Linking Soil Hydrology and Creep: A Northern Andes Case
Abstract
:1. Introduction
2. Field Site Description
2.1. Geology and Geomorphology
2.2. Pedostratigraphy
2.3. Soil Creep
3. Data and Methods
3.1. Hydrological Instrumentation
3.2. Positioning Surveys
4. Results
4.1. Hydrological Behavior: Water Table, Runoff and Percolation
4.2. Soil Moisture
4.3. Measurement of Movement
5. Discussion
6. Summary and Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Aristizábal, E.; Roser, B.; Yokota, S. Tropical chemical weathering of hillslope deposits and bedrock source in the Aburrá Valley, northern Colombian Andes. Eng. Geol. 2005, 81, 389–406. [Google Scholar] [CrossRef]
- Echeverri, A.; Vélez, A.E.; Werthmann, C. Re Habitar la Ladera: Operaciones en Áreas de Riesgo y Asentamiento Precario en Medellín; Urbam (Centro de Estudios Urbanos y Ambientales—Universidad EAFIT): Medellín, Colombia; Harvard Design School: Cambridge, Mass, USA, 2012; pp. 1–70. [Google Scholar]
- Aristizábal, E.; Gómez, J. Inventario de emergencias y desastres en el Valle de Aburrá. Originados por fenómenos naturales y antrópicos en el periodo 1880–2007. Gestión y Ambiente 2007, 10, 17–30. [Google Scholar]
- García Londoño, C. Estado del conocimiento de los depósitos de vertiente del Valle de Aburrá. Boletín de Ciencias de la Tierra 2006, 19, 1–10. [Google Scholar]
- Loaiza-Úsuga, J.C.; Pauwels, V.R.N. Utilización de sensores de humedad para la determinación del contenido de humedad del suelo (Ecuaciones de Calibración). Suelos Ecuat. 2008, 38, 24–33. [Google Scholar]
- Pawlik, Ł.; Šamonil, P. Soil creep: The driving factors, evidence and significance for biogeomorphic and pedogenic domains and systems—A critical literature review. Earth-Sci. Rev. 2018, 178, 257–278. [Google Scholar] [CrossRef]
- Sidle, R.; Ochiai, H. Landslides: Processes, Prediction, and Land Use; America Geophysical Union, Water Resources Monograph No. 18: Washington, DC, USA, 2006; p. 312. [Google Scholar]
- Bayer, B.; Simoni, A.; Mulas, M.; Corsini, A.; Schmidt, D. Deformation responses of slow moving landslides to seasonal rainfall in the Northern Apennines, measured by InSAR. Geomorphology 2018, 308, 293–306. [Google Scholar] [CrossRef]
- Handwerger, A.L.; Roering, J.J.; Schmidt, D.A. Controls on the seasonal deformation of slow-moving landslides. Earth Planet. Sci. Lett. 2013, 377-378, 239–247. [Google Scholar] [CrossRef]
- Giovanni, C.; Frattini, P. Rainfall-induced landslides and debris flows. Int. Food Res. J. 2008, 22, 473–477. [Google Scholar] [CrossRef]
- Aristizábal, E.; Martínez, H.; Vélez, J.I. Una revisión sobre el estudio de movimientos en masa detonados por lluvias. Rev. de La Acad. Colomb. de Cienc. 2010, 34, 209–227. [Google Scholar]
- Rodríguez-Iturbe, I.; Porporato, A. Ecohydrology of Water-Controlled Ecosystems: Soil Moisture and Plant Dynamics, 1st ed.; Cambridge University Press: Cambridge, UK, 2005; pp. 1–464. [Google Scholar] [CrossRef]
- Malik, I.; Wistuba, M.; Migoń, P.; Fajer, M. Activity of slow-moving landslides recorded in eccentric tree rings of Norway spruce trees (Picea Abies Karst.)—An example from the kamienne MTS. (Sudetes MTS., Central Europe). Geochronometria 2016, 43, 24–37. [Google Scholar] [CrossRef] [Green Version]
- Šilhán, K. Dendrogeomorphic chronologies of landslides: Dating of true slide movements? Earth Surf. Process. Landf. 2017, 42, 2109–2118. [Google Scholar] [CrossRef]
- Gariano, S.L.; Guzzetti, F. Landslides in a changing climate. Earth-Sci. Rev. 2016, 162, 227–252. [Google Scholar] [CrossRef] [Green Version]
- Sidle, R.C.; Bogaard, T.A. Dynamic earth system and ecological controls of rainfall-initiated landslides. Earth-Sci. Rev. 2016, 159, 275–291. [Google Scholar] [CrossRef]
- Loaiza-Úsuga, J.C.; Monsalve, G.; Pertuz-Paz, A.; Arce-Monsalve, L.; Sanín, M.; Ramirez-Hoyos, L.F.; Sidle, R.C. Unraveling the Dynamics of a Creeping Slope in Northwestern Colombia: Hydrological Variables, and Geoelectrical and Seismic Signatures. Water 2018, 10, 1498. [Google Scholar] [CrossRef] [Green Version]
- Young, A. Soil movement by denudational processes on slopes. Nature 1960, 188, 120–122. [Google Scholar] [CrossRef]
- Gravenor, C.P.; Kupsch, W.O. Ice-Disintegration Features in Western Canada. J. Geol. 1959, 67, 48–64. [Google Scholar] [CrossRef]
- Wilding, L.P.; Smeck, N.E.; Hall, G.F. Pedogenesis and Soil Taxonomy, I. Concepts and Interactions, 1st ed.; Elsevier Science: Amsterdam, The Netherlands, 1983; Volume 11A, pp. 1–302. [Google Scholar]
- Pennock, D.J.; Zebarth, B.J.; De Jong, E. Landform classification and soil distribution in hummocky terrain, Saskatchewan, Canada. Geoderma 1987, 40, 297–315. [Google Scholar] [CrossRef]
- Soil Survey Staff–SSS. Keys to Soil Taxonomy, 12th ed.; Soil Survey Staff (SSS), United States Department of Agriculture, Natural Resources Conservation Service: Washington, DC, USA, 2014; pp. 1–372. [Google Scholar]
- Instituto Geográfico Agustín Codazzi—IGAC. Estudio General de Suelos y Zonificación de Tierras. Departamento de Antioquia. Tomo 2; Instituto Geografico Agustin Codazzi (IGAC): Bogotá, Colombia, 2007; pp. 664–672. [Google Scholar]
- Lindbo, D.L.; Stolt, M.H.; Vepraskas, M.J. Redoximorphic features. In Interpretation of Micromorphological Features of Soils and Regoliths; Stoops, G., Marcelino, V., Mees, F., Eds.; Elsevier: Amsterdam, The Netherlands, 2010; pp. 129–147. [Google Scholar]
- Espinal, S. Geografia Ecológica de Antioquia. Zonas de Vida; EALON—Universidad Nacional de Colombia: Medellin, Colombia, 1992; pp. 1–146. [Google Scholar]
- Heimsath, A.M.; Jungers, M.C. Processes, Transport, Deposition, and Landforms: Quantifying Creep. Treatise Geomorphol. 2013, 7, 138–151. [Google Scholar] [CrossRef]
- Carson, M.A.; Kirkby, M.J. Hillslope form and Process; Cambridge University Press: Cambridge, UK, 1972; pp. 1–476. [Google Scholar]
- Huggett, R. Fundamentals of Geomorphology, 4th ed.; Routledge: London, UK, 2016; pp. 1–578. [Google Scholar]
- Kirkby, M.J. Measurement and theory of soil creep. J. Geol. 1967, 75, 359–378. [Google Scholar] [CrossRef]
- Saunders, I.; Young, A. Rates of surface processes on slopes, slope retreat and denudation. Earth Surf. Process. Landf. 1983, 8, 473–501. [Google Scholar] [CrossRef]
- Parizek, E.; Woodruff, J. A Clarification of the Definition and Classification of Soil Creep. J. Geol. 1957, 65, 653–657. [Google Scholar] [CrossRef]
- Bond, W. Soil Physical Methods for Estimating Recharge-Part. 3: Basics of Recharge and Discharge Series; CSIRO Publishing: Collingwood, Australia, 1998; pp. 1–21. [Google Scholar]
- Chu, J.; Low, B.K.; Choa, V. Soil Improvement: Prefabricated Vertical Drain Techniques; Thomson Learning Asia: Singapore, 2003; pp. 1–341. [Google Scholar]
- Twarakavi, N.K.; Šimůnek, J.; Schaap, M.G. Can texture-based classification optimally classify soils with respect to soil hydraulics? Water Resour. Res. 2010, 46, W01501, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Twarakavi, N.K.; Sakai, M.; Šimůnek, J. An objective analysis of the dynamic nature of field capacity. Water Resour. Res. 2009, 45, W10410, 1–9. [Google Scholar] [CrossRef]
- Bedoya-Soto, J.M.; Aristizábal, E.; Carmona, A.M.; Poveda, G. Seasonal shift of the diurnal cycle of rainfall over Medellín’s valley, Central Andes of Colombia (1998–2005). Front. Earth Sci. 2019, 7, 92. [Google Scholar] [CrossRef]
- Vélez Otálvaro, M.V.; Vélez Upegui, J.I.; Carvajal Serna, L.F.; Ortiz Pimienta, C.; Cardona Orozco, Y.; Ramírez Rojas, M.I. CPA Ingeniería, Plan de Ordenación y Manejo de la Cuenca del río Aburra-Antioquia, Colombia; Universidad Nacional de Colombia: Medellín, Colombia, 2016; pp. 1–466. [Google Scholar]
- Gardner, W.R. Some steady state solutions of the unsaturated moisture flow equation with application to evaporation from a water table. Soil Sci. 1958, 85, 228–232. [Google Scholar] [CrossRef]
- Walker, J.; Bullen, F.; Williams, B.G. Ecohydrological changes in the Murray-Darling Basin: I. The number of trees cleared over two centuries. J. Appl. Ecol. 1993, 30, 265–273. [Google Scholar] [CrossRef]
- Vervoort, R.W.; van der Zee, R.W. Simulating the effect of capillary flux on the soil water balance in a stochastic ecohydrological framework. Water Resour. Res. 2008, 44, W08425. [Google Scholar] [CrossRef] [Green Version]
- ShokriKuehni, S.; Raaijmakers, B.; Kurz, T.; Or, D.; Helmig, R.; Shokri, N. Water Table Depth and Soil Salinization: From PoreScale Processes to FieldScale Responses. Water Resour. Res. 2020, 56. [Google Scholar] [CrossRef]
- Moreno, H.; Vélez, M.V.; Montoya, J.; Rhenals, R. La lluvia y los deslizamientos de tierra en Antioquia: Análisis de su ocurrencia en las escalas interanual, intra anual y diaria. Revista EIA 2006, 5, 59–69. [Google Scholar]
- Corominas, J.; Moya, J.; Ledesma, A.; Lloret, A.; Gili, J.A. Prediction of ground displacements and velocities from groundwater level changes at the Vallcebre landslide (Eastern Pyrenees, Spain). Landslides 2005, 2, 83–96. [Google Scholar] [CrossRef]
- Crosta, G. Regionalization of rainfall thresholds: An aid to landslide hazard evaluation. Environ. Geol. 1998, 35, 131–145. [Google Scholar] [CrossRef]
- Freeze, R. The Mechanism of Natural Ground-water Recharge and Discharge: 1. One-dimensional, Vertical, Unsteady, Unsaturated Flow above a Recharging or Discharging Groundwater Flow System. Water Resour. Res. 1969, 5, 153–171. [Google Scholar] [CrossRef]
- Finlayson, B. Field measurements of soil creep. Earth Surf. Process. Landf. 1981, 6, 35–48. [Google Scholar] [CrossRef]
- Imaizumi, F.; Sidle, R.C.; Togari-Ohta, A.; Shimamura, M. Temporal and spatial variation of infilling processes in a landslide scar in a steep mountainous region, Japan. Earth Surf. Process. Landf. 2015, 40, 642–653. [Google Scholar] [CrossRef]
- Crawford, M.M.; Bryson, L.S.; Woolery, E.W.; Wang, Z. Long-term landslide monitoring using soil-water relationships and electrical data to estimate suction stress. Eng. Geol. 2019, 251, 146–157. [Google Scholar] [CrossRef]
- Jahn, A. The soil creep on slopes in different altitudinal and ecological zones of Sudetes Mountains. Geogr. Ann. Ser. A Phys. Geogr. 1989, 71, 161–170. [Google Scholar] [CrossRef]
Plot 1 | Plot 2 | |
---|---|---|
Approximate slope (°) | 30 | 20 |
Lysimeter 1 depth (cm) | 40 | 20 |
Lysimeter 2 depth (cm) | 80 | 80 |
Lysimeter 1 volume (L) | 20 | 30 |
Lysimeter 2 volume (L) | 60 | 60 |
Runoff tank volume (L) | 60 | 60 |
Soil Moisture Condition | VWC Range (%) | Number of Data Points | Percentage |
---|---|---|---|
Sensor 1 (0.2 m depth) | |||
Saturation | 0.39–0.45 | 5 | 1% |
Partially saturated | 0.25–0.39 | 196 | 56% |
Field capacity | 0.21–0.25 | 21 | 6% |
Below Field capacity | 0.15–0.21 | 47 | 13% |
Wilting point | 0.08–0.15 | 84 | 24% |
Sensor 2 (0.4 m depth) | |||
Saturation | 0.38–0.40 | 2 | 0% |
Partially saturated | 0.36–0.38 | 3 | 1% |
Field capacity | 0.34–0.36 | 16 | 4% |
Below Field capacity | 0.19–0.34 | 233 | 55% |
Wilting point | 0.17–0.19 | 19 | 4% |
Hygroscopic point | 0.09–0.17 | 153 | 36% |
Sensor 3 (0.6 m depth) | |||
Saturation | 0.38–0.40 | 4 | 1% |
Partially saturated | 0.36–0.38 | 22 | 5% |
Field capacity | 0.34–0.36 | 21 | 5% |
Below Field capacity | 0.19–0.34 | 338 | 81% |
Wilting point | 0.17–0.19 | 13 | 3% |
Hygroscopic point | 0.09–0.17 | 21 | 5% |
Sensor 4 (0.8 m depth) | |||
Saturation | 0.38–0.40 | 17 | 4% |
Partially saturated | 0.36–0.38 | 61 | 15% |
Field capacity | 0.34–0.36 | 34 | 8% |
Below Field capacity | 0.19–0.34 | 136 | 32% |
Wilting point | 0.17–0.19 | 36 | 9% |
Hygroscopic point | 0.09–0.17 | 135 | 32% |
Campaign Number | Date |
---|---|
1 | 06/15/2019 |
2 | 07/20/2019 |
3 | 09/21/2019 |
4 | 10/19/2019 |
5 | 11/15/2019 |
6 | 12/13/2019 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pertuz-Paz, A.; Monsalve, G.; Loaiza-Úsuga, J.C.; Caballero-Acosta, J.H.; Agudelo-Vélez, L.I.; Sidle, R.C. Linking Soil Hydrology and Creep: A Northern Andes Case. Geosciences 2020, 10, 472. https://doi.org/10.3390/geosciences10110472
Pertuz-Paz A, Monsalve G, Loaiza-Úsuga JC, Caballero-Acosta JH, Agudelo-Vélez LI, Sidle RC. Linking Soil Hydrology and Creep: A Northern Andes Case. Geosciences. 2020; 10(11):472. https://doi.org/10.3390/geosciences10110472
Chicago/Turabian StylePertuz-Paz, Aleen, Gaspar Monsalve, Juan Carlos Loaiza-Úsuga, José Humberto Caballero-Acosta, Laura Inés Agudelo-Vélez, and Roy C. Sidle. 2020. "Linking Soil Hydrology and Creep: A Northern Andes Case" Geosciences 10, no. 11: 472. https://doi.org/10.3390/geosciences10110472
APA StylePertuz-Paz, A., Monsalve, G., Loaiza-Úsuga, J. C., Caballero-Acosta, J. H., Agudelo-Vélez, L. I., & Sidle, R. C. (2020). Linking Soil Hydrology and Creep: A Northern Andes Case. Geosciences, 10(11), 472. https://doi.org/10.3390/geosciences10110472