Effect of Bamboo Leaf Extract on Antioxidant Status and Cholesterol Metabolism in Broiler Chickens
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Statement
2.2. Animals, Diets and Experimental Design
2.3. Slaughter Performance
2.4. Sample Collection
2.5. Cholesterol Metabolism Parameter Analysis
2.6. Serum and Liver Homogenate Antioxidant Enzyme Analysis
2.7. RNA Extraction and Quantitative Real-Time PCR
2.8. Statistical Analysis
3. Results
3.1. Growth Performance
3.2. Slaughter Performance
3.3. Serum Cholesterol Metabolism Parameters
3.4. Antioxidant Index of Serum
3.5. Antioxidant Index of Liver
3.6. Antioxidant Enzyme Gene Expression in the Liver
3.7. Cholesterol Metabolism Related Gene Expression of Liver
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wang, W.; Zhou, J.H.; Yuan, J.L.; Qu, Y.H. Effect of cholesterol-reducing lactobacillus on cholesterol of chicken. Chin. J. Micro. 2009, 21, 200–201. [Google Scholar]
- Islam, M.R.; Siddiqui, M.N.; Khatun, A.; Siddiky, M.N.; Rahman, M.Z.; Bostami, A.; Selim, A. Dietary effect of mulberry leaf (Morus alba) meal on growth performance and serum cholesterol level of broiler chickens. SAARC. J. Agric. 2014, 12, 79–89. [Google Scholar] [CrossRef]
- Kratz, M. Dietary Cholesterol, Atherosclerosis and Coronary Heart Disease. Handb. Exp. Pharmacol. 2005, 170, 195–213. [Google Scholar]
- Mcnamara, D.J. Dietary Cholesterol and Blood Cholesterolemia: A Healthy Relationship. World Rev. Nutr. Diet. 2009, 100, 55–62. [Google Scholar] [PubMed]
- Pavloviä, J.; Greenland, P.; Deckers, J.W.; Kavousi, M.; Hofman, A.; Ikram, M.A.; Franco, O.H.; Leening, M.J. Assessing gaps in cholesterol treatment guidelines for primary prevention of cardiovascular disease based on available randomized clinical trial evidence: The Rotterdam Study. Eur. J. Prev. Cardiol. 2018, 25, 420–431. [Google Scholar] [CrossRef] [PubMed]
- Niu, T.G. Mechanism and application of microbial bioconversion of cholesterol in food. Ph.D. Thesis, China Agricuture University, Beijing, China, 2000. [Google Scholar]
- Kou, T.; Hu, Z.P.; Dong, L.; He, J.T.; Bai, K.W.; Wang, T. Effect of N,N-Dimethylglycine Sodium on Slaughter Performance, Meat Quality Indices and Antioxidant Performance of Broilers. Food Sci. 2015, 36, 179–184. [Google Scholar]
- Lankin, V.; Viigimaa, M.; Tikhaze, A.; Kumskova, E.; Konovalova, G.; Abina, J.; Zemtsovskaya, G.; Kotkina, T.; Yanushevskaya, E.; Vlasik, T. Cholesterol-rich low density lipoproteins are also more oxidized. Mol. Cell. Biochem. 2011, 355, 187–191. [Google Scholar] [CrossRef] [PubMed]
- Rietzschel, E.R.; Langlois, M.; Buyzere, M.L.; Segers, P.; De, B.D.; Bekaert, S.; Cooman, L.; Van, O.P.; Verdonck, P.; Backer, G.G. Oxidized low-density lipoprotein cholesterol is associated with decreases in cardiac function independent of vascular alterations. Hypertension 2008, 52, 535–541. [Google Scholar] [CrossRef] [PubMed]
- Zang, L.Y.; Cosma, G.; Gardner, H.; Shi, X.; Castranova, V.; Vallyathan, V. Effect of antioxidant protection by p-coumaric acid on low-density lipoprotein cholesterol oxidation. Am. J. Physiol. Cell Physiol. 2000, 279, 954–960. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Zhang, Y.; Kitts, D.D. Evaluation of antioxidant and prooxidant activities of bamboo Phyllostachys nigra var. henonis leaf extract in vitro. J. Agric. Food Chem. 2000, 48, 3170–3176. [Google Scholar] [CrossRef]
- Ding, H.X.; Gao, Y.Y.; Cao, H.J.; Xia, D.H. Effect of polysaccharide from moso bamboo leaves on blood lipid of mice with hyperlipemia. Food Sci. 2010, 31, 259–262. [Google Scholar]
- Liu, L.L.; Wang, T.; Wu, X.Q.; Yin, L.D.; Liu, Z.H.; Zhang, Y. Experimental study of compound tablets of bamboo leaf flavonoids on hyperlipidimia of rats. Food Drug 2012, 14, 395–398. [Google Scholar]
- Sunga, C.; Myoungsoo, P.; Yuran, L.; Youngchul, L.; Taewoo, K.; Seongil, D.; Dongseon, K.; Byeonghwa, J. A standardized bamboo leaf extract inhibits monocyte adhesion to endothelial cells by modulating vascular cell adhesion protein-1. Nutr. Res. Pract. 2013, 7, 9–14. [Google Scholar]
- Guo, X.F.; Yue, Y.D.; Tang, F.; Wang, J.; Yao, X. Detection of AntioxidatiVe Capacity of Bamboo Leaf Extract by Scavenging superoide anion radical. Spectrosc. Spect. Anal. 2008, 28, 1823–1826. [Google Scholar]
- Guo, X.F.; Yue, Y.D.; Meng, Z.F.; Tang, F.; Wang, J.; Yao, X.; Xun, H.; Sun, J. Detection of antioxidative capacity of bamboo leaf extract by scavenging hydroxyl free radical. Spectrosc. Spect. Anal. 2010, 30, 508–511. [Google Scholar]
- Zhang, J.Y.; Lin, S.Y.; Zhao, J.; Li, X.H.; Wang, Z.G.; Li, C.C.; Su, G. The Effects of Bamboo-leaf-flavonoid on the Immune Function and Growth Performance in Immunosuppression Broilers. Acta SiChun. Agric. Univ. 2015, 33, 314–318. [Google Scholar]
- Zhang, S.; Chen, J.; Sun, A.D.; Zhao, L.Y. Protective effects and antioxidant mechanism of bamboo leaf flavonoids on hepatocytes injured by CCl4. Food Agric. Immunol. 2014, 25, 386–396. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2 −ΔΔ C T Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Leng, Z.X.; Fu, Q.; Yang, X.; Bai, J.Y.; Zhou, Y.M.; Wen, C. Effect of Betaine on Carcass Characteristics and Breast Meat Quality of Broilers. Food Sci. 2015, 36, 166–169. [Google Scholar]
- Yang, Q.; Yang, Y.S.; Zeng, N.; Zhang, J.Y.; Wang, Z.G.; Zhao, J.; Xian, Q.B.; Su, G. The effects of bamboo-leaf-flavonoid on the growth and slaughter performance in broilers under the continued heat stress. Feed Ind. 2014, 35, 6–8. [Google Scholar]
- Havsteen, B.H. The biochemistry and medical significance of the flavonoids. Pharmacol. Ther. 2002, 96, 67–202. [Google Scholar] [CrossRef]
- Li, L.; Zhu, X.T.; Su, G.; Gao, P.; Jiang, Q.Y.; Chen, Y.C. Effect of hawthorn leaf flavonoids on lipid metabolism in yellow-feathered broilers. Acta Agric. Univ. Jiangxiensis 2009, 31, 610–615. [Google Scholar]
- Ross, J.A.; Kasum, C.M. Dietary flavonoids: bioavailability, metabolic effects, and safety. Annu. Rev. Nutr. 2003, 22, 19–34. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.H.; Choi, M.H.; Yang, S.H.; Cho, S.S.; Park, S.J.; Shin, H.J.; Ki, S.H. The potent anti-inflammatory and anti-adipogenic properties of Bamboo (Sasa coreana Nakai) leaves extract and its major constituent flavonoids. J. Agric. Food Chem. 2017, 65, 6665–6673. [Google Scholar] [CrossRef] [PubMed]
- Victoria, C.; Marian, G.; Soledad, G.V.; Pilar, O.; Vicente, L.; Jose, L. Oxidative stress and inflammation, a link between chronic kidney disease and cardiovascular disease. Kidney Int. (Suppl). 2008, 74, S4–S9. [Google Scholar] [Green Version]
- Stanley, J. Dietary cholesterol, blood cholesterol and cardiovascular disease. Lipid Technol. 2010, 22, 110–112. [Google Scholar] [CrossRef]
- Zhang, R.H.; Fu, J.Y.; Xu, C.J.; Geng, B.Q.; Yong, D.G. Study on antioxidation effect of extract of bamboo leaves. Pharmacol. Clin. Chin. Materia Med. 2004, 20, 22–23. [Google Scholar]
- Zhang, S.; Chen, J.; Sun, A.D. Protective effects of bamboo leaf flavonoids on damage of hepatocytes injured by CCl4. Sci. Technol. Food Ind. 2013, 34, 353–356. [Google Scholar]
- Heim, K.E.; Tagliaferro, A.R.; Bobilya, D.J. Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. J. Nutr. Biochem. 2002, 13, 572–584. [Google Scholar] [CrossRef]
- Luo, Y.Q.; Guo, H.; Hu, L.F.; Shi, L.W.; Qian, J.Q. Antioxidant activity of flavonoids from bamboo leaves. Food Sci. Technol. 2011, 36, 201–203. [Google Scholar]
- Ni, X.M.; Cao, G.Q. In vitro antibacterial and antioxidant activity of bamboo leaves extract. Nat. Prod. Res. Dev. 2011, 23, 717–721. [Google Scholar]
- Dejong, S.; Lanari, M.C. Extracts of olive polyphenols improve lipid stability in cooked beef and pork: Contribution of individual phenolics to the antioxidant activity of the extract. Food Chem. 2009, 116, 892–897. [Google Scholar] [CrossRef]
- Niu, Y.; Wan, X.L.; Zhang, X.H.; Zhao, L.G.; He, J.T.; Zhang, J.F.; Zhang, L.L.; Wang, T. Effect of supplemental fermented Ginkgo biloba leaves at different levels on growth performance, meat quality, and antioxidant status of breast and thigh muscles in broiler chickens. Poult. Sci. 2016, 96, 869–877. [Google Scholar]
- Wan, X.L.; Song, Z.H.; Niu, Y.; Cheng, K.; Zhang, J.F.; Ahmad, H.; Zhang, L.L.; Wang, T. Evaluation of enzymatically treated Artemisia annua L. on growth performance, meat quality, and oxidative stability of breast and thigh muscles in broilers. Poult. Sci. 2016, 96, 844–850. [Google Scholar]
- Liu, L.L.; Wu, C.J.; Miao, L.; Lou, Q.M.; Yu, S.K. Regulation of Lipid Metabolism and Oxidative Stress by Bamboo Leaf Flavonoid and Cassia Seed Compound Associated with Ascorbyl Palmitate and Vitamin E Succinate in Hyperlipidemia Rats. Modern Food Sci. Technol. 2014, 30, 12–16. [Google Scholar]
- Huang, J.B.; Xiao, Q.; Zhou, J.J.; Zeng, L.J.; Zhang, B.; Mao, X.L.; Huang, J.L.; Wei, X.J.; Chen, C.; Pan, S.L. Protection of bamboo leaf flavonoids on ethanol-induced acute gastric mucosal injury in mice. Drugs Clinic 2015, 12, 779–783. [Google Scholar]
- Wang, X.L. Study on the effects of flavonoids from bamboo leaves on myocardial ischemia-reperfusion injury in rats. Asia-pacific Trad. Med. 2015, 11, 29–30. [Google Scholar]
- Elisabeth, B.; Martha, H.; Gao, P.F.; Erin, K.; Green, C.J.; Roberta, F.; Jawed, A.; Roberto, M. Curcumin activates the haem oxygenase-1 gene via regulation of Nrf2 and the antioxidant-responsive element. Biochem. J. 2003, 371, 887–895. [Google Scholar] [Green Version]
- Koide, C.L.; Collier, A.C.; Berry, M.J.; Panee, J. The effect of bamboo extract on hepatic biotransforming enzymes—Findings from an obese–diabetic mouse model. J. Ethnopharmacol. 2011, 133, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Ying, C.; Mao, Y.; Chen, L.; Wang, S.; Ling, H.; Li, W.; Zhou, X. Bamboo leaf extract ameliorates diabetic nephropathy through activating the AKT signaling pathway in rats. Int. J. Biol. Macromol. 2017, 105, 1587–1594. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.F.; Yue, Y.D.; Tang, F.; Wang, J.; Yao, X. Detection of AntioxidatiVe Capacity of Bamboo Leaf Extract by Scavenging organic Free Radical DPPH. Spectrosc. Spect. Anal. 2008, 28, 1578–1582. [Google Scholar]
- Weingärtner, O.; Weingärtner, N.; Scheller, B.; Lütjohann, D.; Gräber, S.; Schäfers, H.J.; Böhm, M.; Laufs, U. Alterations in cholesterol homeostasis are associated with coronary heart disease in patients with aortic stenosis. Coronary Artery Dis. 2009, 20, 376–382. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.J.; Kim, M.H.; Kim, Y.R.; Park, J.W.; Park, W.J. Proteasome inhibition protects against diet-induced gallstone formation through modulation of cholesterol and bile acid homeostasis. Int. J. Mol. Med. 2017, 41, 1715–1723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hersberger, M.; Eckardstein, A.V. Modulation of high-density lipoprotein cholesterol metabolism and reverse cholesterol transport. Handb. Exp. Pharmacol. 2005, 170, 537–561. [Google Scholar]
- Mohan, B.; Kadirvel, R.; Natarajan, A.; Bhaskaran, M. Effect of probiotic supplementation on growth, nitrogen utilisation and serum cholesterol in broilers. Bri. Poult. Sci. 1996, 37, 395–401. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.R.; Zhang, M.; Tian, N.; Zhu, L.; Yang, Y. Effects of genistein on cholesterol metabolism in broilers fed a high-energy diet. Chin. J. Anim. Sci. 2018, 54, 93–98. [Google Scholar]
- Xu, C.; Zhang, Z.; Wang, X.H.; Zhou, B.; Guo, L.Y. Effect of soy isoflavone on the serum cholesterol concentration and hepatic cholesterol metabolism in hypercholesterolemic rats. Chin. J. Dis. Contl. Prev. 2014, 18, 986–990. [Google Scholar]
- Santi, A.; Duarte, M.; Menezes, C.; Loro, V.L. Association of Lipids with Oxidative Stress Biomarkers in Subclinical Hypothyroidism. Int. J. Endocrinol. 2012, 6, 856–863. [Google Scholar] [CrossRef] [PubMed]
- Duncan, R.E.; Sohemy, A.; Archer, M.C. Regulation of HMG-CoA reductase in MCF-7 cells by genistein, EPA, and DHA, alone and in combination with mevastatin. Cancer Lett. 224:221-228. Cancer Lett. 2005, 224, 221–228. [Google Scholar] [CrossRef]
- Seema, G.; Pandak, W.M.; Hylemon, P.B. LXR alpha is the dominant regulator of CYP7A1 transcription. Biochem. Biophys. Res. Commun. 2002, 293, 338–343. [Google Scholar]
- Basu, S.K.; Goldstein, J.L.; Anderson, G.W.; Brown, M.S. Degradation of cationized low density lipoprotein and regulation of cholesterol metabolism in homozygous familial hypercholesterolemia fibroblasts. Proc. Natl. Acad. Sci. USA 1976, 73, 3178–3182. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.L.; Wang, Z.; Yan, H.D. The relationship between chemical structure and bioactivity of bioflavonoids. J. Biol. 2005, 22, 4–7. [Google Scholar]
Item | Starter Phase (1–21 d) | Growth Phase (22–42 d) |
---|---|---|
Ingredient (%) | ||
Corn | 57.02 | 61.36 |
Soybean | 31.3 | 28.3 |
Corn gluten meal | 3.7 | 1.7 |
Soya oil | 3 | 4 |
Dicalcium phosphate | 2 | 1.6 |
Limestone | 1.2 | 1.3 |
L-Lysine | 0.33 | 0.31 |
DL-Methionine | 0.15 | 0.13 |
Sodium chloride | 0.3 | 0.3 |
Premix 1 | 1 | 1 |
Nutrient levels 2 | ||
ME (MJ/kg) | 12.57 | 12.91 |
CP (%) | 21.42 | 19.23 |
Lys (%) | 1.20 | 1.10 |
Met (%) | 0.50 | 0.44 |
Calcium (%) | 1 | 0.93 |
Available Phosphorus (%) | 0.46 | 0.39 |
Gene Name 1 | Primers Sequence (5′–3′) | Gene Bank Number | |
---|---|---|---|
β-Actin | Forward | TGCTGTGTTCCCATCTATCG | NM_205518.1 |
Reverse | TTGGTGACAATACCGTGTTCA | ||
CYP7A1 | Forward | CACCATGGATCTGGGGAACA | NM_001001753.1 |
Reverse | AGGCACATCCCAGGTATGGA | ||
LDLR | Forward | CTTCTGGTCTGACTGCGGTT | NM_204452.1 |
Reverse | CAGAACACGGAGTCCTCGAA | ||
HMGCR | Forward | TTCTCGGCCGGGCGATTT | NM_204485.2 |
Reverse | GGCACTCATAGTTCCAGCCAC | ||
SREBP-2 | Forward | GTTCCTGGAGGTGTCAAGCA | AJ414379.1 |
Reverse | CAGACTTGTGCATCTTGGCG | ||
SOD | Forward | CCGGCTTGTCTGATGGAGAT | NM_205064.1 |
Reverse | TGCATCTTTTGGTCCACCGT | ||
CAT | Forward | GGTTCGGTGGGGTTGTCTTT | NM_001031215.2 |
Reverse | CACCAGTGGTCAAGGCATCT | ||
GSH-Px | Forward | GACCAACCCGCAGTACATCA | NM_001277853.2 |
Reverse | GAGGTGCGGGCTTTCCTTTA |
Item: Percentage of (%) | Diet Treatment 3 | SEM 1 | p Value | ||||||
---|---|---|---|---|---|---|---|---|---|
CON | BLE1 | BLE2 | BLE3 | BLE4 | BLE5 | Linear 2 | Quadratic 2 | ||
Eviscerated yield | 75.368 c | 78.233 a b | 77.862 a b | 76.665 b c | 77.618 a b | 78.475 a | 0.247 | 0.007 | 0.341 |
Breast meat | 20.213 | 22.232 | 22.344 | 23.428 | 22.631 | 23.380 | 0.375 | 0.608 | 0.229 |
Thigh meat | 18.763 | 18.154 | 18.119 | 18.206 | 18.332 | 18.088 | 0.208 | 0.533 | 0.610 |
Abdominal fat | 1.278 a | 0.847 b | 0.900 b | 0.963 b | 0.902 b | 0.869 b | 0.042 | 0.027 | 0.085 |
Liver weight | 2.536 a | 2.163 b | 2.113 b | 2.103 b | 2.145 b | 2.296 a b | 0.047 | 0.178 | 0.005 |
Item | Diet Treatment 3 | SEM 1 | p Value | ||||||
---|---|---|---|---|---|---|---|---|---|
CON | BLE1 | BLE2 | BLE3 | BLE4 | BLE5 | Linear 2 | Quadratic 2 | ||
TC (mmol/L) | 4.478 | 4.417 | 4.104 | 4.244 | 4.293 | 4.287 | 0.226 | 0.367 | 0.235 |
TG (mmol/L) | 0.404 a | 0.369 a b | 0.305 b | 0.327 b | 0.322 b | 0.373 a b | 0.010 | 0.148 | 0.002 |
HDL-c (mmol/L) | 1.617 | 1.786 | 1.841 | 1.839 | 1.681 | 1.791 | 0.030 | 0.355 | 0.083 |
LDL-c (mmol/L) | 2.958 a | 2.917 a | 2.488 b | 2.356 b | 2.401 b | 1.843 c | 0.068 | <0.001 | 0.565 |
GLU (mmol/L) | 12.523 | 13.080 | 12.444 | 12.358 | 11.931 | 12.713 | 0.124 | 0.299 | 0.473 |
Item | Diet Treatment 3 | SEM 1 | p Value | ||||||
---|---|---|---|---|---|---|---|---|---|
CON | BLE1 | BLE2 | BLE3 | BLE4 | BLE5 | Linear 2 | Quadratic 2 | ||
T-AOC (U/ml) | 5.848 c | 5.946 c | 6.804 b c | 6.778 b c | 8.099 a | 7.688 a b | 0.162 | <0.001 | 0.818 |
CAT(U/ml) | 5.405 b | 6.504 a b | 7.437 a | 7.919 a | 6.730 a b | 8.551 a | 0.288 | 0.003 | 0.302 |
SOD(U/ml) | 162.928 | 167.121 | 163.238 | 165.775 | 168.467 | 164.067 | 1.027 | 0.565 | 0.476 |
GSH-Px(U/ml) | 315.353 c | 350.001 b | 390.35 a | 383.333 a | 348.684 b | 345.175 b | 4.882 | 0.097 | <0.001 |
MDA (nmol/ml) | 3.098 | 3.013 | 2.842 | 3.077 | 3.184 | 3.034 | 0.056 | 0.713 | 0.535 |
Item | Diet Treatment 3 | SEM 1 | p Value | ||||||
---|---|---|---|---|---|---|---|---|---|
CON | BLE1 | BLE2 | BLE3 | BLE4 | BLE5 | Linear 2 | Quadratic 2 | ||
T-AOC (U/mg prot) | 2.099 b | 2.479 a | 2.753 a | 2.527 a | 2.565 a | 2.545 a | 0.053 | 0.028 | 0.009 |
CAT (U/mg prot) | 11.209 c d | 12.164 b c | 11.129 d | 12.089 b c d | 12.473 b | 13.976 a | 0.171 | <0.001 | 0.007 |
SOD (U/mg prot) | 516.916 c | 556.453 a b | 577.177 a | 555.953 a b | 537.516 b c | 583.752 a | 5.293 | 0.010 | 0.250 |
GSH-Px (U/mg prot) | 63.602 b | 66.128 a b | 66.280 a b | 70.900 a b | 70.038 a b | 72.897 a | 1.190 | 0.011 | 0.928 |
MDA (nmol/mg prot) | 1.733 a | 1.468 a b | 1.082 b | 1.214 b | 1.210 b | 1.266 b | 0.061 | 0.014 | 0.018 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, M.; Xie, Z.; Jia, M.; Li, A.; Han, H.; Wang, T.; Zhang, L. Effect of Bamboo Leaf Extract on Antioxidant Status and Cholesterol Metabolism in Broiler Chickens. Animals 2019, 9, 699. https://doi.org/10.3390/ani9090699
Shen M, Xie Z, Jia M, Li A, Han H, Wang T, Zhang L. Effect of Bamboo Leaf Extract on Antioxidant Status and Cholesterol Metabolism in Broiler Chickens. Animals. 2019; 9(9):699. https://doi.org/10.3390/ani9090699
Chicago/Turabian StyleShen, Mingming, Zechen Xie, Minghui Jia, Anqi Li, Hongli Han, Tian Wang, and Lili Zhang. 2019. "Effect of Bamboo Leaf Extract on Antioxidant Status and Cholesterol Metabolism in Broiler Chickens" Animals 9, no. 9: 699. https://doi.org/10.3390/ani9090699
APA StyleShen, M., Xie, Z., Jia, M., Li, A., Han, H., Wang, T., & Zhang, L. (2019). Effect of Bamboo Leaf Extract on Antioxidant Status and Cholesterol Metabolism in Broiler Chickens. Animals, 9(9), 699. https://doi.org/10.3390/ani9090699