Creep. J. Geol. 1957, 65, 653–657. [Google Scholar] [CrossRef]
- Bond, W. Soil Physical Methods for Estimating Recharge-Part. 3: Basics of Recharge and Discharge Series; CSIRO Publishing: Collingwood, Australia, 1998; pp. 1–21. [Google Scholar]
- Chu, J.; Low, B.K.; Choa, V. Soil Improvement: Prefabricated Vertical Drain Techniques; Thomson Learning Asia: Singapore, 2003; pp. 1–341. [Google Scholar]
- Twarakavi, N.K.; Šimůnek, J.; Schaap, M.G. Can texture-based classification optimally classify soils with respect to soil hydraulics? Water Resour. Res. 2010, 46, W01501, 1–11. [Google Scholar] [CrossRef]
- Twarakavi, N.K.; Sakai, M.; Šimůnek, J. An objective analysis of the dynamic nature of field capacity. Water Resour. Res. 2009, 45, W10410, 1–9. [Google Scholar] [CrossRef]
- Bedoya-Soto, J.M.; Aristizábal, E.; Carmona, A.M.; Poveda, G. Seasonal shift of the diurnal cycle of rainfall over Medellín’s valley, Central Andes of Colombia (1998–2005). Front. Earth Sci. 2019, 7, 92. [Google Scholar] [CrossRef]
- Vélez Otálvaro, M.V.; Vélez Upegui, J.I.; Carvajal Serna, L.F.; Ortiz Pimienta, C.; Cardona Orozco, Y.; Ramírez Rojas, M.I. CPA Ingeniería, Plan de Ordenación y Manejo de la Cuenca del río Aburra-Antioquia, Colombia; Universidad Nacional de Colombia: Medellín, Colombia, 2016; pp. 1–466. [Google Scholar]
- Gardner, W.R. Some steady state solutions of the unsaturated moisture flow equation with application to evaporation from a water table. Soil Sci. 1958, 85, 228–232. [Google Scholar] [CrossRef]
- Walker, J.; Bullen, F.; Williams, B.G. Ecohydrological changes in the Murray-Darling Basin: I. The number of trees cleared over two centuries. J. Appl. Ecol. 1993, 30, 265–273. [Google Scholar] [CrossRef]
- Vervoort, R.W.; van der Zee, R.W. Simulating the effect of capillary flux on the soil water balance in a stochastic ecohydrological framework. Water Resour. Res. 2008, 44, W08425. [Google Scholar] [CrossRef]
- ShokriKuehni, S.; Raaijmakers, B.; Kurz, T.; Or, D.; Helmig, R.; Shokri, N. Water Table Depth and Soil Salinization: From PoreScale Processes to FieldScale Responses. Water Resour. Res. 2020, 56. [Google Scholar] [CrossRef]
- Moreno, H.; Vélez, M.V.; Montoya, J.; Rhenals, R. La lluvia y los deslizamientos de tierra en Antioquia: Análisis de su ocurrencia en las escalas interanual, intra anual y diaria. Revista EIA 2006, 5, 59–69. [Google Scholar]
- Corominas, J.; Moya, J.; Ledesma, A.; Lloret, A.; Gili, J.A. Prediction of ground displacements and velocities from groundwater level changes at the Vallcebre landslide (Eastern Pyrenees, Spain). Landslides 2005, 2, 83–96. [Google Scholar] [CrossRef]
- Crosta, G. Regionalization of rainfall thresholds: An aid to landslide hazard evaluation. Environ. Geol. 1998, 35, 131–145. [Google Scholar] [CrossRef]
- Freeze, R. The Mechanism of Natural Ground-water Recharge and Discharge: 1. One-dimensional, Vertical, Unsteady, Unsaturated Flow above a Recharging or Discharging Groundwater Flow System. Water Resour. Res. 1969, 5, 153–171. [Google Scholar] [CrossRef]
- Finlayson, B. Field measurements of soil creep. Earth Surf. Process. Landf. 1981, 6, 35–48. [Google Scholar] [CrossRef]
- Imaizumi, F.; Sidle, R.C.; Togari-Ohta, A.; Shimamura, M. Temporal and spatial variation of infilling processes in a landslide scar in a steep mountainous region, Japan. Earth Surf. Process. Landf. 2015, 40, 642–653. [Google Scholar] [CrossRef]
- Crawford, M.M.; Bryson, L.S.; Woolery, E.W.; Wang, Z. Long-term landslide monitoring using soil-water relationships and electrical data to estimate suction stress. Eng. Geol. 2019, 251, 146–157. [Google Scholar] [CrossRef]
- Jahn, A. The soil creep on slopes in different altitudinal and ecological zones of Sudetes Mountains. Geogr. Ann. Ser. A Phys. Geogr. 1989, 71, 161–170. [Google Scholar] [CrossRef]
Plot 1 | Plot 2 | |
---|---|---|
Approximate slope (°) | 30 | 20 |
Lysimeter 1 depth (cm) | 40 | 20 |
Lysimeter 2 depth (cm) | 80 | 80 |
Lysimeter 1 volume (L) | 20 | 30 |
Lysimeter 2 volume (L) | 60 | 60 |
Runoff tank volume (L) | 60 | 60 |
Soil Moisture Condition | VWC Range (%) | Number of Data Points | Percentage |
---|---|---|---|
Sensor 1 (0.2 m depth) | |||
Saturation | 0.39–0.45 | 5 | 1% |
Partially saturated | 0.25–0.39 | 196 | 56% |
Field capacity | 0.21–0.25 | 21 | 6% |
Below Field capacity | 0.15–0.21 | 47 | 13% |
Wilting point | 0.08–0.15 | 84 | 24% |
Sensor 2 (0.4 m depth) | |||
Saturation | 0.38–0.40 | 2 | 0% |
Partially saturated | 0.36–0.38 | 3 | 1% |
Field capacity | 0.34–0.36 | 16 | 4% |
Below Field capacity | 0.19–0.34 | 233 | 55% |
Wilting point | 0.17–0.19 | 19 | 4% |
Hygroscopic point | 0.09–0.17 | 153 | 36% |
Sensor 3 (0.6 m depth) | |||
Saturation | 0.38–0.40 | 4 | 1% |
Partially saturated | 0.36–0.38 | 22 | 5% |
Field capacity | 0.34–0.36 | 21 | 5% |
Below Field capacity | 0.19–0.34 | 338 | 81% |
Wilting point | 0.17–0.19 | 13 | 3% |
Hygroscopic point | 0.09–0.17 | 21 | 5% |
Sensor 4 (0.8 m depth) | |||
Saturation | 0.38–0.40 | 17 | 4% |
Partially saturated | 0.36–0.38 | 61 | 15% |
Field capacity | 0.34–0.36 | 34 | 8% |
Below Field capacity | 0.19–0.34 | 136 | 32% |
Wilting point | 0.17–0.19 | 36 | 9% |
Hygroscopic point | 0.09–0.17 | 135 | 32% |
Campaign Number | Date |
---|---|
1 | 06/15/2019 |
2 | 07/20/2019 |
3 | 09/21/2019 |
4 | 10/19/2019 |
5 | 11/15/2019 |
6 | 12/13/2019 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pertuz-Paz, A.; Monsalve, G.; Loaiza-Úsuga, J.C.; Caballero-Acosta, J.H.; Agudelo-Vélez, L.I.; Sidle, R.C. Linking Soil Hydrology and Creep: A Northern Andes Case. Geosciences 2020, 10, 472. https://doi.org/10.3390/geosciences10110472
Pertuz-Paz A, Monsalve G, Loaiza-Úsuga JC, Caballero-Acosta JH, Agudelo-Vélez LI, Sidle RC. Linking Soil Hydrology and Creep: A Northern Andes Case. Geosciences. 2020; 10(11):472. https://doi.org/10.3390/geosciences10110472
Chicago/Turabian StylePertuz-Paz, Aleen, Gaspar Monsalve, Juan Carlos Loaiza-Úsuga, José Humberto Caballero-Acosta, Laura Inés Agudelo-Vélez, and Roy C. Sidle. 2020. "Linking Soil Hydrology and Creep: A Northern Andes Case" Geosciences 10, no. 11: 472. https://doi.org/10.3390/geosciences10110472
APA StylePertuz-Paz, A., Monsalve, G., Loaiza-Úsuga, J. C., Caballero-Acosta, J. H., Agudelo-Vélez, L. I., & Sidle, R. C. (2020). Linking Soil Hydrology and Creep: A Northern Andes Case. Geosciences, 10(11), 472. https://doi.org/10.3390/geosciences10110472