Intensity Reassessment of the 2017 Pohang Earthquake Mw = 5.4 (South Korea) Using ESI-07 Scale
Abstract
:1. Introduction
2. Geological and Tectonic Framework
3. 15 November 2017 Pohang Earthquake
4. Seismic Effects of Pohang Earthquake
4.1. Primary Effects
4.2. Secondary Effects
4.2.1. Liquefaction and Ground Settlement
4.2.2. Ground Cracks
4.2.3. Lateral Spreading
4.2.4. Rockfall
4.2.5. Water-Level Fluctuations
5. Estimation of ESI-07 Intensity and Comparison with KMA and MM Intensity Scales
6. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Michetti, A.M.; Esposito, E.; Guerrieri, L.; Porfido, S.; Serva, L.; Tatevossian, R.; Vittori, E.; Audemard, F.; Azuma, T.; Clague, J.; et al. Environmental Seismic Intensity Scale 2007—ESI 2007. In Memorie Descrittive Della Carta Geologica d’Italia, Servizio Geologico d’Italia—Dipartimento Difesa del Suolo; APAT: Roma, Italy, 2007; Volume 74, pp. 7–54. Available online: http://www.isprambiente.gov.it/en/publications/technical-periodicals/descriptive-memories-of-the-geological-map-of/intensity-scale-esi-2007?set_language=en (accessed on 8 July 2020).
- Michetti, A.M.; Esposito, E.; Gurpinar, A.; Mohammadioun, B.; Mohammadioun, J.; Porfido, S.; Rogozhin, E.; Serva, L.; Tatevossian, R.; Vittori, E.; et al. The INQUA scale: An innovative approach for assessing earthquake intensities based on seismically induced ground effects in natural environment. Sp. Pap. Mem. Descr. Carta Geol. da’ Ital. 2004, LXVII, 118. [Google Scholar]
- Porfido, S.; Esposito, E.; Guerrieri, L.; Vittori, E.; Tranfaglia, G.; Pece, R. Seismically induced ground effects of the 1805, 1930 and 1980 earthquakes in the Southern Apennines, Italy. Boll. Della Soc. Geol. Ital. 2007, 126, 333–346. [Google Scholar]
- Serva, L.; Esposito, E.; Guerrieri, L.; Porfido, S.; Vittori, E.; Comerci, V. Environmental effects from some historical earthquakes in Southern Apennines (Italy) and macroseismic intensity assessment. Contribution to INQUA EEE scale project. Quat. Int. 2007, 173–174, 30–44. [Google Scholar] [CrossRef]
- Serva, L.; Vittori, E.; Comerci, V.; Esposito, E.; Guerrieri, L.; Michetti, A.M.; Mohammadioun, B.; Mohammadioun, G.C.; Porfido, S.; Tatevossian, R.E. Earthquake Hazard and the Environmental Seismic Intensity (ESI) Scale. Pure Appl. Geophys. 2015, 173, 1479–1515. [Google Scholar] [CrossRef]
- Papathanassiou, G.; Valkaniotis, S.; Ganas, A.; Grendas, N.; Kollia, E. The November 17th, 2015 Lefkada (Greece) strike-slip earthquake: Field mapping of generated failures and assessment of macroseismic intensity ESI-07. Eng. Geol. 2017, 220, 13–30. [Google Scholar] [CrossRef]
- Guerrieri, L.; Tatevossian, R.; Vittori, E.; Comerci, V.; Esposito, E.; Michetti, A.M.; Porfido, S.; Serva, L. Earthquake environmental effects (EEE) and intensity assessment: The INQUA scale project. Boll. Soc. Geol. Ital. 2007, 126, 375. [Google Scholar]
- Tatevossian, R.E.; Rogozhin, E.A.; Arefiev, S.S.; Ovsyuchenko, A.N. Earthquake intensity assessment based on environmental effects: Principles and case studies. Geol. Soc. Lond. 2009, 316, 73–91. [Google Scholar] [CrossRef]
- Ota, Y.; Azuma, T.; Lin, Y.N.N. Application of the INQUA Environmental Seismic Intensity scale to recent earthquakes in Japan and Taiwan. In Paleoseismology: Historical and Prehistorical Records of Earthquake Ground Effects for Seismic Hazard Assessment; Reicherter, K., Michetti, A.M., Silva, P.G., Eds.; Geological Society London Special Publications: London, UK, 2009; Volume 316, pp. 55–71. [Google Scholar]
- Audemard, F.; Azuma, T.; Baiocco, F.; Baize, S.; Blumetti, A.M.; Brustia, E.; Clague, J.; Comerci, V.; Esposito, E.; Guerrieri, L.; et al. Earthquake Environmental Effects for Seismic Hazard Assessment: The ESI Intensity Scale and the EEE Catalogue; ISPRA: Rome, Italy, 2015; Volume 97, ISBN 978-88-9311-007-5.
- Ali, Z.; Qaisar, M.; Mahmood, T.; Shah, M.A.; Iqbal, T.; Serva, L.; Michetti, A.M.; Burton, P.W. The Muzaffarabad, Pakistan earthquake of 8 October 2005: Surface faulting, environmental effects, and macroseismic intensity. In Paleoseismology: Historical and Prehistorical Records of Earthquake Ground Effects for Seismic Hazard Assessment; Reicherter, K., Michetti, A.M., Silva, P.G., Eds.; Geological Society London Special Publications: London, UK, 2009; Volume 316, pp. 155–172. [Google Scholar]
- Lekkas, E. The 12 May 2008 Mw 7.9 Wenchuan, China, Earthquake: Macroseismic Intensity Assessment using the EMS-98 and ESI 2007 Scales and their correlation with the geological structure. Bull. Seismol. Soc. Am. 2010, 100, 2791–2804. [Google Scholar] [CrossRef]
- Papanikolaou, I.D. Uncertainty in intensity assignment and attenuation relationships: How seismic hazard maps can benefit from the implementation of the Environmental Seismic Intensity scale (ESI 2007). Quat. Int. 2011, 242, 42–51. [Google Scholar] [CrossRef]
- Dowrick, D.J.; Hancox, G.T.; Perrin, N.D.; Dellow, G.D. The Modified Mercalli intensity scale. Bull. N. Z. Soc. Earthq. Eng. 2008, 41, 193–205. [Google Scholar] [CrossRef]
- Grünthal, G. European Macroseismic Scale 1998; European Seismological Commission (ESC): Valletta, Malta, 1998. [Google Scholar]
- Korean Meteorological Administration. KMA Report on Pohang Earthquake (Korean); Korean Meteorological Administration: Seoul, Korea, 2018; pp. 1–41. [Google Scholar]
- Papanikolaou, I.; Melaki, M. The Environmental Seismic Intensity Scale (ESI 2007) in Greece, addition of new events and its relationship with magnitude in Greece and the Mediterranean; preliminary attenuation relationships. Quat. Int. 2017, 451, 37–55. [Google Scholar] [CrossRef]
- Guerrieri, L.; Blumetti, A.M.; Esposito, E.; Michetti, A.M.; Porfido, S.; Serva, L.; Tondi, E.; Vittori, E. Capable faulting, environmental effects and seismic landscape in the area affected by the 1997 Umbria–Marche (Central Italy) seismic sequence. Tectonophysics 2009, 476, 269–281. [Google Scholar] [CrossRef]
- Comerci, V.; Vittori, E.; Blumetti, A.M.; Brustia, E.; Di Manna, P.; Guerrieri, L.; Lucarini, M.; Serva, L. Environmental effects of the December 28, 1908, Southern Calabria–Messina (Southern Italy) earthquake. Nat. Hazards 2015, 76, 1849–1891. [Google Scholar] [CrossRef]
- Ferrario, M.F.; Serva, L.; Bonadeo, L. Assessing the Reliability of Earthquake Environmental Effects in Historical Events: Insights from the Southern Apennines, Italy. Geosciences 2020, 10, 332. [Google Scholar] [CrossRef]
- Papanikolaou, I.D.; Papanikolaou, D.I.; Lekkas, E.L. Advances and limitations of the Environmental Seismic Intensity scale (ESI 2007) regarding near-field and far-field effects from recent earthquakes in Greece: Implications for the seismic hazard assessment. Geol. Soc. Lond. 2009, 316, 11–30. [Google Scholar] [CrossRef]
- Sanchez, J.J.; Maldonado, R.F. Application of the ESI 2007 scale to two large earthquakes: South Island, New Zealand (2010 Mw 7.1), and Tohoku, Japan (2011 Mw 9.0). Bull. Seismol. Soc. Am. 2016, 106, 1151–1161. [Google Scholar] [CrossRef]
- King, T.R.; Quigley, M.C.; Clark, D. Earthquake environmental effects produced by the Mw 6.1, 20th May 2016 Petermann earthquake, Australia. Tectonophysics 2018, 747, 357–372. [Google Scholar] [CrossRef]
- Nappi, R.; Gaudiosi, G.; Alessio, G.; De Lucia, M.; Porfido, S. The environmental effects of the 1743 Salento earthquake (Apulia, southern Italy): A contribution to seismic hazard assessment of the Salento Peninsula. Nat. Hazards 2017, 86, 295–324. [Google Scholar] [CrossRef] [Green Version]
- Huayong, N.; Hua, G.; Yanchao, G.; Blumetti, A.M.; Comerci, V.; Di Manna, P.; Guerrieri, L.; Vittori, E. Comparison of Earthquake Environmental Effects and ESI intensities for recent seismic events in different tectonic settings: Sichuan (SW China) and Central Apennines (Italy). Eng. Geol. 2019, 258, 105149. [Google Scholar] [CrossRef]
- Porfido, S.; Alessio, G.; Gaudiosi, G.; Nappi, R. New Perspectives in the Definition/Evaluation of Seismic Hazard through Analysis of the Environmental Effects Induced by Earthquakes. Geosciences 2020, 10, 58. [Google Scholar] [CrossRef] [Green Version]
- Grützner, C.; Walker, R.; Ainscoe, E.; Elliott, A.; Abdrakhmatov, K. Earthquake Environmental Effects of the 1992 MS7. 3 Suusamyr Earthquake, Kyrgyzstan, and Their Implications for Paleo-Earthquake Studies. Geosciences 2019, 9, 271. [Google Scholar] [CrossRef] [Green Version]
- Chunga, K.; Livio, F.; Mulas, M.; Ochoa-Cornejo, F.; Besenzon, D.; Ferrario, M.F.; Michetti, A.M. Earthquake Ground Effects and Intensity of the 16 April 2016 Mw 7.8 Pedernales, Ecuador, Earthquake: Implications for the Source Characterization of Large Subduction Earthquakes. Bull. Seismol. Soc. Am. 2018, 108, 3384–3397. [Google Scholar] [CrossRef]
- Caccavale, M.; Sacchi, M.; Spiga, E.; Porfido, S. The 1976 Guatemala Earthquake: ESI Scale and Probabilistic/Deterministic Seismic Hazard Analysis Approaches. Geosciences 2019, 9, 403. [Google Scholar] [CrossRef] [Green Version]
- Naik, S.P.; Mohanty, A.; Porfido, S.; Tuttle, M.; Gwon, O.; Kim, Y.S. Intensity estimation for the 2001 Bhuj earthquake, India on ESI-07 scale and comparison with historical 16th June 1819 Allah Bund earthquake: A test of ESI-07 application for intraplate earthquakes. Quat. Int. 2020, 536, 127–143. [Google Scholar] [CrossRef]
- Choi, J.H.; Kim, Y.S.; Choi, S.J. Identification of a suspected Quaternary fault in eastern Korea: Proposal for a paleoseismic research procedure for the mapping of active faults in Korea. J. Asian Earth Sci. 2015, 113, 897–908. [Google Scholar] [CrossRef]
- Son, M.; Song, C.W.; Kim, M.C.; Cheon, Y.; Cho, H.; Sohn, Y.K. Miocene tectonic evolution of the basins and fault systems, SE Korea: Dextral, simple shear during the East Sea (Sea of Japan) opening. J. Geol. Soc. 2015, 172, 664–680. [Google Scholar] [CrossRef]
- Naik, S.P.; Kim, Y.-S.; Kim, T.; Su-Ho, J. Geological and Structural Control on Localized Ground Effects within the Heunghae Basin during the Pohang Earthquake (MW 5.4, 15th November 2017), South Korea. Geosciences 2019, 9, 173. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.; Stepashko, A.A.; Ren, J. The Cretaceous climax of compression in Eastern Asia: Age 87–89 Ma (late Turonian/Coniacian), Pacific cause, continental consequences. Cretac. Res. 2015, 55, 262–284. [Google Scholar] [CrossRef]
- Choi, J.H.; Ko, K.; Gihm, Y.S.; Cho, C.S.; Lee, H.; Song, S.G.; Bang, E.S.; Lee, H.J.; Bae, H.K.; Kim, S.W.; et al. Surface Deformations and Rupture Processes Associated with the 2017 Mw 5.4 Pohang, Korea, Earthquake. Bull. Seismol. Soc. Am. 2019, 109, 756–769. [Google Scholar] [CrossRef]
- Kim, Y.S.; Park, J.Y. Cenozoic deformation history of the area around Yangnam-Yangbuk, SE Korea and its tectonic significance. J. Asian Earth Sci. 2006, 26, 1–20. [Google Scholar] [CrossRef]
- Gihm, Y.S.; Kim, S.W.; Ko, K.; Choi, J.H.; Bae, H.; Hong, P.S.; Lee, Y.; Lee, H.; Jin, K.; Choi, S.J.; et al. Paleoseismological implications of liquefaction-induced structures caused by the 2017 Pohang earthquake. Geosci. J. 2018, 22, 871–880. [Google Scholar] [CrossRef]
- Kang, S.; Kim, B.; Bae, S.; Lee, H.; Kim, M. Earthquake-Induced Ground Deformations in the Low-Seismicity Region: A Case of the 2017 M5.4 Pohang, South Korea, Earthquake. Earthq. Spectra 2019, 35, 1235–1260. [Google Scholar] [CrossRef]
- Grützner, C.; Barba, S.; Papanikolaou, I.; Pérez López, R. Earthquake geology: Science, society and critical facilities. Ann. Geophys. 2013, 56, S0683. [Google Scholar] [CrossRef]
- Heddar, A.; Beldjoudi, H.; Authemayou, C.; SiBachir, R.; Yelles-Chaouche, A.; Boudiaf, A. Use of the ESI-2007 scale to evaluate the 2003 Boumerdès earthquake (North Algeria). Ann. Geophys. 2016, 59, 0211. [Google Scholar]
- Tuttle, M.P.; Hartleb, R.; Wolf, L.; Mayne, P.W. Paleoliquefaction Studies and the Evaluation of Seismic Hazard. Geosciences 2019, 9, 311. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naik, S.P.; Gwon, O.; Porfido, S.; Park, K.; Jin, K.; Kim, Y.-S.; Kyung, J.-B. Intensity Reassessment of the 2017 Pohang Earthquake Mw = 5.4 (South Korea) Using ESI-07 Scale. Geosciences 2020, 10, 471. https://doi.org/10.3390/geosciences10110471
Naik SP, Gwon O, Porfido S, Park K, Jin K, Kim Y-S, Kyung J-B. Intensity Reassessment of the 2017 Pohang Earthquake Mw = 5.4 (South Korea) Using ESI-07 Scale. Geosciences. 2020; 10(11):471. https://doi.org/10.3390/geosciences10110471
Chicago/Turabian StyleNaik, Sambit Prasanajit, Ohsang Gwon, Sabina Porfido, Kiwoong Park, Kwangmin Jin, Young-Seog Kim, and Jai-Bok Kyung. 2020. "Intensity Reassessment of the 2017 Pohang Earthquake Mw = 5.4 (South Korea) Using ESI-07 Scale" Geosciences 10, no. 11: 471. https://doi.org/10.3390/geosciences10110471
APA StyleNaik, S. P., Gwon, O., Porfido, S., Park, K., Jin, K., Kim, Y. -S., & Kyung, J. -B. (2020). Intensity Reassessment of the 2017 Pohang Earthquake Mw = 5.4 (South Korea) Using ESI-07 Scale. Geosciences, 10(11), 471. https://doi.org/10.3390/geosciences10110471