Technogenic Magnetic Particles in Soils and Ecological–Geochemical Assessment of the Soil Cover of an Industrial City in the Ural, Russia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description and Sampling Strategy
2.2. Analytical Methods
2.3. Ecological–Geochemical Assessment
- Coefficient of enrichment–impoverishment of the magnetic phase in heavy metals (KKm.f.):
- Geo-accumulation Index (Igeo) [127]:
- Coefficient of concentration relative to the background (KKB) [128]:
- Coefficient of concentration relative to the clarke of soils of residential landscapes according to V.A. Alekseenko (KKA) [129]:
- Pollution load index (PLI) [130]:
- Silicate iron (Fes):
- Crystallized iron compounds (Fec) [126]:
- Schwertman’s criterion (SC) [131]:
- The degree of development of oxidogenesis (DO) [132]:
3. Results
3.1. Soil Morphology
3.2. Soil Granulometry
3.3. Selected Chemical Data
3.4. Mineralogical Composition
3.4.1. Forms of Iron Compounds in Soil
3.4.2. Magnetic Susceptibility
3.4.3. Morphology, Mineralogical and Elemental Chemical Composition of Magnetic Phase Particles according to ESEM/EDS Results
3.4.4. Mineralogical Composition of the Magnetic Phase according to the Data of Mössbauer Spectroscopy
3.4.5. Elemental Chemical Composition of Soil and Magnetic Phases of Soil
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Strzyszcz, Z.; Magiera, T.; Heller, F. The influence of industrial immissions on the magnetic susceptibility of soils in Upper Silesia. Studia Geophys. Geod. 1996, 40, 276–286. [Google Scholar] [CrossRef]
- Schmidt, A.; Yarnold, R.; Hill, M.; Ashmore, M. Magnetic susceptibility as proxy for heavy metal pollution: A site study. J. Geochem. Explor. 2005, 85, 109–117. [Google Scholar] [CrossRef]
- Bortnikova, S.B.; Raputa, V.F.; Devyatova, A.Y.; Yudakhin, F.N. Methods of data analysis of snow cover pollution in the zones of influence of industrial enterprises (for example, Novosibirsk). Geoecol. Eng. Geol. Hydrogeol. Geocryol. 2009, 6, 515–525. (In Russian) [Google Scholar]
- Evdokimova, G.; Kalabin, G.; Mozgova, N. Contents and toxicity of heavy metals in soils of the zone affected by aerial emissions from the Severonikel Enterprise. Eurasian Soil Sci. 2011, 44, 237–244. [Google Scholar] [CrossRef]
- Chikeneva, I. Consequences of the impact of heavy metals on the environment in the zone of impact of industrial enterprises. Sci. Method Electr. Mag. Concept 2013, 12, 66–70. (In Russian) [Google Scholar]
- Bi, C.; Chen, Y.; Zhao, Z.; Li, Q.; Zhou, Q.; Ye, Z.; Ge, X. Characteristics, sources and health risks of toxic species (PCDD/Fs, PAHs and heavy metals) in PM2. 5 during fall and winter in an industrial area. Chemosphere 2020, 238, 124620. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Ma, J.; Ruan, X.; Chen, X. Compound health risk assessment of cumulative heavy metal exposure: A case study of a village near a battery factory in Henan Province, China. Environ. Sci. Process. Impacts 2020, 22, 1408–1422. [Google Scholar] [CrossRef]
- Tang, J.; He, M.; Luo, Q.; Adeel, M.; Jiao, F. Heavy Metals in Agricultural Soils from a Typical Mining City in China: Spatial Distribution, Source Apportionment, and Health Risk Assessment. Polish J. Environ. Stud. 2020, 29, 1379–1390. [Google Scholar] [CrossRef]
- Kim, W.; Doh, S.-J.; Park, Y.-H.; Yun, S.-T. Two-year magnetic monitoring in conjunction with geochemical and electron microscopic data of roadside dust in Seoul, Korea. Atmos. Environ. 2007, 41, 7627–7641. [Google Scholar] [CrossRef]
- Ignatenko, O.V.; Mescherova, N.A. Assessment of snow cover pollution by heavy metals in the residential area of Bratsk. In Proceedings of the II Scientific and Practical Conference with International Participation Ecological and Biological Problems of Siberia and Adjacent Territories, Nizhnevartovsk, Russia, 30 March 2011; pp. 236–239. (In Russian). [Google Scholar]
- Sorokina, O.I.; Kosheleva, N.E.; Kasimov, N.S.; Golovanov, D.L.; Bazha, S.N.; Dorzhgotov, D.; Enkh-Amgalan, S. Heavy metals in the air and snow cover of Ulan Bator. Geogr. Nat. Resour. 2013, 3, 159–170. (In Russian) [Google Scholar] [CrossRef]
- Medvedev, I.F.; Derevyagin, S.S. Heavy Metals in Ecosystems; Rakurs: Saratov, Russia, 2017; p. 178. (In Russian) [Google Scholar]
- Lee, P.-K.; Kang, M.-J.; Yu, S.; Kwon, Y.K. Assessment of trace metal pollution in roof dusts and soils near a large Zn smelter. Sci. Total Environ. 2020, 713, 136536. [Google Scholar] [CrossRef]
- Li, J.; Wang, G.; Liu, F.; Cui, L.; Jiao, Y. Source Apportionment and Ecological-Health Risks Assessment of Heavy Metals in Topsoil Near a Factory, Central China. Expo. Health 2020. [Google Scholar] [CrossRef]
- Shamsaddin, H.; Jafari, A.; Jalali, V.; Schulin, R. Spatial distribution of copper and other elements in the soils around the Sarcheshmeh copper smelter in southeastern Iran. Atmos. Pollut. Res. 2020, 11, 1681–1691. [Google Scholar] [CrossRef]
- Fedorova, A.I.; Shunelko, E.V. Contamination of the surface soil horizons of Voronezh with heavy metals. VSU Bulletin. Ser. Geogr. Geoecol. 2003, 1, 74–82. (In Russian) [Google Scholar]
- Taati, A.; Salehi, M.H.; Mohammadi, J.; Mohajer, R.; Díez, S. Pollution assessment and spatial distribution of trace elements in soils of Arak industrial area, Iran: Implications for human health. Environ. Res. 2020, 187, 109577. [Google Scholar] [CrossRef]
- Xu, Z.; Mi, W.; Mi, N.; Fan, X.; Zhou, Y.; Tian, Y. Characteristics and sources of heavy metal pollution in desert steppe soil related to transportation and industrial activities. Environ. Sci. Pollut. Res. 2020, 27, 38835–38848. [Google Scholar] [CrossRef]
- Yakovlev, E.Y.; Zykova, E.N.; Zykov, S.B.; Malkov, A.V.; Bazhenov, A.V. Heavy metals and radionuclides distribution and environmental risk assessment in soils of the Severodvinsk industrial district, NW Russia. Environ. Earth Sci. 2020, 79, 215–233. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, L.; Xiao, T.; Chen, Y.; Beiyuan, J.; She, J.; Zhou, Y.; Yin, M.; Liu, J.; Liu, Y. Legacy of multiple heavy metal (loid) s contamination and ecological risks in farmland soils from a historical artisanal zinc smelting area. Sci. Total Environ. 2020, 720, 137541. [Google Scholar] [CrossRef]
- Bourliva, A.; Kantiranis, N.; Papadopoulou, L.; Aidona, E.; Christophoridis, C.; Kollias, P.; Evgenakis, M.; Fytianos, K. Seasonal and spatial variations of magnetic susceptibility and potentially toxic elements (PTEs) in road dusts of Thessaloniki city, Greece: A one-year monitoring period. Sci. Total Environ. 2018, 639, 417–427. [Google Scholar] [CrossRef] [PubMed]
- Vladimirov, S.N.; Skorik, A.S. The influence of motor transport and industry on the content of heavy metals in the soils of Tula. Actual Dir. Sci. Res. XXI Century Theory Pract. 2014, 2, 332–335. (In Russian) [Google Scholar]
- Fang, H.; Gui, H.; Yu, H.; Li, J.; Wang, M.; Jiang, Y.; Wang, C.; Chen, C. Characteristics and source identification of heavy metals in abandoned coal-mining soil: A case study of Zhuxianzhuang coal mine in Huaibei coalfield (Anhui, China). Hum. Ecol. Risk Assess. Int. J. 2020, 1–16. [Google Scholar] [CrossRef]
- Laniyan, T.A.; Adewumi, A.J. Evaluation of Contamination and Ecological Risk of Heavy Metals Associated with Cement Production in Ewekoro, Southwest Nigeria. J. Health Pollut. 2020, 10, 200306. [Google Scholar] [CrossRef] [Green Version]
- Eluyera, I.M.; Tukura, B.W. Assessment of Heavy Metals in Soil and Vegetables Grown around some Automobile Workshops in Federal Capital Territory Abuja, Nigeria. Chem. Res. J. 2020, 5, 162–173. [Google Scholar]
- Kapička, A.; Petrovský, E.; Ustjak, S.; Macháčková, K. Proxy mapping of fly-ash pollution of soils around a coal-burning power plant: A case study in the Czech Republic. J. Geochem. Explor. 1999, 66, 291–297. [Google Scholar] [CrossRef]
- Matveenko, T.I.; Molchanova, M.A.; Terenina, I.B. Heavy metals in the soil cover of the zone of influence of CHPP-3. Bull. Pac. State Univ. 2008, 1, 223–230. (In Russian) [Google Scholar]
- Sharma, A.P.; Tripathi, B. Magnetic mapping of fly-ash pollution and heavy metals from soil samples around a point source in a dry tropical environment. Environ. Monit. Assess. 2008, 138, 31–39. [Google Scholar] [CrossRef]
- Osipova, N.; Yazikov, E.; Tarasova, N.; Osipov, K. Heavy metals in soils in the areas affected by coal enterprises and their impact on public health. Bezop. Tekhnosfere Saf. Techno Sphere 2015, 2, 16–26. [Google Scholar] [CrossRef]
- Derbentseva, A.M.; Popova, E.A.; Brikmans, A.V.; Cherentsova, A.A.; Mayorova, L.P.; Matveenko, T.I. The ecological state of the territory of the Shtykovskaya technogenic-industrial system. Sib. Ecol. J. 2016, 23, 793–804. [Google Scholar] [CrossRef]
- Medunić, G.; Kuharić, Ž.; Krivohlavek, A.; Đuroković, M.; Dropučić, K.; Rađenović, A.; Lužar Oberiter, B.; Krizmanić, A.; Bajramović, M. Selenium, sulphur, trace metal, and BTEX levels in soil, water, and lettuce from the Croatian Raša Bay contaminated by superhigh-organic-sulphur coal. Geosciences 2018, 8, 408. [Google Scholar] [CrossRef] [Green Version]
- Krylov, D.A. Heavy metals in thermal power plant fly ash. Energy Econ. Technol. Ecol. 2010, 4, 44–50. (In Russian) [Google Scholar]
- Bilguun, U.; Namkhainyambuu, D.; Purevsuren, B.; Soyol-Erdene, T.-O.; Tuuguu, E.; Daichaa, D. Sources, Enrichment, and Geochemical Fractions of Soil Trace Metals in Ulaanbaatar, Mongolia. Arch. Environ. Contam. Toxicol. 2020, 79, 219–232. [Google Scholar] [CrossRef]
- Prokhorova, N.V. Biogeochemical effect of automobile transport in urban environment conditions. Samara State Univ. Bull. 2005, 5, 188–199. (In Russian) [Google Scholar]
- Adimalla, N.; Chen, J.; Qian, H. Spatial characteristics of heavy metal contamination and potential human health risk assessment of urban soils: A case study from an urban region of South India. Ecotoxicol. Environ. Saf. 2020, 194, 110406. [Google Scholar] [CrossRef] [PubMed]
- Akintunde, E.A.; Ore, O.T.; Durodola, S.S.; Sharaibi, J.E.; Adegbite, O.B. Contamination Assessment of Potentially Toxic Metals in Road-Side Surface Soils Along Iwo-Ibadan Expressway, Nigeria. Surf. Sci. 2020, 5, 1–5. [Google Scholar] [CrossRef]
- Bartkowiak, A. The accumulation of selected heavy metals in soils in the vicinity of a busy road. Soil Sci. Annu. 2020, 71, 118–124. [Google Scholar] [CrossRef]
- Dogra, N.; Sharma, M.; Sharma, A.; Keshavarzi, A.; Kaur, M.; Bhardwaj, R.; Thukral, A.K.; Kumar, V. Pollution assessment and spatial distribution of roadside agricultural soils: A case study from India. Int. J. Environ. Health Res. 2020, 30, 146–159. [Google Scholar] [CrossRef]
- Chen, J.; Li, T.; Wang, L. Soil Heavy Metal Pollution in the soil of Railway Traffic: A Mini-review. Acad. J. Agric. Life Sci. 2020, 1, 1–8. [Google Scholar] [CrossRef]
- Kazimov, M.A.; Geyushova, N.D.; Alieva, N.V. Comparative assessment of the anthropogenic load of heavy metals on the environment of urban agglomeration. Biomedicine 2019, 2, 22–28. (In Russian) [Google Scholar]
- Sazonova, O.V.; Ryazanova, T.K.; Tupikova, D.S.; Sudakova, T.V.; Toropova, N.M.; Vistyak, L.N. Comparative characteristics of anthropogenic pollution of the snow cover of the territory of a large industrial center under the influence of various sources of pollution. Popul. Health Environ. 2019, 3, 36–42. (In Russian) [Google Scholar]
- Rolka, E.; Zolnowski, A.C.; Kozlowska, K.A. Assessment of the content of trace elements in soils and roadside vegetation in the vicinity of some gasoline stations in Olsztyn (Poland). J. Elem. 2020, 25, 549–563. [Google Scholar] [CrossRef]
- Rolka, E.; Żołnowski, A.C.; Sadowska, M.M. Assessment of Heavy Metal Content in Soils Adjacent to the DK16-Route in Olsztyn (North-Eastern Poland). Pol. J. Environ. Stud. 2020, 29, 4303–4311. [Google Scholar] [CrossRef]
- Seghier, T.B.; Bouhadjera, K. Pollution Assessment of Heavy Metals in Roadside Agricultural Soils. Pol. J. Environ. Stud. 2020, 29, 2855–2863. [Google Scholar] [CrossRef]
- P Rakhmatov, M.N.; Maslov, V.A.; Abdullaev, S.F. Distribution dynamics of heavy metals and arsenic in dust aerosol and soils of Northern Tajikistan. Chem. Saf. 2019, 3, 78–93. (In Russian) [Google Scholar]
- Acar, R.U.; Özkul, C. Investigation of heavy metal pollution in roadside soils and road dusts along the Kütahya–Eskişehir Highway. Arab. J. Geosci. 2020, 13, 1–11. [Google Scholar] [CrossRef]
- Szwalec, A.; Mundała, P.; Kędzior, R.; Pawlik, J. Monitoring and assessment of cadmium, lead, zinc and copper concentrations in arable roadside soils in terms of different traffic conditions. Environ. Monit. Assess. 2020, 192, 155. [Google Scholar] [CrossRef] [Green Version]
- Ladonin, D.V.; Mikhailova, A.P. Heavy metals and arsenic in soils and street dust of the South-Eastern administrative district of Moscow: Results of long-term research. Pochvovedenie 2020, 11, 1401–1411. (In Russian) [Google Scholar]
- Magiera, T.; Jabłońska, M.; Strzyszcz, Z.; Rachwal, M. Morphological and mineralogical forms of technogenic magnetic particles in industrial dusts. Atmos. Environ. 2011, 45, 4281–4290. [Google Scholar] [CrossRef]
- Bourliva, A.; Papadopoulou, L.; Aidona, E.; Giouri, K.; Simeonidis, K.; Vourlias, G. Characterization and geochemistry of technogenic magnetic particles (TMPs) in contaminated industrial soils: Assessing health risk via ingestion. Geoderma 2017, 295, 86–97. [Google Scholar] [CrossRef]
- Dekkers, M.; Pietersen, H.S. Magnetic properties of low-Ca fly ash: A rapid tool for Fe-assessment and a survey for potentially hazardous elements. MRS Online Proc. Libr. Arch. 1992, 245, 37–47. [Google Scholar] [CrossRef]
- Magiera, T.; Gołuchowska, B.; Jabłońska, M. Technogenic magnetic particles in alkaline dusts from power and cement plants. Water Air Soil Pollut. 2013, 224, 1389. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.; Li, Z.; Bi, X.; Han, Z.; Yu, G. Response of magnetic properties to heavy metal pollution in dust from three industrial cities in China. J. Hazard. Mater. 2013, 246, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Vodyanitskii, Y.N. Natural and technogenic compounds of heavy metals in soils. Eurasian Soil Sci. 2014, 47, 255–265. [Google Scholar] [CrossRef]
- Rachwał, M.; Magiera, T.; Wawer, M. Coke industry and steel metallurgy as the source of soil contamination by technogenic magnetic particles, heavy metals and polycyclic aromatic hydrocarbons. Chemosphere 2015, 138, 863–873. [Google Scholar] [CrossRef]
- Wawer, M.; Magiera, T.; Ojha, G.; Appel, E.; Kusza, G.; Hu, S.; Basavaiah, N. Traffic-related pollutants in roadside soils of different countries in Europe and Asia. Water Air Soil Pollut. 2015, 226, 216. [Google Scholar] [CrossRef]
- Lu, S.; Yu, X.; Chen, Y. Magnetic properties, microstructure and mineralogical phases of technogenic magnetic particles (TMPs) in urban soils: Their source identification and environmental implications. Sci. Total Environ. 2016, 543, 239–247. [Google Scholar] [CrossRef]
- Szuszkiewicz, M.M.; Łukasik, A.; Magiera, T.; Szuszkiewicz, M. Technogenic magnetic particles of topsoil from different sources of emission—A case study from upper silesian conurbation, Poland. In Proceedings of the Fire and Environmental Safety Engineering 2018 (FESE 2018); EDP Sciences: Les Ulis, France, 2018; Volume 247, p. 7. [Google Scholar]
- Menshikova, E.A.; Osovetsky, B.M. Magnetic spherules of natural and technogenic sediments. Mod. Probl. Sci. Educ. 2015, 1, 1829. (In Russian) [Google Scholar]
- Yu, X.; Lu, S. Multiscale correlations of iron phases and heavy metals in technogenic magnetic particles from contaminated soils. Environ. Pollut. 2016, 219, 19–27. [Google Scholar] [CrossRef]
- Hulett, L.; Weinberger, A.; Northcutt, K.; Ferguson, M. Chemical species in fly ash from coal-burning power plants. Science 1980, 210, 1356–1358. [Google Scholar] [CrossRef] [PubMed]
- Hansen, L.D.; Silberman, D.; Fisher, G.L. Crystalline components of stack-collected, size-fractionated coal fly ash. Environ. Sci. Technol. 1981, 15, 1057–1062. [Google Scholar] [CrossRef]
- Vassilev, S.V.; Vassileva, C.G.; Karayigit, A.I.; Bulut, Y.; Alastuey, A.; Querol, X. Phase–mineral and chemical composition of composite samples from feed coals, bottom ashes and fly ashes at the Soma power station, Turkey. Int. J. Coal Geol. 2005, 61, 35–63. [Google Scholar] [CrossRef]
- Yazikov, E.G.; Talovskaya, A.V.; Zhornyak, L.V. Assessment of the Ecological and Geochemical State of the Territory of Tomsk according to the Study of Dust Aerosols and Soils; Publishing House of the Tomsk Polytechnic University: Tomsk, Russia, 2010; p. 264. (In Russian) [Google Scholar]
- Blaha, U.; Sapkota, B.; Appel, E.; Stanjek, H.; Rösler, W. Micro-scale grain-size analysis and magnetic properties of coal-fired power plant fly ash and its relevance for environmental magnetic pollution studies. Atmos. Environ. 2008, 42, 8359–8370. [Google Scholar] [CrossRef]
- Babanin, V.; Trukhin, V.; Karpachevskii, L.; Ivanov, A.; Morozov, V. Soil Magnetism; YAGTU: Yaroslavl, Russia, 1995; p. 223. (In Russian) [Google Scholar]
- Dearing, J.A.; Hay, K.L.; Baban, S.M.J.; Huddleston, A.S.; Wellington, E.M.H.; Loveland, P.J. Magnetic susceptibility of soil: An evaluation of conflicting theories using a national data set. Geophys. J. Int. 1996, 127, 728–734. [Google Scholar] [CrossRef] [Green Version]
- Maher, B.A. Magnetic properties of modern soils and Quaternary loessic paleosols: Paleoclimatic implications. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1998, 137, 25–54. [Google Scholar] [CrossRef] [Green Version]
- Strzyszcz, Z. Ferromagnetic properties of forest soils being under influence of industrial pollution. In Air Pollution and Forest Decline; Eidgenössische Anstalt für das Forstliche Versuchswesen: Birmensdorf, Switzerland, 1989; pp. 201–207. [Google Scholar]
- Strzyszcz, Z. Magnetic susceptibility of soils in the areas influenced by industrial emissions. In Soil Monitoring; Springer: Berlin/Heidelberg, Germany, 1993; pp. 255–269. [Google Scholar]
- Georgeaud, V.M.; Rochette, P.; Ambrosi, J.P.; Vandamme, D.; Williamson, D. Relationship between heavy metals and magnetic properties in a large polluted catchment: The Etang de Berre (South of France). Phys. Chem. Earth 1997, 22, 211–214. [Google Scholar] [CrossRef]
- Strzyszcz, Z.; Magiera, T. Magnetic susceptibility and heavy metals contamination in soils of southern Poland. Phys. Chem. Earth 1998, 23, 1127–1131. [Google Scholar] [CrossRef]
- Petrovský, E.; Kapička, A.; Jordanova, N.; Knab, M.; Hoffmann, V. Low-field magnetic susceptibility: A proxy method of estimating increased pollution of different environmental systems. Environ. Geol. 2000, 39, 312–318. [Google Scholar] [CrossRef]
- Wang, X.S.; Yong, Q. Correlation between magnetic susceptibility and heavy metals in urban topsoil: A case study from the city of Xuzhou, China. Environ. Geol. 2005, 49, 10–18. [Google Scholar] [CrossRef]
- Matysek, D.; Raclavska, H.; Raclavsky, K. Correlation between magnetic susceptibility and heavy metal concentrations in forest soils of the eastern Czech Republic. J. Environ. Eng. Geophys. 2008, 13, 13–26. [Google Scholar] [CrossRef]
- Hanesch, M.; Scholger, R. Mapping of heavy metal loadings in soils by means of magnetic susceptibility measurements. Environ. Geol. 2002, 42, 857–870. [Google Scholar]
- Kapper, K.L.; Bautista, F.; Goguitchaishvili, A.; Bógalo, M.F.; Cejudo-Ruíz, R.; Cervantes Solano, M. The use and misuse of magnetic methods to monitor environmental pollution in urban areas. Boletín Soc. Geológica Mex. 2020, 72, 1–44. [Google Scholar] [CrossRef]
- Czarnowska, K. Total content of heavy metals in parent rocks as reference background levels of soils. Soil Sci. Annu. 1996, 47, 43–50. [Google Scholar]
- Martín, J.A.R.; Arias, M.L.; Corbí, J.M.G. Heavy metals contents in agricultural topsoils in the Ebro basin (Spain). Application of the multivariate geoestatistical methods to study spatial variations. Environ. Pollut. 2006, 144, 1001–1012. [Google Scholar] [CrossRef]
- Micó, C.; Recatalá, L.; Peris, M.; Sánchez, J. Assessing heavy metal sources in agricultural soils of an European Mediterranean area by multivariate analysis. Chemosphere 2006, 65, 863–872. [Google Scholar] [CrossRef]
- Sulima, A.F.; Levshakov, L.V. A method for assessing local soil contamination with heavy metals. Bull. Kursk State Agric. Acad. 2008, 4, 10–12. (In Russian) [Google Scholar]
- Levshakov, L.V. Rationing of the content of heavy metals in the soil. Bull. Kursk State Agric. Acad. 2011, 3, 51–53. (In Russian) [Google Scholar]
- Anda, M. Cation imbalance and heavy metal content of seven Indonesian soils as affected by elemental compositions of parent rocks. Geoderma 2012, 189, 388–396. [Google Scholar] [CrossRef]
- Ladonin, D. The effect of iron and clay minerals on the adsorption of copper, zinc, lead, and cadmium in the nodular horizon of podzolic soil. Eurasian Soil Sci. 2003, 36, 1065–1073. [Google Scholar]
- Karpukhin, M.; Ladonin, D. Effect of soil components on the adsorption of heavy metals under technogenic contamination. Eurasian Soil Sci. 2008, 41, 1228–1237. [Google Scholar] [CrossRef]
- Ouyang, J.; Liu, Z.; Zhang, L.; Wang, Y.; Zhou, L. Analysis of influencing factors of heavy metals pollution in farmland-rice system around a uranium tailings dam. Process Safety Environ. Prot. 2020, 139, 124–132. [Google Scholar] [CrossRef]
- Romzaykina, O.N.; Vasenev, V.I.; Paltseva, A.; Kuzyakov, Y.V.; Neaman, A.; Dovletyarova, E.A. Assessing and mapping urban soils as geochemical barriers for contamination by heavy metal (loid) s in Moscow megapolis. J. Environ. Qual. 2020, 1–16. [Google Scholar] [CrossRef]
- Eremchenko, O.Z.; Shestakov, I.E.; Moskvina, N.V. Soils and Technogenic Surface Formations of Urbanized Territories of the Perm Kama Region; Perm State National Research University: Perm, Russia, 2016; p. 252. (In Russian) [Google Scholar]
- Eremchenko, O.Z.; Moskvina, N.V. The properties of soils and technogenic surface formations in the multistory districts of Perm city. Eurasian Soil Sci. 2005, 38, 688–694. (In Russian) [Google Scholar]
- Vasiliev, A.A.; Chashchin, A.N. Heavy Metals in the Soils of the City of Chusovoy: Assessment and Diagnostics of Pollution; Prokrost: Perm, Russia, 2011; p. 197. (In Russian) [Google Scholar]
- Vasiliev, A.A.; Lobanova, E.S. Magnetic and Geochemical Assessment of the Soil Cover of the Urbanized Territories of the Urals on the Example of the City of Perm; Prokrost: Perm, Russia, 2015; p. 243. (In Russian) [Google Scholar]
- Kopylov, I.S. Ecological and geochemical patterns and anomalies of trace element content in soils and snow cover of the Urals and the city of Perm. Perm Univ. Bulletin. Geol. 2012, 4, 39–46. (In Russian) [Google Scholar]
- Kopylov, I.S. Anomalies of heavy metals in soils and snow cover of the city of Perm as manifestations of factors of geodynamics and technogenesis. Basic Res. 2013, 2, 335–339. (In Russian) [Google Scholar]
- Shishkin, M.A.; Lapteva, A.K. Ecological and Geochemical Analysis of Modern Landscapes of the Kama Region; IEGM UB RAS: Perm, Russia, 2009; p. 335. [Google Scholar]
- May, I.V.; Vekovshinina, S.A.; Babina, S.V.; Balashov, S.Y. Quantitative assessment of correlations between exposure and the content of contaminants in biological media of children with chronic inflammatory gastroduodenal diseases. Fam. Health 21st Century 2010, 2, 4. (In Russian) [Google Scholar]
- Zaitseva, N.V.; May, I.V. Regional experience of taking into account indicators of risk to public health in spatial planning tasks. Ars Adm. 2011, 2, 30–39. (In Russian) [Google Scholar]
- Shiryaeva, I.A.; Popova, E.V. Heavy metals in drinking water on geochemical provinces in the Perm region as factors. Perm Univ. Bull. Ser. Biol. 2014, 4, 89–96. (In Russian) [Google Scholar]
- Toropov, L.I.; Fotina, I.V. Determination of the content of heavy metals in the hair of the adult population of Perm. In Proceedings of the International Scientific-Practical Conference; OOO “Marker”: Vologda, Russia, 2017; pp. 6–7. [Google Scholar]
- Dolgikh, O.V.; Starkov, K.G.; Alikina, I.N.; Chelakova, Y.A.; Guselnikov, M.A.; Nikonoshin, N.A.; Krivtsov, A.V.; Mazunin, A.A. Peculiarities of immune regulation and genetic polymorphism in urban population exposed to heavy metals. Perm Univ. Bull. Ser. Biol. 2019, 1, 90–95. [Google Scholar]
- Starkova, K.G.; Bezruchenko, N.V.; Luchnikova, V.A.; Legostaeva, T.A. Features of the immune indicators at the adult population living in areas with contamination of drinking water by heavy metals. Russ. J. Immunol. 2015, 9, 320–321. (In Russian) [Google Scholar]
- Maksimovich, N.; Menshikova, E.; Blinov, S. Some technogenic minerals of the Ural region. Mineral. Technog. 2000, 1, 62–67. [Google Scholar]
- Sokol, E.; Maksimova, N. Nature, chemical and phase composition of energy ash from brown coals of the Chelyabinsk basin. Mineral. Technog. 2000, 1, 127–145. [Google Scholar]
- Kopylov, I.; Naumov, V.; Spassky, B.; Maklashin, A. Geoecological assessment of mining and oil and gas bearing karst regions of the Middle Urals. Mod. Probl. Sci. Educ. 2014, 5, 678. [Google Scholar]
- OAO “Gubakhinsky Coke”. Available online: https://stroyservis.com/about/companies/detail/9 (accessed on 1 June 2020). (In Russian).
- State Report “On the State and Protection of the Environment of the Perm Region in 2014”. Available online: http://www.permecology.ru/%d0%b5%d0%b6%d0%b5%d0%b3%d0%be%d0%b4%d0%bd%d1%8b%d0%b9-%d1%8d%d0%ba%d0%be%d0%bb%d0%be%d0%b3%d0%b8%d1%87%d0%b5%d1%81%d0%ba%d0%b8%d0%b9-%d0%b4%d0%be%d0%ba%d0%bb%d0%b0%d0%b4/%d0%b5%d0%b6%d0%b5%d0%b3%d0%be%d0%b4%d0%bd%d1%8b%d0%b9-%d1%8d%d0%ba%d0%be%d0%bb%d0%be%d0%b3%d0%b8%d1%87%d0%b5%d1%81%d0%ba%d0%b8%d0%b9-%d0%b4%d0%be%d0%ba%d0%bb%d0%b0%d0%b4-2013/ (accessed on 1 June 2020). (In Russian).
- State Report “On the State and Protection of the Environment of the Perm Region in 2015”. Available online: http://www.permecology.ru/%d0%b5%d0%b6%d0%b5%d0%b3%d0%be%d0%b4%d0%bd%d1%8b%d0%b9-%d1%8d%d0%ba%d0%be%d0%bb%d0%be%d0%b3%d0%b8%d1%87%d0%b5%d1%81%d0%ba%d0%b8%d0%b9-%d0%b4%d0%be%d0%ba%d0%bb%d0%b0%d0%b4/%d0%b5%d0%b6%d0%b5%d0%b3%d0%be%d0%b4%d0%bd%d1%8b%d0%b9-%d1%8d%d0%ba%d0%be%d0%bb%d0%be%d0%b3%d0%b8%d1%87%d0%b5%d1%81%d0%ba%d0%b8%d0%b9-%d0%b4%d0%be%d0%ba%d0%bb%d0%b0%d0%b4-2015/ (accessed on 1 June 2020). (In Russian).
- State Report “On the State and Protection of the Environment of the Perm Region in 2016”. Available online: http://www.permecology.ru/%d0%b5%d0%b6%d0%b5%d0%b3%d0%be%d0%b4%d0%bd%d1%8b%d0%b9-%d1%8d%d0%ba%d0%be%d0%bb%d0%be%d0%b3%d0%b8%d1%87%d0%b5%d1%81%d0%ba%d0%b8%d0%b9-%d0%b4%d0%be%d0%ba%d0%bb%d0%b0%d0%b4/%d0%b5%d0%b6%d0%b5%d0%b3%d0%be%d0%b4%d0%bd%d1%8b%d0%b9-%d1%8d%d0%ba%d0%be%d0%bb%d0%be%d0%b3%d0%b8%d1%87%d0%b5%d1%81%d0%ba%d0%b8%d0%b9-%d0%b4%d0%be%d0%ba%d0%bb%d0%b0%d0%b4-2016/ (accessed on 1 June 2020). (In Russian).
- State Report “On the State and protection of the Environment of the Perm Region in 2017”. Available online: http://www.permecology.ru/%d0%b5%d0%b6%d0%b5%d0%b3%d0%be%d0%b4%d0%bd%d1%8b%d0%b9-%d1%8d%d0%ba%d0%be%d0%bb%d0%be%d0%b3%d0%b8%d1%87%d0%b5%d1%81%d0%ba%d0%b8%d0%b9-%d0%b4%d0%be%d0%ba%d0%bb%d0%b0%d0%b4/%d0%b5%d0%b6%d0%b5%d0%b3%d0%be%d0%b4%d0%bd%d1%8b%d0%b9-%d1%8d%d0%ba%d0%be%d0%bb%d0%be%d0%b3%d0%b8%d1%87%d0%b5%d1%81%d0%ba%d0%b8%d0%b9-%d0%b4%d0%be%d0%ba%d0%bb%d0%b0%d0%b4-2017/ (accessed on 1 June 2020). (In Russian).
- State Report “On the State and Protection of the Environment of the Perm Region in 2018”. Available online: http://www.permecology.ru/%d0%b5%d0%b6%d0%b5%d0%b3%d0%be%d0%b4%d0%bd%d1%8b%d0%b9-%d1%8d%d0%ba%d0%be%d0%bb%d0%be%d0%b3%d0%b8%d1%87%d0%b5%d1%81%d0%ba%d0%b8%d0%b9-%d0%b4%d0%be%d0%ba%d0%bb%d0%b0%d0%b4-2018/ (accessed on 1 June 2020). (In Russian).
- State Report “On the State and Protection of the Environment of the Perm Region in 2019”. Available online: http://www.permecology.ru/%d0%b5%d0%b6%d0%b5%d0%b3%d0%be%d0%b4%d0%bd%d1%8b%d0%b9-%d1%8d%d0%ba%d0%be%d0%bb%d0%be%d0%b3%d0%b8%d1%87%d0%b5%d1%81%d0%ba%d0%b8%d0%b9-%d0%b4%d0%be%d0%ba%d0%bb%d0%b0%d0%b4/%d0%b5%d0%b6%d0%b5%d0%b3%d0%be%d0%b4%d0%bd%d1%8b%d0%b9-%d1%8d%d0%ba%d0%be%d0%bb%d0%be%d0%b3%d0%b8%d1%87%d0%b5%d1%81%d0%ba%d0%b8%d0%b9-%d0%b4%d0%be%d0%ba%d0%bb%d0%b0%d0%b4-2019/ (accessed on 1 June 2020). (In Russian).
- Nifantov, B.F.; Potapov, V.P.; Anferov, B.A.; Kuznetsova, L.V. Coals of Kuzbass: Chemical Elements-Impurities and Technologies for Their Extraction during the Integrated Development of Deposits; Institute of Coal Siberian Branch of the Russian Academy of Sciences: Kemerovo, Russia, 2011; p. 310. (In Russian) [Google Scholar]
- Skryabina, O.A. Mineralogical Composition of Soils and Parent Rocks: Textbook; Publishing House Perm State Agricultural Academy: Perm, Russia, 2010. [Google Scholar]
- Korotaev, N.Y. Soils of the Perm Region; Perm Book Publishing House: Perm, Russia, 1962; p. 278. (In Russian) [Google Scholar]
- Tartakovsky, A.M. Atlas of the Perm Territory; Perm State National Research University: Perm, Russia, 2012; p. 124. (In Russian) [Google Scholar]
- Estimation of the Population of the Perm Territory as of 01.01.2019. Available online: https://permstat.gks.ru (accessed on 1 June 2020). (In Russian).
- Urban Zoning Map of Gubakha. Available online: https://fgistp.economy.gov.ru/?show_document=truedoc_type=npauin=57030101201911052 (accessed on 1 June 2020). (In Russian)
- Amendments to the General Plan of the Gubakhinsky Urban District of the Perm Region, 2019, Volume 1. Available online: http://gubakhaokrug.ru (accessed on 1 June 2020). (In Russian).
- Gubakhinsky Urban District (Official Site). Available online: http://old.gubakhaokrug.ru/O-rajone/ (accessed on 1 June 2020). (In Russian).
- Gubakha. Information. Available online: http://www.gubaha.com/Pages/p15 (accessed on 1 June 2020). (In Russian).
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014, Update 2015: International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Report No. 106; Food and Agriculture Organization (FAO) of the United Nations: Rome, Italy, 2015; p. 203. [Google Scholar]
- Weather Archive of Gubakha. Available online: https://world-weather.ru/archive/russia/gubakha/ (accessed on 1 June 2020). (In Russian).
- Arinushkina, E.M. Handbook for Chemical Analysis of Soils; Chimiya Publishing House: Moscow, Russia, 1992; p. 425. (In Russian) [Google Scholar]
- Kachinskiy, N.A. Soil Physics—Part 1; Higher Education Publishing House (USSR): Moscow, Russia, 1965; p. 321. (In Russian) [Google Scholar]
- Branch Standard OST 41-08-205-99. In Techniques of Quantitative Chemical Analysis; VIMS: Moscow, Russia, 1999; p. 96.
- Zonn, S.V. Iron in Soils (Genetic and Geographic Aspects); Kovda, V.A., Ed.; Nauka: Moscow, Russia, 1982; p. 208. (In Russian) [Google Scholar]
- Zonn, S.V.; Rukaka, A.N. Methods for the determination of non-silicate forms of iron in soils. Soil Sci. 1978, 2, 89–101. (In Russian) [Google Scholar]
- Muller, G. Heavy-metals in sediment of the Rhine-changes since 1971. Umsch. Wiss. Tech. 1979, 79, 778–783. [Google Scholar]
- Saet, I.E.; Revich, B.A.; Ianin, E.P.; Smirnova, R.S.; Basharkevich, I.L.; Onishchenko, T.L.; Pavlova, L.N.; Trefilova, N.I.; Achkasova, A.I.; Sarkisian, S.S. Geochemistry of the Environment; Nedra: Moscow, Russia, 1990; p. 333. (In Russian) [Google Scholar]
- Alekseenko, V.A.; Alekseenko, A.V. Chemical Elements in Geochemical Systems. Clarks of Soils of Residential Landscapes; Publishing House of the Southern Federal University: Rostov-on-Don, Russia, 2013; p. 388. (In Russian) [Google Scholar]
- Tomlinson, D.; Wilson, J.; Harris, C.; Jeffrey, D. Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgol. Meeresunters 1980, 33, 566–575. [Google Scholar] [CrossRef] [Green Version]
- Schwertmann, U. Occurrence and formation of iron oxides in various pedoenvironments. In Iron in Soils and Clay Minerals; Springer: Berlin/Heidelberg, Germany, 1988; pp. 267–308. [Google Scholar]
- Vodyanitskii, Y.N. Chemistry and Mineralogy of Soil Iron; Soil. in-t Named after V.V.; Dokuchaev: Moscow, Russia, 2003; p. 236. (In Russian) [Google Scholar]
- Dmitriev, E.A. Mathematical Statistics in Soil Science; URSS: Moscow, Russia, 2008; p. 326. (In Russian) [Google Scholar]
- Żbik, M. Morphology of the outermost shells of the Tunguska black magnetic spherules. J. Geophys. Res. Solid Earth 1984, 89, B605–B611. [Google Scholar] [CrossRef]
- Szöőr, G.; Elekes, Z.; Rózsa, P.; Uzonyi, I.; Simulák, J.; Kiss, Á. Magnetic spherules: Cosmic dust or markers of a meteoritic impact? Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2001, 181, 557–562. [Google Scholar] [CrossRef]
- Zagurskii, A.M.; Ivanov, A.V.; Shoba, S.A. Submicromorphology of soil magnetic fractions. Eurasian Soil Sci. 2009, 42, 1044–1052. [Google Scholar] [CrossRef]
- Nyström, J.O.; Henríquez, F.; Naranjo, J.A.; Naslund, H.R. Magnetite spherules in pyroclastic iron ore at El Laco, Chile. Am. Mineral. 2016, 101, 587–595. [Google Scholar] [CrossRef]
- Blaha, U.; Appel, E.; Stanjek, H. Determination of anthropogenic boundary depth in industrially polluted soil and semi-quantification of heavy metal loads using magnetic susceptibility. Environ. Pollut. 2008, 156, 278–289. [Google Scholar] [CrossRef]
- Razinsky, M.V.; Gette, E.A.; Vasiliev, A.A. The total content of heavy metals in different magnetic soils of the city of Gubakha. In Proceedings of the All-Russian Scientific-Practical Conference YOUTH SCIENCE 2014: Technologies, Innovations; Prokrost: Perm, Russia, 2014; Volume 1, pp. 316–319. (In Russian) [Google Scholar]
- Samofalova, I.A.; Luzyanina, O.A. Mountain Soils of the Middle Urals (on the Example of the Basegi); Prokrost: Perm, Russia, 2014; p. 154. (In Russian) [Google Scholar]
- Lu, S.; Chen, Y.; Shan, H.; Bai, S. Mineralogy and heavy metal leachability of magnetic fractions separated from some Chinese coal fly ashes. J. Hazard. Mater. 2009, 169, 246–255. [Google Scholar] [CrossRef]
- Hunt, A.; Jones, J.; Oldfield, F. Magnetic measurements and heavy metals in atmospheric particulates of anthropogenic origin. Sci. Total Environ. 1984, 33, 129–139. [Google Scholar] [CrossRef]
- Interstate Standard GOST 17.4.1.02-83. Nature Protection. Soils. Classification of Chemicals for Pollution Control; Standardinform: Moscow, Russia, 2008; p. 3. (In Russian) [Google Scholar]
- Vodyanitskii, Y.N. Iron Compounds and Their Role in Soil Protection; Soil. in-t Named after V.V.; Dokuchaev: Moscow, Russia, 2003; p. 133. (In Russian) [Google Scholar]
Horizon, Depth, cm | Particle Size, mm; Content, % | Granulometry | ||||||
---|---|---|---|---|---|---|---|---|
1–0.25 | 0.25–0.05 | 0.05–0.01 | 0.01–0.005 | 0.005–0.001 | <0.001 | ∑<0.01 | ||
Profile 1. Urbic Technosol Loamic, Eutric | ||||||||
AYur,lo (7–22) | 2.89 | 15.87 | 31.32 | 7.27 | 12.53 | 30.12 | 49.92 | heavy loamy |
Profile 2. Urbic Technosol Loamic, Skeletic | ||||||||
AYur,lo (5–12) | 1.66 | 20.38 | 32.52 | 22.64 | 19.84 | 2.96 | 45.44 | heavy loamy |
Horizon, Depth, cm | Corg, % | S | Hh | Hex | Al | CEC | Degree of Base Saturation, % | pHKCl | pHH2O |
---|---|---|---|---|---|---|---|---|---|
cmolc/kg | |||||||||
Profile 1. Urbic Technosol Loamic, Eutric | |||||||||
AYur,lo (7–22) | 2.7 | 11.5 | 6.8 | 2.7 | 1.4 | 18.3 | 63 | 3.6 | 4.7 |
Eur,lo (22–29) | - | 8.3 | 7.5 | 2.2 | 0.3 | 15.8 | 52 | 3.7 | 4.8 |
EBTur,ce (29–42) | - | 12.8 | 9.1 | 2.0 | 0.3 | 21.9 | 58 | 4.1 | 5.1 |
BTur,ce (42–61) | - | 14.5 | 7.2 | 1.7 | 0.3 | 21.7 | 67 | 4.5 | 5.6 |
BTCur,ce,sk (61–83) | - | 15.8 | 6 | 1.3 | 0.2 | 21.8 | 73 | 4.8 | 5.8 |
Cce,sk (83–102) | 0.2 | 12.3 | 4.9 | 0.7 | 0.1 | 17.2 | 71 | 4.9 | 5.9 |
Profile 2. Urbic Technosol Loamic, Skeletic | |||||||||
AYur,lo (5–12) | 2.0 | 15.8 | 7.5 | 3.2 | 0.4 | 23.3 | 68 | 5.6 | 4.5 |
Eur,lo (12–30) | - | 12.5 | 6.7 | 2.7 | 0.3 | 19.2 | 65 | 5.1 | 4.1 |
EBTur,ce,sk (30–50) | - | 16.3 | 8.2 | 2.5 | 0.4 | 24.5 | 66 | 3.8 | 2.8 |
BTur,ce,sk (50–70) | - | 15.8 | 8.9 | 2.1 | 0.1 | 24.7 | 64 | 3.8 | 2.8 |
Cce,sk (70–90) | 0.2 | 14.5 | 5.6 | 0.9 | 0.1 | 20.1 | 72 | 3.5 | 2.6 |
Sampling Location | Parameters | N | M | ±m | Min | Max | V, % |
---|---|---|---|---|---|---|---|
Territories within residential areas | pHKCl | 33 | 5.2 | 2.3 | 3.3 | 8.0 | 29 |
Corg | 33 | 2.1 | 0.6 | 1.0 | 3.9 | 28 | |
S | 33 | 10.7 | 1.0 | 8.7 | 13.2 | 9 | |
Hh | 33 | 7.4 | 0.8 | 6.0 | 9.5 | 12 | |
CEC | 33 | 18.1 | 1.6 | 15.9 | 20.6 | 7 | |
Roadside areas | pHKCl | 27 | 5.1 | 2.5 | 3.2 | 7.8 | 31 |
Corg | 27 | 2.3 | 1.0 | 0.9 | 3.9 | 34 | |
S | 27 | 10.4 | 0.7 | 8.9 | 11.9 | 8 | |
Hh | 27 | 7.4 | 0.6 | 6.3 | 9.1 | 11 | |
CEC | 27 | 17.9 | 1.2 | 15.8 | 20.2 | 6 |
Direction from the Factory | Parameters | N | M | ±m | Min | Max | V,% |
---|---|---|---|---|---|---|---|
1 transect (North) | Corg | 15 | 2.5 | 0.1 | 1.8 | 3.4 | 11 |
pHKCl | 15 | 5.1 | 0.4 | 3.3 | 7.6 | 13 | |
2 transect (East) | Corg | 15 | 2.3 | 0.2 | 1.5 | 3.2 | 12 |
pHKCl | 15 | 4.6 | 0.2 | 3.2 | 6.1 | 11 | |
3 transect (South) | Corg | 15 | 2.4 | 0.1 | 1.7 | 3.2 | 10 |
pHKCl | 15 | 4.6 | 0.2 | 3.3 | 6.1 | 11 | |
4 transect (West) | Corg | 15 | 2.0 | 0.1 | 1.2 | 2.8 | 9 |
pHKCl | 15 | 4.4 | 0.2 | 3.1 | 6.2 | 10 |
Sampling Location | № samples | Fetotal, % * | Fens, % | Fes, % | DO | SC | ||
---|---|---|---|---|---|---|---|---|
Feam | Fec | ∑ | ||||||
Microdistrict of multi-storey buildings of the 1980s | 2 | 5.28 100 | 0.04 0.83 | 3.49 66.14 | 3.54 66.97 | 1.74 33.03 | 0.67 | 0.01 |
7 | 6.34 100 | 0.04 0.68 | 3.58 56.48 | 3.62 57.16 | 2.72 42.84 | 0.57 | 0.01 | |
The central part of the city | 15 | 15.59 100 | 0.07 0.45 | 2.39 15.33 | 2.46 15.78 | 13.13 84.22 | 0.16 | 0.03 |
20 | 5.58 100 | 0.05 0.97 | 4.56 81.76 | 4.62 82.72 | 0.96 17.28 | 0.83 | 0.01 | |
21 | 16.15 100 | 0.14 0.84 | 3.36 20.81 | 3.50 21.65 | 12.65 78.35 | 0.22 | 0.04 | |
Residential area of the 1940–1950s | 22 | 5.73 100 | 0.04 0.63 | 3.24 56.61 | 3.28 57.24 | 2.45 42.76 | 0.57 | 0.01 |
30 | 7.17 100 | 0.04 0.56 | 4.14 57.8 | 4.18 58.35 | 2.99 41.65 | 0.58 | 0.01 | |
Microdistrict with a predominance of industrial enterprises | 37 | 6.16 100 | 0.03 0.54 | 4.19 68.1 | 4.23 68.64 | 1.93 31.36 | 0.69 | 0.01 |
38 | 4.72 100 | 0.04 0.95 | 4.44 94.13 | 4.49 95.08 | 0.23 4.92 | 0.95 | 0.01 | |
42 | 6.79 100 | 0.05 0.72 | 3.27 48.23 | 3.32 48.95 | 3.47 51.05 | 0.49 | 0.02 |
Sampling Location | n | M | ±m | min | Max | V, % |
---|---|---|---|---|---|---|
Territories within residential areas | 33 | 120 | 127 | 1 | 416 | 94 |
Roadside areas | 27 | 169 | 273 | 70 | 627 | 98 |
Direction from the Factory | n | M | ±m | Min | Max | V,% |
---|---|---|---|---|---|---|
1 transect (North) | 15 | 186 | 61 | 27 | 544 | 42 |
2 transect (East) | 15 | 137 | 32 | 23 | 464 | 41 |
3 transect (South) | 15 | 142 | 22 | 30 | 401 | 33 |
4 transect (West) | 15 | 126 | 15 | 27 | 330 | 31 |
Sampling Location | Soil Component | n | M | ±m | Min | Max | V, % |
---|---|---|---|---|---|---|---|
Residential zone | Soil before magnetic separation | 5 | 328 | 88 | 90 | 627 | 60 |
magnetic phase | 5 | 10,816 | 2291 | 2862 | 16,470 | 47 | |
Industrial zone | Soil before magnetic separation | 5 | 148 | 31 | 42 | 216 | 46 |
magnetic phase | 5 | 6440 | 286 | 5600 | 7300 | 10 |
Spectrum Component | Isomeric Shift ″ δ, mm/s | Quadrupole Splitting Δ, mm/sec | Magnetic Fields on Nuclei Fe57 H, kOe | Component Areas S, %. | Fe Content in Samples, Mass. % | Fe Distribution by Phases, Mass. % | Interpretation |
---|---|---|---|---|---|---|---|
C1(Fe3+) | 0.37 | −0.20 | 513.8 | 17.9 | 25.97 | 4.6 | Hematite |
C2(Fe3+) | 0.29 | −0.02 | 489.0 | 24.9 | 13.6 | Magnetite, SA/SB = 0.91 | |
C3(Fe2+, Fe3+) | 0.63 | 0.01 | 455.0 | 20.7 | |||
C4(Fe2+, Fe3+) | 0.93 | −0.49 | 419.0 | 3.0 | |||
C5(Fe2+, Fe3+) | 0.49 | 0.37 | 373.0 | 3.6 | |||
C6(Fe2+) | 0.66 | 0.16 | 266.0 | 3.1 | 0.8 | Pyrrhotine | |
D1(Fe3+) | 0.30 | 0.78 | 0 | 17.8 | 4.6 | Chromite | |
D2(Fe2+) | 0.99 | 1.58 | 0 | 9.0 | 2.3 | Chromite |
Sampling Location | Soil Component | n | M | ±m | Min | Max | V, % |
---|---|---|---|---|---|---|---|
Fe | |||||||
Residential zone | soil before magnetic separation | 5 | 42,108 | 3193 | 32,993 | 50,118 | 17 |
magnetic phase | 5 | 162,489 | 35,023 | 78,288 | 259,748 | 48 | |
Industrial zone | soil before magnetic separation | 5 | 45,002 | 6292 | 32,434 | 60,673 | 31 |
magnetic phase | 5 | 118,369 | 14,153 | 82,482 | 157,555 | 27 | |
Mn | |||||||
Residential zone | soil before magnetic separation | 5 | 779 | 32 | 681 | 867 | 9 |
magnetic phase | 5 | 526 | 75 | 310 | 774 | 32 | |
Industrial zone | soil before magnetic separation | 5 | 522 | 166 | 132 | 944 | 71 |
magnetic phase | 5 | 619 | 133 | 240 | 998 | 48 | |
Cr | |||||||
Residential zone | soil before magnetic separation | 5 | 136 | 14 | 120 | 190 | 22 |
magnetic phase | 5 | 207 | 25 | 145 | 282 | 27 | |
Industrial zone | soil before magnetic separation | 5 | 126 | 12 | 90 | 160 | 21 |
magnetic phase | 5 | 257 | 38 | 160 | 348 | 33 | |
Ni | |||||||
Residential zone | soil before magnetic separation | 5 | 52 | 6 | 40 | 70 | 25 |
magnetic phase | 5 | 100 | 11 | 79 | 138 | 25 | |
Industrial zone | soil before magnetic separation | 5 | 49 | 5 | 35 | 57 | 21 |
magnetic phase | 5 | 123 | 26 | 67 | 193 | 47 | |
Cu | |||||||
Residential zone | soil before magnetic separation | 5 | 28 | 6 | 14 | 47 | 50 |
magnetic phase | 5 | 56 | 6 | 43 | 74 | 25 | |
Industrial zone | soil before magnetic separation | 5 | 43 | 7 | 25 | 59 | 36 |
magnetic phase | 5 | 92 | 13 | 59 | 127 | 32 | |
Zn | |||||||
Residential zone | soil before magnetic separation | 5 | 130 | 38 | 70 | 270 | 65 |
magnetic phase | 5 | 135 | 16 | 99 | 192 | 27 | |
Industrial zone | soil before magnetic separation | 5 | 98 | 7 | 80 | 119 | 15 |
magnetic phase | 5 | 138 | 8 | 121 | 167 | 13 |
Direction from the Factory | n | Comparison Options | |||||
---|---|---|---|---|---|---|---|
1–2 | 1–3 | 1–4 | 2–3 | 2–4 | 3–4 | ||
1 transect (North) | 15 | 1.55 | 1.3 | 1.46 | |||
2 transect (East) | 15 | 1.55 | 2.21 | 1.71 | |||
3 transect (South) | 15 | 1.3 | 2.21 | 1.71 | |||
4 transect (West) | 15 | 1.46 | 1.71 | 1.71 |
The Position of the Energy Dispersive Analysis Point in the Figure | Sampling Location | Analysis Point Number to Which the Spectrum Corresponds | O | Si | Al | Fe | Ca | K | Mg | Co | S | Mineral |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Figure 6A | Residential zone of Gubakha; Urbic Technosol Loamic, Eutric | 1 | 6.60 | 2.80 | 13.60 | 77.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | magnetite |
2 | 26.90 | 10.30 | 0.00 | 62.80 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | magnetite | ||
Figure 6B | 1 | 31.10 | 4.10 | 0.00 | 63.80 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | silicate-magnetite alloy | |
2 | 54.70 | 23.40 | 0.00 | 13.80 | 8.10 | 0.00 | 0.00 | 0.00 | 0.00 | silicate-magnetite alloy | ||
Figure 6C | 1 | 33.40 | 3.00 | 0.00 | 61.20 | 0.60 | 0.00 | 1.90 | 0.00 | 0.00 | magnetite | |
2 | 40.80 | 16.70 | 0.00 | 35.50 | 2.00 | 0.30 | 4.70 | 0.00 | 0.00 | iron-containing silicate | ||
3 | 60.20 | 25.50 | 0.00 | 6.30 | 0.70 | 3.00 | 3.40 | 0.00 | 0.00 | iron-containing silicate | ||
Figure 6D | 1 | 35.90 | 5.80 | 0.00 | 58.10 | 0.30 | 0.00 | 0.00 | 0.00 | 0.00 | magnetite | |
2 | 0.60 | 5.20 | 0.00 | 94.30 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | wustite | ||
3 | 44.00 | 18.50 | 0.00 | 34.40 | 2.20 | 0.00 | 0.00 | 1.00 | 0.00 | iron-containing silicate | ||
4 | 25.50 | 1.10 | 0.00 | 73.40 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | magnetite | ||
Figure 6E | Industrial zone in the area of operation of OAO “Gubakhinsky coke”; Urbic Technosol Loamic, Skeletic | 1 | 27.50 | 14.10 | 2.70 | 55.90 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | magnetite |
2 | 30.00 | 5.00 | 2.40 | 62.70 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | magnetite | ||
Figure 6F | 1 | 35.20 | 1.00 | 1.60 | 61.80 | 0.00 | 0.00 | 0.00 | 0.00 | 0.40 | magnetite | |
2 | 39.10 | 4.50 | 5.10 | 50.60 | 0.00 | 0.00 | 0.00 | 0.00 | 0.70 | magnetite | ||
3 | 46.30 | 11.30 | 4.60 | 34.70 | 0.00 | 0.00 | 0.00 | 0.00 | 3.10 | iron-containing silicate | ||
Figure 6G | 1 | 21.30 | 1.80 | 1.80 | 74.70 | 0.00 | 0.00 | 0.00 | 0.00 | 0.40 | magnetite | |
2 | 58.20 | 36.60 | 2.50 | 1.50 | 1.00 | 0.00 | 0.00 | 0.00 | 0.20 | iron-containing silicate | ||
3 | 50.50 | 13.30 | 7.50 | 22.70 | 1.80 | 0.00 | 0.00 | 0.00 | 4.10 | iron-containing silicate | ||
Figure 6H | 1 | 28.60 | 7.60 | 5.30 | 58.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | magnetite | |
2 | 24.80 | 4.00 | 2.10 | 69.10 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | magnetite |
Κ | Fe | Mn | Cr | Ni | Cu | |
---|---|---|---|---|---|---|
Fe | 0.71 | |||||
Mn | −0.33 | −0.62 | ||||
Cr | 0.70 | 0.78 | −0.39 | |||
Ni | 0.71 | 0.91 | −0.71 | 0.67 | ||
Cu | 0.51 | 0.63 | −0.76 | 0.30 | 0.81 | |
Zn | −0.15 | −0.02 | −0.40 | −0.24 | 0.22 | 0.47 |
Κ | Fe | Mn | Cr | Ni | Cu | |
---|---|---|---|---|---|---|
Fe | 0.85 | |||||
Mn | 0.23 | −0.09 | ||||
Cr | 0.81 | 0.75 | 0.46 | |||
Ni | 0.69 | 0.94 | −0.11 | 0.73 | ||
Cu | 0.75 | 0.97 | −0.12 | 0.69 | 0.95 | |
Zn | 0.77 | 0.89 | −0.35 | 0.50 | 0.81 | 0.82 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vasiliev, A.; Gorokhova, S.; Razinsky, M. Technogenic Magnetic Particles in Soils and Ecological–Geochemical Assessment of the Soil Cover of an Industrial City in the Ural, Russia. Geosciences 2020, 10, 443. https://doi.org/10.3390/geosciences10110443
Vasiliev A, Gorokhova S, Razinsky M. Technogenic Magnetic Particles in Soils and Ecological–Geochemical Assessment of the Soil Cover of an Industrial City in the Ural, Russia. Geosciences. 2020; 10(11):443. https://doi.org/10.3390/geosciences10110443
Chicago/Turabian StyleVasiliev, Andrei, Svetlana Gorokhova, and Mikhail Razinsky. 2020. "Technogenic Magnetic Particles in Soils and Ecological–Geochemical Assessment of the Soil Cover of an Industrial City in the Ural, Russia" Geosciences 10, no. 11: 443. https://doi.org/10.3390/geosciences10110443
APA StyleVasiliev, A., Gorokhova, S., & Razinsky, M. (2020). Technogenic Magnetic Particles in Soils and Ecological–Geochemical Assessment of the Soil Cover of an Industrial City in the Ural, Russia. Geosciences, 10(11), 443. https://doi.org/10.3390/geosciences10110443