Effects of Adding Various Silage Additives to Whole Corn Crops at Ensiling on Performance, Rumen Fermentation, and Serum Physiological Characteristics of Growing-Finishing Cattle
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Duniere, L.; Sindou, J.; Chaucheyras-Durand, F.; Chevallier, I.; Thevenot-Sergentet, D. Silage processing and strategies to prevent persistence of undesirable microorganisms. Anim. Feed Sci. Tech. 2013, 182, 1–15. [Google Scholar] [CrossRef]
- Thornton, P.K. Livestock production: recent trends, future prospects. Phil. Trans. R. Soc. B 2010, 365, 2853–2867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gollop, N.; Zakin, V.; Weinberg, Z.G. Antibacterial activity of lactic acid bacteria included in inoculants for silage and in silages treated with these inoculants. J. Appl. Microbiol. 2005, 98, 662–666. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, J.M.; Rinne, M. Highlights of progress in silage conservation and future perspectives. Grass Forage Sci. 2018, 73, 40–52. [Google Scholar] [CrossRef]
- Gerlach, K.; Ro, F.; Wei, K.; Büscher, W.; Südekum, K. Changes in maize silage fermentation products during aerobic deterioration and effects on dry matter intake by goats. Agri. Food Sci. 2013, 22, 168–181. [Google Scholar] [CrossRef] [Green Version]
- Muck, R.E.; Nadeau, E.M.G.; McAllister, T.A.; Contreras-Govea, F.E.; Santos, M.C.; Kung, L., Jr. Silage review: Recent advances and future uses of silage additives. J. Dairy Sci. 2018, 101, 3980–4000. [Google Scholar] [CrossRef] [PubMed]
- Driehuis, F.; Oude Elferink, S.J.W.H.; Van Wikselaar, P.G. Fermentation characteristics and aerobic stability of grass silage inoculated with lactobacillus buchneri, with or without homofermentative lactic acid bacteria. Grass Forage Sci. 2001, 56, 330–343. [Google Scholar] [CrossRef]
- Reich, L.J.; Kung, L., Jr. Effects of combining lactobacillus buchneri 40788 with various lactic acid bacteria on the fermentation and aerobic stability of corn silage. Anim. Feed Sci. Tech. 2010, 159, 105–109. [Google Scholar] [CrossRef]
- Addah, W.; Baah, J.; Okine, E.K.; McAllister, T.A. A third-generation esterase inoculant alters fermentation pattern and improves aerobic stability of barley silage and the efficiency of body weight gain of growing feedlot cattle. J. Anim. Sci. 2012, 90, 1541–1552. [Google Scholar] [CrossRef]
- Hafner, S.D.; Franco, R.B.; Kung Jr., L.; Rotz, C.A.; Mitloehner, F. Potassium sorbate reduces production of ethanol and 2 esters in corn silage. J. Dairy Sci. 2014, 97, 7870–7878. [Google Scholar] [CrossRef]
- Da Silva, N.C.; Dos Santos, J.P.; Ávila, C.L.S.; Evangelista, A.R.; Casagrande, D.R.; Bernardes, T.F. Evaluation of the effects of two lactobacillus buchneri strains and sodium benzoate on the characteristics of corn silage in a hot-climate environment. Grassl. Sci. 2014, 60, 169–177. [Google Scholar] [CrossRef]
- Pahlow, G.; Muck, R.E.; Driehuis, F.; Elferink, S.J.W.H.; Spoelstra, S.F. Microbiology of ensiling. In Silage Science and Technology; Buxton, D.R., Muck, R.E., et al., Eds.; Agronomy: Madison, WI, USA, 2003; pp. 31–49. [Google Scholar]
- National Research Council. Guide for the Care and Use of Laboratory Animals, 8th ed.; National Academy Press: Washington, DC, USA, 2010. [Google Scholar]
- National Academies of Sciences, Engineering, and Medicine. Nutrient Requirements of Beef Cattle, 8th ed.; National Academy Press: Washington, DC, USA, 2016. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of AOAC International, 17th ed.; The Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2000. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Erwin, E.S.; Marco, G.J.; Emery, E.M. Volatile fatty acid analyses of blood and rumen fluid by gas chromatography. J. Dairy Sci. 1961, 44, 1768. [Google Scholar] [CrossRef]
- Broderick, G.A.; Kang, J.H. Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. J. Dairy Sci. 1980, 63, 64–75. [Google Scholar] [CrossRef]
- Contreras-Govea, F.E.; Muck, R.E.; Mertens, D.R.; Weimer, P.J. Microbial inoculant effects on silage and in vitro ruminal fermentation, and microbial biomass estimation for alfalfa, bmr corn, and corn silages. Anim. Feed. Sci. Tech. 2011, 163, 2–10. [Google Scholar] [CrossRef]
- Weinberg, Z.G.; Muck, R.E.; Weimer, P.J. The survival of silage inoculant lactic acid bacteria in rumen fluid. J. Appl. Microbiol. 2003, 94, 1066–1071. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ellis, J.L.; Hindrichsen, I.K.; Klop, G.; Kinley, R.D.; Milora, N.; Bannink, A.; Dijkstra, J. Effects of lactic acid bacteria silage inoculation on methane emission and productivity of Holstein Friesian dairy cattle. J. Dairy Sci. 2016, 99, 7159–7174. [Google Scholar] [CrossRef] [PubMed]
- Basso, F.C.; Adesogan, A.T.; Lara, E.C.; Rabelo, C.H.S.; Berchielli, T.T.; Teixeira, I.A.M.A.; Siqueira, G.R.; Reis, R.A. Effects of feeding corn silage inoculated with microbial additives on the ruminal fermentation, microbial protein yield, and growth performance of lambs. J. Anim. Sci. 2014, 92, 5640–5650. [Google Scholar] [CrossRef]
- Satter, L.D.; Slyter, L.L. Effect of ammonia concentration on rumen microbial protein production in vitro. Brit. J. Nutr. 1974, 32, 199–208. [Google Scholar] [CrossRef]
- Fellner, V.; Phillip, L.E.; Sebastian, S.; Idziak, E.S. Effects of a bacterial inoculant and propionic acid on preservation of high-moisture ear corn, and on rumen fermentation, digestion and growth performance of beef cattle. Can. J. Anim. Sci. 2001, 81, 273–280. [Google Scholar] [CrossRef]
- Nozad, S.; Ramin, A.; Moghadam, G.; Asri-Rezaei, S.; Babapour, A.; Ramin, S. Relationship between blood urea, protein, creatinine, triglycerides and macro-mineral concentrations with the quality and quantity of milk in dairy Holstein cows. Vet. Res. Forum. 2012, 3, 55–59. [Google Scholar] [PubMed]
- Mohammadi, V.; Anassori, E.; Jafari, S. Measure of energy related biochemical metabolites changes during peri-partum period in Makouei breed sheep. Vet. Res. Forum. 2016, 7, 35–39. [Google Scholar] [PubMed]
- Russell, K.E.; Roussel, A.J. Evaluation of the ruminant serum chemistry profile. Vet. Clin. Food Anim. 2007, 23, 403–426. [Google Scholar] [CrossRef] [PubMed]
- Cozzi, G.; Ravarotto, L.; Gottardo, F.; Stefani, A.L.; Contiero, B.; Moro, L.; Brscic, M.; Dalvit, P. Short communication: Reference values for blood parameters in Holstein dairy cows: effects of parity, stage of lactation, and season of production. J. Dairy Sci. 2011, 94, 3895–3901. [Google Scholar] [CrossRef] [PubMed]
- Kleinschmit, D.H.; Kung, L., Jr. A meta-analysis of the effects of lactobacillus buchneri on the fermentation and aerobic stability of corn and grass and small-grain silages. J. Dairy Sci. 2006, 89, 4005–4013. [Google Scholar] [CrossRef]
- Schmidt, R.J.; Hu, W.; Mills, J.A.; Kung, L., Jr. The development of lactic acid bacteria and lactobacillus buchneri and their effects on the fermentation of alfalfa silage. J. Dairy Sci. 2009, 92, 5005–5010. [Google Scholar] [CrossRef]
- Bernardes, T.F.; De Oliveira, I.L.; Lara, M.A.S.; Casagrande, D.R.; Avila, C.L.S.; Pereira, O.G. Effects of potassium sorbate and sodium benzoate at two application rates on fermentation and aerobic stability of maize silage. Grass Forage Sci. 2015, 70, 491–498. [Google Scholar] [CrossRef]
- Da Silva, T.C.; Smith, M.L.; Barnard, A.M.; Kong, L., Jr. The effect of a chemical additive on the fermentation and aerobic stability of high-moisture corn. J. Dairy Sci. 2015, 98, 8904–8912. [Google Scholar] [CrossRef]
- Knicky, M.; Spörndly, R. Short communication: Use of a mixture of sodium nitrite, sodium benzoate, and potassium sorbate in aerobically challenged silages. J. Dairy Sci. 2015, 98, 5729–5734. [Google Scholar] [CrossRef] [Green Version]
- Henderson, N. Silage additives. Anim. Feed Sci. Tech. 1993, 45, 35–56. [Google Scholar] [CrossRef]
- Robach, M.C.; Sofos, J.N. Use of sorbates in meat products, fresh poultry and poultry products: A review. J. Food Prot. 1982, 45, 374–383. [Google Scholar] [CrossRef] [PubMed]
- Chipley, J.R. Sodium benzoate and benzoic acid. In Antimicrobials in Food, 3rd ed.; Davidson, P.M., Sofos, J.N., et al., Eds.; CRC Press: Boca Raton, FL, USA, 2015; pp. 11–48. [Google Scholar]
- Woolford, M.K. Microbiological screening of food preservatives, cold sterilants and specific antimicrobial agents as potential silage additives. J. Sci. Food Agric. 1975, 26, 226–237. [Google Scholar] [CrossRef] [PubMed]
- Auerbach, H.; Nadeau, E. Effects of chemical additives on whole-crop maize silage traits. In Proceedings of the 22nd International Grassland Congress, Sydney, Australia, 15–19 September 2013; pp. 736–737. [Google Scholar]
- Huuskonen, A.; Seppala, A.; Rinne, M. Effects of silage additives on intake, live-weight gain and carcass traits of growing and finishing dairy bulls fed pre-wilted grass silage and barley grain-based ration. J. Agric. Sci. 2017, 155, 1342–1352. [Google Scholar] [CrossRef]
- Nadeau, E.; Johansson, B.; Richardt, W.; Murphy, M.; Auerbach, H. Protein quality of grass silage and its effects on dairy cow performance. Proc. Aust. Soc. Anim. Prod. 2014, 30, 210. [Google Scholar]
- Nadeau, E.; Arnesson, A. Intake and performance of ewes and lambs fed grass-clover silage treated with chemical additives. In Proceedings of the 26th General Meeting of the European Grassland Federation, Trondheim, Norway, 4–8 September 2016; pp. 479–481. [Google Scholar]
- Ighodaro, O.M.; Akinloye, O.A. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria J. Med. 2018, 54, 287–293. [Google Scholar] [CrossRef] [Green Version]
- Peng, J.; Lu, T.; Chang, H.; Ge, X.; Huang, B.; Li, W. Elevated Levels of Plasma Superoxide Dismutases 1 and 2 in Patients with Coronary Artery Disease. Biomed. Res. Int. 2016, 2016, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Item | Treatments 1 | |||
---|---|---|---|---|
CON | CLB | MS | CLBMS | |
Fermentation parameters, mg/g DM | ||||
Acetate | 17.41 | 17.77 | 14.32 | 10.57 |
Propionate | 1.04 | 0.73 | 0.85 | 0.71 |
Lactate | 23.70 | 18.88 | 21.08 | 18.10 |
NH3–N | 3.05 | 2.96 | 2.85 | 2.79 |
Nutritive values, %DM 2 | ||||
Dry matter | 32.73 | 29.65 | 32.08 | 27.54 |
Crude protein | 9.65 | 10.10 | 9.36 | 9.80 |
Soluble crude protein | 4.74 | 5.85 | 5.07 | 4.35 |
Ether extract | 4.49 | 3.42 | 4.97 | 4.20 |
Neutral detergent fiber | 38.54 | 40.90 | 38.34 | 44.67 |
Acid detergent fiber | 20.69 | 22.99 | 20.58 | 26.03 |
Ash | 4.96 | 4.57 | 5.10 | 6.15 |
Starch | 18.41 | 20.63 | 21.37 | 20.71 |
Metabolic energy, MJ/kg | 10.79 | 10.38 | 10.88 | 10.50 |
Item 1 | Treatments 2 | |||
---|---|---|---|---|
CON | CLB | MS | CLBMS | |
DM | 54.98 | 53.66 | 54.66 | 52.39 |
Crude protein | 14.10 | 14.37 | 13.93 | 14.19 |
Ether extract | 3.90 | 3.26 | 4.18 | 3.73 |
Neutral detergent fiber | 31.64 | 33.06 | 31.53 | 35.32 |
Acid detergent fiber | 15.10 | 16.49 | 15.04 | 18.31 |
Ash | 5.52 | 5.28 | 5.60 | 6.23 |
Ca | 0.73 | 0.73 | 0.72 | 0.74 |
P | 0.31 | 0.35 | 0.31 | 0.35 |
ME, MJ/kg | 11.22 | 10.96 | 11.26 | 11.05 |
Item 2 | Treatments 3 | SEM | p-Value | |||
---|---|---|---|---|---|---|
CON | CLB | MS | CLBMS | |||
DMI, kg/day | 11.29 b | 13.00 a | 11.37 b | 12.71 a | 0.21 | <0.01 |
ADG, kg/day | 1.53 | 1.67 | 1.57 | 1.54 | 0.03 | 0.33 |
FCR | 7.57 | 7.87 | 7.30 | 8.35 | 0.16 | 0.13 |
Item | Treatments 2 | SEM | p-Value | |||
---|---|---|---|---|---|---|
CON | CLB | MS | CLBMS | |||
NH3–N, mg/L | 21.84 c | 67.02 a | 51.63 b | 63.44 ab | 3.16 | <0.01 |
pH | 6.76 a | 6.55 b | 6.76 a | 6.71 a | 0.02 | <0.01 |
Total VFA, mmol/L | 38.73 | 45.47 | 41.34 | 40.78 | 1.35 | 0.25 |
Individual VFA, mmol/L | ||||||
Acetate | 27.45 | 29.95 | 28.25 | 27.55 | 0.80 | 0.60 |
Propionate | 6.40 b | 8.98 a | 7.62 ab | 7.54 ab | 0.39 | 0.04 |
Isobutyrate | 0.28 b | 0.43 ab | 0.54 a | 0.51 a | 0.03 | 0.02 |
Butyrate | 3.74 b | 5.14 a | 4.03 b | 4.33 ab | 0.18 | 0.02 |
Isovalerate | 0.82 | 0.93 | 0.89 | 0.82 | 0.03 | 0.34 |
Valerate | 0.03 | 0.05 | 0.03 | 0.03 | 0.01 | 0.22 |
VFA profile, mol/100 mol | ||||||
Acetate | 70.48 a | 66.16 c | 68.50 b | 67.89 bc | 0.35 | <0.01 |
Propionate | 16.52 b | 19.66 a | 18.22 ab | 18.13 ab | 0.33 | 0.01 |
Iso-butyrate | 1.33 a | 0.64 b | 1.37 a | 1.14 a | 0.09 | 0.01 |
Butyrate | 9.48 b | 11.41 a | 9.68 b | 10.72 ab | 0.24 | 0.02 |
Iso-valerate | 2.12 | 2.03 | 2.17 | 2.06 | 0.05 | 0.81 |
Valerate | 0.06 | 0.1 | 0.06 | 0.06 | 0.01 | 0.12 |
Acetate/Propionate | 4.37a | 3.43 b | 3.83 b | 3.79 b | 0.08 | <0.01 |
Item | Treatments 2 | SEM | p-Value | |||
---|---|---|---|---|---|---|
CON | CLB | MS | CLBMS | |||
Antioxidant ability indicators | ||||||
Superoxide dismutase, U/mL | 172.19 b | 176.47 b | 174.67 b | 193.61 a | 3.16 | 0.04 |
T-AOC, U/mL | 11.04 | 10.91 | 11.92 | 9.32 | 0.59 | 0.49 |
Catalase, U/mL | 60.81 | 58.82 | 55.49 | 57.78 | 2.11 | 0.87 |
Malondialdehyde, nmol/mL | 5.10 | 3.96 | 4.21 | 4.20 | 0.30 | 0.56 |
Organ physiological indicators | ||||||
Alanine aminotransferase, U/L | 26.45 | 22.66 | 22.70 | 24.28 | 0.68 | 0.13 |
Aspartate aminotransferase, U/L | 76.4 | 64.10 | 62.49 | 64.19 | 2.53 | 0.14 |
Alkaline phosphatase, U/L | 116.19 | 148.35 | 126.81 | 132.94 | 5.96 | 0.26 |
Lactate dehydrogenase, U/L | 1306.69 | 1150.47 | 1174.66 | 1236.77 | 27.93 | 0.12 |
Creatine kinase, U/L | 103.26 b | 116.41 b | 292.01 a | 156.06 b | 24.51 | 0.02 |
Cholesterol, mmol/L | 2.25 b | 2.62 a | 2.61 a | 2.91 a | 0.07 | <0.01 |
Routine biochemical parameters | ||||||
Glucose, mmol/L | 4.31 b | 4.60 ab | 4.64 ab | 4.89 a | 0.06 | <0.01 |
Total triglyceride, mmol/L | 0.28 b | 0.29 ab | 0.28 b | 0.31 a | 0.01 | 0.11 |
Creatinine, µmol/L | 148.42 | 150.12 | 140.48 | 155.14 | 2.63 | 0.25 |
Total protein, g/L | 61.68 | 60.24 | 61.51 | 63.40 | 0.78 | 0.62 |
Albumin, g/L | 27.51 b | 30.37 a | 28.00 b | 29.84 ab | 0.42 | 0.03 |
Blood urea nitrogen, mmol/L | 2.89 b | 3.44 a | 2.69 b | 3.64 a | 0.09 | <0.01 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Zhao, X.; Chen, W.; Zhou, Z.; Meng, Q.; Wu, H. Effects of Adding Various Silage Additives to Whole Corn Crops at Ensiling on Performance, Rumen Fermentation, and Serum Physiological Characteristics of Growing-Finishing Cattle. Animals 2019, 9, 695. https://doi.org/10.3390/ani9090695
Zhang Y, Zhao X, Chen W, Zhou Z, Meng Q, Wu H. Effects of Adding Various Silage Additives to Whole Corn Crops at Ensiling on Performance, Rumen Fermentation, and Serum Physiological Characteristics of Growing-Finishing Cattle. Animals. 2019; 9(9):695. https://doi.org/10.3390/ani9090695
Chicago/Turabian StyleZhang, Yawei, Xiangwei Zhao, Wanbao Chen, Zhenming Zhou, Qingxiang Meng, and Hao Wu. 2019. "Effects of Adding Various Silage Additives to Whole Corn Crops at Ensiling on Performance, Rumen Fermentation, and Serum Physiological Characteristics of Growing-Finishing Cattle" Animals 9, no. 9: 695. https://doi.org/10.3390/ani9090695
APA StyleZhang, Y., Zhao, X., Chen, W., Zhou, Z., Meng, Q., & Wu, H. (2019). Effects of Adding Various Silage Additives to Whole Corn Crops at Ensiling on Performance, Rumen Fermentation, and Serum Physiological Characteristics of Growing-Finishing Cattle. Animals, 9(9), 695. https://doi.org/10.3390/ani9090695