Variation in the Fatty Acid Synthase Gene (FASN) and Its Association with Milk Traits in Gannan Yaks
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Yaks Investigated and Data Collection
2.2. Polymerase Chain Reaction (PCR) Amplification and Single-Stranded Conformational Polymorphism (SSCP) Analysis
2.3. DNA Sequencing and Sequence Analyses
2.4. Haplotype Determination
2.5. Statistical Analyses
2.6. RNA Extraction and RT-qPCR Analysis
3. Results
3.1. Identification of Sequence Variation in Yak FASN
3.2. Association of Yak FASN Haplotype and Diplotype with Milk Traits
3.3. Expression of Yak FASN in Different Tissues
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wiener, G.; Han, J.L.; Long, R.J. The Yak, 2nd ed.; RAP Publication: Bangkok, Thailand, 2003; p. 460. [Google Scholar]
- Zi, X.D.; Zhong, G.H.; Wen, Y.L.; Zhong, J.C.; Lin, C.L.; Ni, Y.A.; Yezi, Y.H.; Ashi, M.G. Growth performance, carcass composition and meat quality of Jiulong-yak (Bos grunniens). Asian Austral. J. Anim. 2009, 17, 410–414. [Google Scholar] [CrossRef]
- Yu, Q.; Han, L.; Jiang, Y.; Chen, Q.; Shen, H. Analysis of the nutritional components and flavorous substances of white yak’s milk. Acta Nutrimenta Sin. 2005, 27, 333–335. [Google Scholar]
- Li, H.; Ma, Y.; Li, Q.; Wang, J.; Cheng, J.; Xue, J.; Shi, J. The chemical composition and nitrogen distribution of Chinese yak (Maiwa) milk. Int. J. Mol. Sci. 2011, 12, 4885–4895. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Huang, Z.; Liu, H.; Zhang, Y.; Ren, F. Yak milk fat globules from the qinghai-tibetan plateau: Membrane lipid composition and morphological properties. Food Chem. 2018, 245, 731–737. [Google Scholar] [CrossRef] [PubMed]
- Wakil, S.J.; Stoops, J.K.; Joshi, V.C. Fatty Acid Synthesis and its Regulation. Annu. Rev. Biochem. 1983, 52, 537–579. [Google Scholar] [CrossRef] [PubMed]
- Roy, R.; Taourit, S.; Zaragoza, P.; Eggen, A.; Rodellar, C. Genomic structure and alternative transcript of bovine fatty acid synthase gene (FASN): Comparative analysis of the FASN gene between monogastric and ruminant species. Cytogenet. Genome. Res. 2005, 111, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Maier, T.; Jenni, S.; Ban, N. Architecture of Mammalian Fatty Acid Synthase at 4.5 A Resolution. Science 2006, 311, 1258–1262. [Google Scholar] [CrossRef]
- Abe, T.; Saburi, J.; Hasebe, H.; Nakagawa, T.; Misumi, S.; Nade, T.; Nakajima, H.; Shoji, N.; Kobayashi, M.; Kobayashi, E. Novel Mutations of the FASN Gene and Their Effect on Fatty Acid Composition in Japanese Black Beef. Biochem. Genet. 2009, 47, 397–411. [Google Scholar] [CrossRef] [PubMed]
- Berndt, J.; Kovacs, P.; Ruschke, K.; Klöting, N.; Fasshauer, M.; Schön, M.R.; Körner, A.; Stumvoll, M.; Blüher, M. Fatty acid synthase gene expression in human adipose tissue: Association with obesity and type 2 diabetes. Diabetologia 2007, 50, 1472–1480. [Google Scholar] [CrossRef] [PubMed]
- Roy, R.; Ordovas, L.; Zaragoza, P.; Romero, A.; Moreno, C.; Altarriba, J.; Rodellar, C. Association of polymorphisms in the bovine FASN gene with milk-fat content. Anim. Genet. 2006, 37, 215–218. [Google Scholar] [CrossRef]
- Morris, C.A.; Cullen, N.G.; Glass, B.C.; Hyndman, D.L.; Manley, T.R.; Hickey, S.M.; McEwan, J.C.; Pitchford, W.S.; Bottema, C.D.; Lee, M.A. Fatty acid synthase effects on bovine adipose fat and milk fat. Mamm. Genome. 2007, 18, 64–74. [Google Scholar] [CrossRef] [PubMed]
- Ordovás, L.; Roy, R.; Pampín, S.; Zaragoza, P.; Osta, R.; Rodríguez-Rey, J.C.; Rodellar, C. The g.763G>C SNP of the bovine FASN gene affects its promoter activity via Sp-mediated regulation: Implications for the bovine lactating mammary gland. Physiol. Genom. 2008, 34, 144–148. [Google Scholar] [CrossRef] [PubMed]
- Schennink, A.; Bovenhuis, H.; Léon-Kloosterziel, K.M.; Arendonk, J.A.; Visker, M.H. Effect of polymorphisms in the FASN, OLR1, PPARGC1A, PRL and STAT5A genes on bovine milk-fat composition. Anim. Genet. 2009, 40, 909–916. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, H.; Inada, S.; Kobayashi, E.; Abe, T.; Hasebe, H.; Sasazaki, S.; Oyama, K.; Mannen, H. Identification of SNPs in the FASN gene and their effect on fatty acid milk composition in Holstein cattle. Livest. Sci. 2012, 144, 281–284. [Google Scholar] [CrossRef]
- Mohammad, S.I.; Naserian, A.A.; Nasiri, M.R.; Majidzadeh, H.R.; Valizadeh, R. Evaluation of SCD and FASN Gene Expression in Baluchi, Iran-Black, and Arman Sheep. Mol. Biol. Rep. 2016, 5, 33–39. [Google Scholar]
- Renaville, B.; Bacciu, N.; Lanzoni, M.; Mossa, F.; Piasentier, E. Association of single nucleotide polymorphisms in fat metabolism candidate genes with fatty acid profiles of muscle and subcutaneous fat in heavy pigs. Meat Sci. 2018, 139, 220–227. [Google Scholar] [CrossRef]
- Qiu, Q.; Zhang, G.; Ma, T.; Qian, W.; Wang, J.; Ye, Z.; Cao, C.; Hu, Q.; Kim, J.; Larkin, D.M.; et al. The yak genome and adaptation to life at high altitude. Nat. Genet. 2012, 44, 946–949. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chu, M.; Wu, X.Y.; Guo, X.; Pei, J.; Jiao, F.; Fang, H.T.; Liang, C.N.; Ding, X.Z.; Bao, P.J.; Yan, P. Association between single-nucleotide polymorphisms of fatty acid synthase gene and meat quality traits in Datong Yak (Bos grunniens). Genet. Mol. Res. 2015, 14, 2617–2625. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Hickford, J.G.H.; Fang, Q. A two-step procedure for extracting genomic DNA from dried blood spots on filter paper for polymerase chain reaction amplification. Anal. Biochem. 2006, 354, 159–161. [Google Scholar] [CrossRef] [PubMed]
- Byun, S.O.; Fang, Q.; Zhou, H.; Hickford, J.G.H. An effective method for silver-staining dna in large numbers of polyacrylamide gels. Anal. Biochem. 2009, 38, 174–175. [Google Scholar] [CrossRef]
- Gong, H.; Zhou, H.; Hickford, J.G.H. Diversity of the glycine/tyrosine-rich keratin-associated protein 6 gene (KAP6) family in sheep. Mol. Biol. Rep. 2011, 38, 31–35. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Mauric, M.; Masek, T.; Ljoljic, D.B.; Grbavac, J.; Starcevic, K. Effects of different variants of the FASN gene on production performance and milk fatty acid composition in Holstein x Simmental dairy cows. Vet. Med. 2019, 64, 101–108. [Google Scholar] [CrossRef]
- Chorev, M.; Carmel, L. The Function of Introns. Front. Genet. 2012, 3, 55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oskouian, B.; Rangan, V.S.; Smith, S. Regulatory elements in the first intron of the rat fatty acid synthase gene. Biochem. J. 1997, 324, 113–121. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Vohra, V.; Ratwan, P.; Chopral, A.; Chakaravarty, A.K. Influence of FASN gene polymorphism on milk production and its composition traits in Murrah buffaloes. Indian J. Anim. Res. 2017, 51, 640–643. [Google Scholar] [CrossRef]
- Ji, S.; Yang, R.; Lu, C.; Qiu, Z.; Yan, C.; Zhao, Z. Differential expression of PPARγ FASN and ACADM genes in various adipose tissues and longissimus dorsi muscle from Yanbian yellow cattle and Yan yellow cattle. Asian Austral. J. Anim. 2014, 27, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Semenkovich, C.F.; Coleman, T.; Fiedorek, F.T.J. Human fatty acid synthase mRNA: Tissue distribution, genetic mapping, and kinetics of decay after glucose deprivation. J. Lipid Res. 1995, 36, 1507–1521. [Google Scholar]
Gene | Region | Primer Sequence (5′-3′) | Amplicon Size (bp) | Purpose of Primers |
---|---|---|---|---|
FASN | Exon 24-intron 24 | F: CTGTCACCTTCCTCACTTGCCCT | 390 | PCR-SSCP analysis |
R: GAGGAGGAATCGGCCAGGATGTT | ||||
FASN | Exon 34 | F: CCCTCTAAAGCCGTCCTCACCA | 220 | PCR-SSCP analysis |
R: CCAGACCTTCATTTGCCAATCCTC | ||||
FASN | F: ACAAGACAAGCCCGAGGAG | 203 | RT-qPCR | |
R: TAGCAGGCAGTTCCGAGAG | ||||
β-actin | F: AGCCTTCCTTCCTGGGCATGGA | 113 | RT-qPCR | |
R: GGACAGCACCGTGTTGGCGTAGA |
Genotype Frequency (%) | Variant Frequencies (%) | Haplotype Frequencies (%) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Exon 24-Intron 24 | Exon 34 | Exon 24-Intron 24 | Exon 34 | Exon 24-Intron 24 to Exon 34 | ||||||||
A1A1 | A1B1 | B1B1 | A2A2 | A2B2 | A1 | B1 | A2 | B2 | A1-A2 | A1-B2 | B1-A2 | B1-B2 |
31.60 | 51.08 | 17.32 | 56.21 | 43.79 | 57.00 | 43.00 | 78.00 | 22.00 | 49.71 | 8.96 | 37.86 | 3.47 |
Traits | Haplotype Assessed | Other Haplotypes in Model | Mean ± SE | p Value | |||
---|---|---|---|---|---|---|---|
Present | n | Absent | n | ||||
Milk protein (%) | A1-A2 | 4.9 ± 0.07 | 131 | 4.8 ± 0.12 | 42 | 0.421 | |
A1-B2 | 4.9 ± 0.14 | 31 | 4.9 ± 0.07 | 142 | 0.880 | ||
B1-A2 | 4.9 ± 0.08 | 101 | 4.9 ± 0.09 | 72 | 0.978 | ||
B1-B2 | 4.7 ± 0.38 | 10 | 4.9 ± 0.81 | 163 | 0.363 | ||
Milk fat (%) | A1-A2 | 4.9 ± 0.18 | 131 | 4.2 ± 0.31 | 42 | 0.050 | |
A1-B2 | 4.3 ± 0.36 | 31 | 4.9 ± 0.17 | 142 | 0.154 | ||
B1-A2 | 4.9 ± 0.20 | 101 | 4.6 ± 0.24 | 72 | 0.300 | ||
B1-B2 | 3.7 ± 1.53 | 10 | 4.8 ± 2.04 | 163 | 0.081 | ||
A1-A2 | A1-B2, B1-B2 | 4.9 ± 2.11 | 131 | 4.2 ± 1.69 | 42 | <0.001 | |
A1-B2 | A1-A2, B1-B2 | 4.3 ± 1.70 | 31 | 4.8 ± 2.09 | 142 | <0.001 | |
B1-B2 | A1-A2, A1-B2 | 3.7 ± 1.53 | 10 | 4.8 ± 2.04 | 163 | <0.001 | |
Milk total solid (%) | A1-A2 | 16.0 ± 0.21 | 131 | 15.1 ± 0.37 | 42 | 0.037 | |
A1-B2 | 15.4 ± 0.43 | 31 | 15.9 ± 0.20 | 142 | 0.378 | ||
B1-A2 | 15.9 ± 0.24 | 101 | 15.6 ± 0.29 | 72 | 0.351 | ||
B1-B2 | 14.5 ± 1.27 | 10 | 15.9 ± 2.45 | 163 | 0.086 | ||
A1-A2 | B1-B2 | 16.0 ± 2.49 | 131 | 15.1 ± 2.60 | 42 | <0.001 | |
B1-B2 | A1-A2 | 14.5 ± 1.27 | 10 | 15.9 ± 2.45 | 163 | <0.001 | |
Non-fat solid (%) | A1-A2 | 11.1 ± 0.11 | 131 | 10.9 ± 0.19 | 42 | 0.282 | |
A1-B2 | 11.2 ± 0.22 | 31 | 11.0 ± 0.10 | 142 | 0.567 | ||
B1-A2 | 11.0 ± 0.12 | 101 | 11.1 ± 0.14 | 72 | 0.844 | ||
B1-B2 | 10.9 ± 0.80 | 10 | 11.1 ± 1.23 | 163 | 0.590 | ||
Milk lactose (%) | A1-A2 | 4.9 ± 0.61 | 131 | 4.9 ± 0.49 | 42 | 0.313 | |
A1-B2 | 5.0 ± 0.10 | 31 | 4.9 ± 0.05 | 142 | 0.319 | ||
B1-A2 | 4.9 ± 0.06 | 101 | 4.9 ± 0.07 | 72 | 0.647 | ||
B1-B2 | 4.9 ± 0.62 | 10 | 4.9 ± 0.57 | 163 | 0.806 |
Milk Traits | Mean ± SE | |||||
---|---|---|---|---|---|---|
A1-A2/A1-A2 | A1-A2/A1-B2 | A1-A2/B1-A2 | B1-A2/B1-A2 | B1-A2/B1-B2 | p Value | |
n = 41 | n = 31 | n = 59 | n = 30 | n = 12 | ||
Milk protein (%) | 4.9 ± 0.97 | 4.9 ± 0.69 | 5.0 ± 0.80 | 4.8 ± 0.71 | 4.9 ± 0.79 | 0.901 |
Milk fat (%) | 4.8 ± 1.75 ab | 4.3 ± 1.70 ab | 5.4 ± 2.43 a | 4.3 ± 1.60 ab | 4.1 ± 1.96 b | 0.038 |
Milk total solid (%) | 15.7 ± 2.13 | 15.4 ± 2.13 | 16.5 ± 2.81 | 15.1 ± 2.08 | 15.1 ± 2.10 | 0.051 |
Non-fat solid (%) | 11.0 ± 1.72 | 11.2 ± 0.90 | 11.2 ± 1.05 | 10.8 ± 1.08 | 11.0 ± 0.82 | 0.775 |
Milk lactose (%) | 4.9 ± 0.83 | 5.0 ± 0.44 | 4.9 ± 0.46 | 4.8 ± 0.47 | 4.9 ± 0.59 | 0.752 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, B.; Jiang, Y.; Chen, Y.; Zhao, Z.; Zhou, H.; Luo, Y.; Hu, J.; Hickford, J.G.H. Variation in the Fatty Acid Synthase Gene (FASN) and Its Association with Milk Traits in Gannan Yaks. Animals 2019, 9, 613. https://doi.org/10.3390/ani9090613
Shi B, Jiang Y, Chen Y, Zhao Z, Zhou H, Luo Y, Hu J, Hickford JGH. Variation in the Fatty Acid Synthase Gene (FASN) and Its Association with Milk Traits in Gannan Yaks. Animals. 2019; 9(9):613. https://doi.org/10.3390/ani9090613
Chicago/Turabian StyleShi, Bingang, Yanyan Jiang, Yanli Chen, Zhidong Zhao, Huitong Zhou, Yuzhu Luo, Jiang Hu, and Jon G.H. Hickford. 2019. "Variation in the Fatty Acid Synthase Gene (FASN) and Its Association with Milk Traits in Gannan Yaks" Animals 9, no. 9: 613. https://doi.org/10.3390/ani9090613
APA StyleShi, B., Jiang, Y., Chen, Y., Zhao, Z., Zhou, H., Luo, Y., Hu, J., & Hickford, J. G. H. (2019). Variation in the Fatty Acid Synthase Gene (FASN) and Its Association with Milk Traits in Gannan Yaks. Animals, 9(9), 613. https://doi.org/10.3390/ani9090613