Colony-Forming Unit Spreadplate Assay versus Liquid Culture Enrichment-Polymerase Chain Reaction Assay for the Detection of Bacillus Endospores in Soils
Abstract
:1. Introduction
2. Methods
2.1. Bacillus Endospores and Soil
2.2. CFU-S Assay
2.3. E-PCR Assay
2.4. Sand Versus Clay and Soil Blend Experiments Utilizing Culture
2.5. Statistical Analysis
3. Results
3.1. CFU-S Assay
3.2. Enrichment-PCR Assay
3.3. Sand Versus Clay and Soil Blend Experiments Utilizing Culture
3.4. Statistical Analysis
4. Discussion
4.1. CFU-S Assay
4.2. E-PCR Assay
4.3. Comparison of CFU-S and E-PCR Endospore Detection Methods
4.4. Sand Versus Clay and Soil Blend Experiments Utilizing Culture
4.5. Statistical Analysis
5. Conclusions
Disclaimer
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Turnbull, P.C.B. Bacillus. In Medical Microbiology; Baron, S., Ed.; University of Texas Medical Branch at Galveston: Galveston, TX, USA, 1996. [Google Scholar]
- Oh, M.H.; Cox, J.M. Toxigenic bacilli associated with food poisoning. Food Sci. Biotechnol. 2009, 18, 594–603. [Google Scholar]
- Weinberg, E.D. The Influence of soil on infectious-disease. Experientia 1987, 43, 81–87. [Google Scholar] [CrossRef] [PubMed]
- Kochi, S.K.; Schiavo, G.; Mock, M.; Montecucco, C. Zinc content of the Bacillus anthracis lethal factor. FEMS Microbiol. Lett. 1994, 124, 343–348. [Google Scholar] [CrossRef] [PubMed]
- Hugh-Jones, M.; Blackburn, J. The ecology of Bacillus anthracis. Mol. Asp. Med. 2009, 30, 356–367. [Google Scholar] [CrossRef]
- Wright, G.G.; Angelety, L.H.; Swanson, B. Studies on immunity in anthax. XII. Requirement for phosphate for elaboration of protective antigen and its partial replacement by charcoal. Infect. Immun. 1970, 2, 772–777. [Google Scholar]
- Griffin, D.W.; Silvestri, E.E.; Bowling, C.Y.; Boe, T.; Smith, D.B.; Nichols, T.L. Anthrax and the geochemistry of soils in the contiguous United States. Geosciences 2014, 4, 114–127. [Google Scholar] [CrossRef] [Green Version]
- Delmont, T.O.; Robe, P.; Cecillon, S.; Clark, I.M.; Constancias, F.; Simonet, P.; Hirsch, P.R.; Vogel, T.M. Accessing the soil metagenome for studies of microbial diversity. Appl. Environ. Microbiol. 2011, 77, 1315–1324. [Google Scholar] [CrossRef] [Green Version]
- Chikerema, S.M.; Murwira, A.; Matope, G.; Pfukenyi, D.M. Spatial modelling of Bacillus anthracis ecological niche in Zimbabwe. Prev. Vet. Med. 2013, 111, 25–30. [Google Scholar] [CrossRef]
- Nath, S.; Dere, A. Soil geochemical parameters influencing the spatial distribution of anthrax in Northwest Minnesota, USA. Appl. Geochem. 2016, 74, 144–156. [Google Scholar] [CrossRef]
- Keim, P.; Smith, K.L.; Keys, C.; Takahashi, H.; Kurata, T.; Kaufmann, A. Molecular investigation of the Aum Shinrikyo Anthrax Release in Kameido, Japan. J. Clin. Microbiol. 2001, 39, 4566–4567. [Google Scholar] [CrossRef] [Green Version]
- Patra, G.; Vaissaire, J.; Weber-Levy, M.; Le Doujet, C.; Mock, M. Molecular characterization of Bacillus strains involved in outbreaks of anthrax in France in 1997. J. Clin. Microbiol. 1998, 36, 3412–3414. [Google Scholar] [PubMed]
- Dineen, S.M.; Arand, R.T., IV; Anders, D.L.; Robertson, J.M. An evaluation of commercial DNA extraction kits for the isolation of bacterial spore DNA from soil. J. Appl. Microbiol. 2010, 109, 1886–1896. [Google Scholar] [CrossRef]
- Gulledge, J.S.; Luna, V.A.; Luna, A.J.; Zartman, R.; Cannons, A.C. Detection of low numbers of Bacillus anthracis spores in three soils using five commercial DNA extraction methods with and without an enrichment step. J. Appl. Microbiol. 2010, 109, 1509–1520. [Google Scholar] [CrossRef] [PubMed]
- Silvestri, E.E.; Feldhake, D.; Griffin, D.; Lisle, J.; Nichols, T.L.; Shah, S.R.; Pemberton, A.; Schaefer, F.W., III. Optimization of a sample processing protocol for recovery of Bacillus anthracis spores from soil. J. Microbiol. Methods 2016, 130, 6–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fasanella, A.; Di Taranto, P.; Garofolo, G.; Colao, V.; Marino, L.; Buonavoglia, D.; Pedarra, C.; Adone, R.; Hugh-Jones, M. Ground anthrax Bacillus refined isolation (GABRI) method for analyzing environmental samples with low levels of Bacillus anthracis contamination. BMC Microbiol. 2013, 13, 167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Letant, S.E.; Murphy, G.A.; Alfaro, T.M.; Avila, J.R.; Kane, S.R.; Raber, E.; Bunt, T.M.; Shah, S.R. Rapid-viability PCR method for detection of live, virulent Bacillus anthracis in environmental samples. Appl. Environ. Microbiol. 2011, 77, 6570–6578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Letant, S.E.; Kane, S.R.; Murphy, G.A.; Alfaro, T.M.; Hodges, L.R.; Rose, L.J.; Raber, E. Most-probable-number rapid viability PCR method to detect viable spores of Bacillus anthracis in swab samples. J. Microbiol. Methods 2010, 81, 200–202. [Google Scholar] [CrossRef] [Green Version]
- U.S. EPA; USGS. Processing Protocol for Soil Samples Potentially Contaminated with BACILLUS Anthracis Spores; EPA/600/R-17/028; U.S. Enviromental Protection Agency and U.S. Geological Survey. Available online: https://pubs.er.usgs.gov/publication/70188647 (accessed on 21 December 2019).
- Kane, S.R.; Letant, S.E.; Murphy, G.A.; Alfaro, T.M.; Krauter, P.W.; Mahnke, R.; Legler, T.C.; Raber, E. Rapid, high-throughput, culture-based PCR methods to analyze samples for viable spores of Bacillus anthracis and its surrogates. J. Microbiol. Methods 2009, 76, 278–284. [Google Scholar] [CrossRef]
- Setlow, P. Spore germination. Curr. Opin Microbiol. 2003, 6, 550–556. [Google Scholar] [CrossRef]
- Setlow, P. Summer meeting 201--when the sleepers wake: The germination of spores of Bacillus species. J. Appl. Microbiol. 2013, 115, 1251–1268. [Google Scholar] [CrossRef]
- Setlow, P. Germination of spores of Bacillus species: What we know and do not know. J. Bacteriol. 2014, 196, 1297–1305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fisher, N.; Hanna, P. Characterization of Bacillus anthracis germinant receptors in vitro. J Bacteriol. 2005, 187, 8055–8062. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foerster, H.F.; Foster, J.W. Response of Bacillus spores to combinations of germinative compounds. J. Bacteriol. 1966, 91, 1168–1177. [Google Scholar] [PubMed]
- Hornstra, L.M.; van der Voort, M.; Wijnands, L.M.; Roubos-van den Hil, P.J.; Abee, T. Role of germinant receptors in Caco-2 cell-initiated germination of Bacillus cereus ATCC 14579 endospores. Appl. Environ. Microbiol. 2009, 75, 1201–1203. [Google Scholar] [CrossRef] [Green Version]
- Kohler, L.J.; Quirk, A.V.; Welkos, S.L.; Cote, C.K. Incorporating germination-induction into decontamination strategies for bacterial spores. J. Appl. Microbiol. 2017, 124, 2–14. [Google Scholar] [CrossRef] [Green Version]
- Setlow, P.; Wang, S.; Li, Y.Q. Germination of Spores of the Orders Bacillales and Clostridiales. Annu. Rev. Microbiol. 2017, 71, 459–477. [Google Scholar] [CrossRef]
- USDA. Soil Quality Indicators. United States Department of Agriculture, Natural Resources Conservation Service, 2008. Available online: https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_053261.pdf (accessed on 24 July 2019).
- He, L.M.; Tebo, B.M. Surface charge properties of and Cu(II) adsorption by sopres of the marine Bacillus sp. Strain SG-1. Appl. Environ. Microbiol. 1998, 64, 1123–1129. [Google Scholar] [CrossRef] [Green Version]
- Himsworth, C.G. The danger of lime use in agricultural anthrax disinfection procedures: the potential role of calcium in the preservation of anthrax spores. Can. Vet. J. 2008, 49, 1208–1210. [Google Scholar]
- Chen, G.; Driks, A.; Tawfiq, K.; Mallozzi, M.; Patil, S. Bacillus anthracis and Bacillus subtilis spore surface properties and transport. Colloids Surf. B Biointerfaces 2010, 76, 512–518. [Google Scholar] [CrossRef]
- Manchee, R.J.; Broster, M.G.; Melling, J.; Henstridge, R.M.; Stagg, A.J. Bacillus anthracis on Gruinard Island. Nature 1981, 294, 254–255. [Google Scholar] [CrossRef]
Soils | Total CFU/10 Plates (Relative Percent Recovery) | |||||
---|---|---|---|---|---|---|
(Number of Spiked Endospores/9 Grams Soil) | ||||||
0 | 4.5 | 45 | 225 | 675 | 1350 | |
Loam 1 | 0 | 0 | 2 (55.6) | 10 (54.9) | 28 (51.9) | 72 (66.7) |
Loam 2 | 0 | 2 (556) | 1 (27.8) | 9 (49.5) | 14 (25.9) | 61 (56.5) |
Loam 3 | 0 | 1 (278) | 0 | 12(66.7) | 32 (59.3) | 82 (75.9) |
Sand 1 | 0 | 0 | 0 | 16 (89.9) | 20 (37.1) | 42 (38.9) |
Sand 2 | 0 | 0 | 2 (55.6) | 13 (71.4) | 47 (87.0) | 80 (74.1) |
Sand 3 | 0 | 0 | 0 | 3 (16.7) | 51 (90.7) | 66 (59.3) |
Clay 1 | 0 | 0 | 6 (166) | 25 (138) | 91 (169) | 178 (165) |
Clay 2 | 0 | 0 | 5 (139) | 22 (121) | 673 (>500) | 176 (163) |
Clay 3 | 0 | 1 (278) | 5 (139) | 24 (132) | 59 (109) | 159 (147) |
Time Point in Hours | Endospore Spike Number/9 g Soil | Loam Replicate (Rep.) 1 | Loam Rep. 2 | Loam Rep. 3 | Sand Rep. 1 | Sand Rep. 2 | Sand Rep. 3 | Clay Rep. 1 | Clay Rep. 2 | Clay Rep. 3 |
---|---|---|---|---|---|---|---|---|---|---|
0 | 0 | 0.00* | 0.00 | 0.00 | 18.00 | 0.00 | 0.00 | 21.00 | 0.00 | 0.00 |
0 | 4.5 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 33.00 | 0.00 | 0.00 |
0 | 45 | 30.40 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 42.00 | 0.00 | 0.00 |
0 | 225 | 0.00 | 0.00 | 0.00 | 36.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0 | 675 | 0.00 | 0.00 | 0.00 | 11.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0 | 1,350 | 0.00 | 0.00 | 0.00 | 27.00 | 25.00 | 0.00 | 0.00 | 0.00 | 0.00 |
24 | 0 | 12.00 | 0.00 | 47.00 | 0.00 | 0.00 | 67.00 | 0.00 | 0.00 | 0.00 |
24 | 4.5 | 12.00 | 64.00 | 113.00 | 55.00 | 283.00 | 295.00 | 534.00 | 0.00 | 157.00 |
24 | 45 | 56.50 | 55.00 | 38.00 | 10.00 | 197.00 | 302.00 | 421.00 | 13.00 | 200.00 |
24 | 225 | 24.90 | 146.00 | 122.00 | 19.00 | 156.00 | 344.00 | 530.00 | 33.00 | 240.00 |
24 | 675 | 17.00 | 56.00 | 370.00 | 15.00 | 318.00 | 348.00 | 676.00 | 39.00 | 216.00 |
24 | 1,350 | 37.30 | 119.00 | 125.00 | 19.00 | 30.50 | 431.00 | 615.00 | 134.00 | 393.00 |
Soils | Number of Spiked Endospores/9 Grams Soil | |||||
---|---|---|---|---|---|---|
0 | 4.5 | 45 | 225 | 675 | 1350 | |
Loam 1 | No Amplification | No Amplification | 25.5 | 25.5 | 25.5 | 25.5 |
Loam 2 | No Amplification | 27 | 27 | 27 | 27 | 27 |
Loam 3 | No Amplification | 25 | 27 | 25 | 23.5 | 25 |
Sand 1 | No Amplification | 35 | 27 | 27 | 26 | 27 |
Sand 2 | No Amplification | 24 | 25 | 26 | 25 | 25 |
Sand 3 | No Amplification | 25 | 24 | 24 | 24 | 24 |
Clay 1 | No Amplification | 24 | 24.5 | 24 | 23.5 | 24 |
Clay 2 | No Amplification | 31 | 29 | 27.5 | 27 | 25 |
Clay 3 | No Amplification | 25 | 24.5 | 24.5 | 24.5 | 24.5 |
Soils | CFU vs. PCR | |||||
---|---|---|---|---|---|---|
(Number of Spiked Endospores/9 Grams Soil) | ||||||
0 (CFU/PCR) | 4.5 (CFU/PCR) | 45 (CFU/PCR) | 225 (CFU/PCR) | 675 (CFU/PCR) | 1350 (CFU/PCR) | |
Loam 1 | −/− | −/− | −/+ | +/+ | +/+ | +/+ |
Loam 2 | −/− | −/+ | −/+ | −/+ | +/+ | +/+ |
Loam 3 | −/− | −/+ | −/+ | +/+ | +/+ | +/+ |
Sand 1 | −/− | −/+ | −/+ | +/+ | +/+ | +/+ |
Sand 2 | −/− | −/+ | −/+ | +/+ | +/+ | +/+ |
Sand 3 | −/− | −/+ | −/+ | −/+ | +/+ | +/+ |
Clay 1 | −/− | −/+ | −/+ | +/+ | +/+ | +/+ |
Clay 2 | −/− | −/+ | −/+ | +/+ | +/+ | +/+ |
Clay 3 | −/− | −/+ | −/+ | +/+ | +/+ | +/+ |
Soil Composition | Experiment 1 | Experiment 2 | Average CFU of Experiment 1 and 2 |
---|---|---|---|
100% sand | 11.4 | 11 | 11.2 |
80% sand/20% clay | 11 | 13.8 | 12.4 |
60% sand/40% clay | 12.6 | 12.1 | 12.4 |
40% sand/60% clay | 13.5 | 14 | 13.8 |
20% sand/80% clay | 14.7 | 13 | 13.9 |
100% clay | 14.4 | 13.4 | 13.9 |
Spiked Endospores/9 Grams Soil | Loam | Sand | Clay | |
---|---|---|---|---|
[Spike] 1 | [Spike] 2 | (p-Value) | (p-Value) | (p-Value) |
0 endospores | 4.5 endospores | NS * | NS | NS |
0 endospores | 45 endospores | NS | NS | NS |
0 endospores | 225 endospores | NS | NS | NS |
0 endospores | 675 endospores | 0.002 | 0.008 | 0.008 |
0 endospores | 1350 endospores | <0.001 | <0.001 | <0.001 |
4.5 endospores | 45 endospores | NS | NS | NS |
4.5 endospores | 225 endospores | NS | NS | NS |
4.5 endospores | 675 endospores | 0.003 | 0.008 | 0.008 |
4.5 endospores | 1350 endospores | <0.001 | <0.001 | <0.001 |
45 endospores | 225 endospores | NS | NS | NS |
45 endospores | 675 endospores | 0.003 | 0.009 | 0.009 |
45 endospores | 1350 endospores | <0.001 | <0.001 | <0.001 |
225 endospores | 675 endospores | NS | 0.060 | 0.060 |
225 endospores | 1350 endospores | <0.001 | 0.001 | 0.001 |
675 endospores | 1350 endospores | <0.001 | NS | NS |
Spiked Endospores/9 Grams Soil | Soil Comparison | p-Value | Recovery Relationship |
---|---|---|---|
225 endospores | Loam vs. Sand | NS * | NA * |
Loam vs. Clay | 0.017 | Clay > Loam | |
Sand vs. Clay | 0.020 | Clay > Sand | |
675 endospores | Loam vs. Sand | NS | NA |
Loam vs. Clay | NS | NA | |
Sand vs. Clay | NS | NA | |
1350 endospores | Loam vs. Sand | NS | NA |
Loam vs. Clay | <0.001 | Clay > Loam | |
Sand vs. Clay | <0.001 | Clay > Sand |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Griffin, D.W.; Lisle, J.T.; Feldhake, D.; Silvestri, E.E. Colony-Forming Unit Spreadplate Assay versus Liquid Culture Enrichment-Polymerase Chain Reaction Assay for the Detection of Bacillus Endospores in Soils. Geosciences 2020, 10, 5. https://doi.org/10.3390/geosciences10010005
Griffin DW, Lisle JT, Feldhake D, Silvestri EE. Colony-Forming Unit Spreadplate Assay versus Liquid Culture Enrichment-Polymerase Chain Reaction Assay for the Detection of Bacillus Endospores in Soils. Geosciences. 2020; 10(1):5. https://doi.org/10.3390/geosciences10010005
Chicago/Turabian StyleGriffin, Dale W., John T. Lisle, David Feldhake, and Erin E. Silvestri. 2020. "Colony-Forming Unit Spreadplate Assay versus Liquid Culture Enrichment-Polymerase Chain Reaction Assay for the Detection of Bacillus Endospores in Soils" Geosciences 10, no. 1: 5. https://doi.org/10.3390/geosciences10010005
APA StyleGriffin, D. W., Lisle, J. T., Feldhake, D., & Silvestri, E. E. (2020). Colony-Forming Unit Spreadplate Assay versus Liquid Culture Enrichment-Polymerase Chain Reaction Assay for the Detection of Bacillus Endospores in Soils. Geosciences, 10(1), 5. https://doi.org/10.3390/geosciences10010005