Effect of Feeding Cows with Unsaturated Fatty Acid Sources on Milk Production, Milk Composition, Milk Fatty Acid Profile, and Physicochemical and Sensory Characteristics of Ice Cream
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Treatments
2.2. Milk Yield and Composition
2.3. Fatty Acid Analysis
2.4. Ice Cream Manufacturing
2.5. Physical Properties of Ice Cream
2.6. Sensory Analysis of Ice Cream
2.7. Statistical Analyses
3. Results and Discussion
3.1. Diets and Animal Performance
3.2. Milk Fatty Acid Profile
3.3. Physicochemical Properties of Ice Cream
3.4. Sensory Properties of Ice Cream
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Parodi, P.W. Dietary guidelines for saturated fatty acids are not supported by the evidence. Int. Dairy J. 2016, 52, 115–123. [Google Scholar] [CrossRef]
- Temple, N.J. Fat, sugar, whole grains and heart disease: 50 years of confusion. Nutrients 2018, 10, 39. [Google Scholar] [CrossRef] [PubMed]
- Kliem, K.E.; Shingfield, K.J. Manipulation of milk fatty acid composition in lactating cows: Opportunities and challenges. Eur. J. Lipid Sci. Technol. 2016, 118, 1661–1683. [Google Scholar] [CrossRef]
- Benbrook, C.M.; Davis, D.R.; Heins, B.J.; Latif, M.A.; Leifert, C.; Peterman, L.; Butler, G.; Faergeman, O.; Abel-Caines, S.; Baranski, M. Enhancing the fatty acid profile of milk through forage-based rations, with nutrition modeling of diet outcomes. Food Sci. Nutr. 2018, 6, 681–700. [Google Scholar] [CrossRef] [PubMed]
- Vargas-Bello-Pérez, E.; Fehrmann-Cartes, K.; Íñiguez-González, G.; Toro-Mujica, P.; Garnsworthy, P.C. Short communication: Chemical composition, fatty acid composition, and sensory characteristics of Chanco cheese from dairy cows supplemented with soybean and hydrogenated vegetable oils. J. Dairy Sci. 2015, 98, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Vargas-Bello-Pérez, E.; Geldsetzer-Mendoza, C.; Morales, M.S.; Toro-Mujica, P.; Fellenberg, M.A.; Ibáñez, R.A.; Gómez-Cortés, P.; Garnsworthy, P.C. Effect of olive oil in dairy cow diets on the fatty acid profile and sensory characteristics of cheese. Int. Dairy J. 2018, 85, 8–15. [Google Scholar] [CrossRef]
- Allred, S.L.; Dhiman, T.R.; Brennand, C.P.; Khanal, R.C.; McMahon, D.J.; Luchini, N.D. Milk and Cheese from Cows Fed Calcium Salts of Palm and Fish Oil Alone or in Combination with Soybean Products. J. Dairy Sci. 2006, 89, 234–248. [Google Scholar] [CrossRef] [Green Version]
- Vargas-Bello-Pérez, E.; Íñiguez-González, G.; Fehrmann-Cartes, K.; Toro-Mujica, P.; Garnsworthy, P.C. Influence of fish oil alone or in combination with hydrogenated palm oil on sensory characteristics and fatty acid composition of bovine cheese. Anim. Feed Sci. Technol. 2015, 205, 60–68. [Google Scholar] [CrossRef]
- Velásquez-Cock, J.; Serpa, A.; Vélez, L.; Gañán, P.; Gómez Hoyos, C.; Castro, C.; Duizer, L.; Goff, H.D.; Zuluaga, R. Influence of cellulose nanofibrils on the structural elements of ice cream. Food Hydrocoll. 2019, 87, 204–213. [Google Scholar] [CrossRef]
- Rolon, M.L.; Bakke, A.J.; Coupland, J.N.; Hayes, J.E.; Roberts, R.F. Effect of fat content on the physical properties and consumer acceptability of vanilla ice cream. J. Dairy Sci. 2017, 100, 5217–5227. [Google Scholar] [CrossRef] [Green Version]
- Underdown, J.; Quail, P.J.; Smith, K.W. Saturated fat reduction in ice cream. Reduc. Satur. Fats Foods 2011, 350–369. [Google Scholar]
- Gonzalez, S.; Duncan, S.E.; O’Keefe, S.F.; Sumner, S.S.; Herbein, J.H. Oxidation and Textural Characteristics of Butter and Ice Cream with Modified Fatty Acid Profiles. J. Dairy Sci. 2003, 86, 70–77. [Google Scholar] [CrossRef] [Green Version]
- Sung, K.K.; Goff, H.D. Effect of solid fat content on structure in ice creams containing palm kernel oil and high-oleic sunflower oil. J. Food Sci. 2010, 75, C274–C279. [Google Scholar] [CrossRef] [PubMed]
- NRC. Nutrient Requirements of Dairy Cattle, 7th ed.; National Academy Press: Washington, DC, USA, 2001. [Google Scholar]
- Ulbricht, T.L.V.; Southgate, D.A.T. Coronary heart disease: Seven dietary factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef]
- Goff, H.D.; Hartel, R.W. Ice Cream, 7th ed.; Springer: New York, NY, USA, 2013. [Google Scholar]
- Adapa, S.; Dingeldein, H.; Schmidt, K.A.; Herald, T.J. Rheological Properties of Ice Cream Mixes and Frozen Ice Creams Containing Fat and Fat Replacers. J. Dairy Sci. 2000, 83, 2224–2229. [Google Scholar] [CrossRef]
- Kurt, A.; Atalar, I. Effects of quince seed on the rheological, structural and sensory characteristics of ice cream. Food Hydrocoll. 2018, 82, 186–195. [Google Scholar] [CrossRef]
- Karaman, S.; Toker, Ö.S.; Yüksel, F.; Çam, M.; Kayacier, A.; Dogan, M. Physicochemical, bioactive, and sensory properties of persimmon-based ice cream: Technique for order preference by similarity to ideal solution to determine optimum concentration. J. Dairy Sci. 2014, 97, 97–110. [Google Scholar] [CrossRef] [Green Version]
- Bu, D.P.; Wang, J.Q.; Dhiman, T.R.; Liu, S.J. Effectiveness of Oils Rich in Linoleic and Linolenic Acids to Enhance Conjugated Linoleic Acid in Milk from Dairy Cows. J. Dairy Sci. 2007, 90, 998–1007. [Google Scholar] [CrossRef]
- Vargas-Bello-Perez, E.; Garnsworthy, P.C. Trans fatty acids and their role in milk of dairy cows. Cienc. Investig. Agrar. 2013, 40, 449–473. [Google Scholar] [CrossRef]
- Nichols, K.; van Laar, H.; Bannink, A.; Dijkstra, J. Mammary gland utilization of amino acids and energy metabolites differs when dairy cow rations are isoenergetically supplemented with protein and fat. J. Dairy Sci. 2019, 102, 1160–1175. [Google Scholar] [CrossRef] [Green Version]
- Broucek, J.; Uhrincat, M.; Mihina, S.; Soch, M.; Mrekajova, A.; Hanus, A. Dairy Cows Produce Less Milk and Modify Their Behaviour during the Transition between Tie-Stall to Free-Stall. Animals 2017, 7, 16. [Google Scholar] [CrossRef] [PubMed]
- Shingfield, K.J.; Bonnet, M.; Scollan, N.D. Recent developments in altering the fatty acid composition of ruminant-derived foods. Animal 2013, 7, 132–162. [Google Scholar] [CrossRef]
- Lock, A.L.; Garnsworthy, P.C. Independent effects of dietary linoleic and linolenic fatty acids on the conjugated linoleic acid content of cows’ milk. Anim. Sci. 2002, 74, 163–176. [Google Scholar] [CrossRef]
- Kairenius, P.; Ärölä, A.; Leskinen, H.; Toivonen, V.; Ahvenjärvi, S.; Vanhatalo, A.; Huhtanen, P.; Hurme, T.; Griinari, J.M.; Shingfield, K.J. Dietary fish oil supplements depress milk fat yield and alter milk fatty acid composition in lactating cows fed grass silage-based diets. J. Dairy Sci. 2015, 98, 5653–5671. [Google Scholar] [CrossRef] [PubMed]
- Bowen, K.J.; Kris-Etherton, P.M.; West, S.G.; Fleming, J.A.; Connelly, P.W.; Lamarche, B.; Couture, P.; Jenkins, D.J.A.; Taylor, C.G.; Zahradka, P.; et al. Diets Enriched with Conventional or High-Oleic Acid Canola Oils Lower Atherogenic Lipids and Lipoproteins Compared to a Diet with a Western Fatty Acid Profile in Adults with Central Adiposity. J. Nutr. 2019, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Palmquist, D.L.; Lock, A.L.; Shingfield, K.J.; Bauman, D.E. Biosynthesis of Conjugated Linoleic Acid in Ruminants and Humans. Adv. Food Nutr. Res. 2005, 50, 179–217. [Google Scholar] [PubMed]
- Papandreou, C.; Sala-Vila, A.; Galié, S.; Muralidharan, J.; Estruch, R.; Fitó, M.; Razquin, C.; Corella, D.; Ros, E.; Timiraos, J.; et al. Association Between Fatty Acids of Blood Cell Membranes and Incidence of Coronary Heart Disease. Arterioscler. Thromb. Vasc. Biol. 2019, 819–825. [Google Scholar] [CrossRef] [PubMed]
- Ajith, T.A.; Jayakumar, T.G. Omega-3 fatty acids in coronary heart disease: Recent updates and future perspectives. Clin. Exp. Pharmacol. Physiol. 2019, 46, 11–18. [Google Scholar] [CrossRef]
- Kairenius, P.; Leskinen, H.; Toivonen, V.; Muetzel, S.; Ahvenjärvi, S.; Vanhatalo, A.; Huhtanen, P.; Wallace, R.J.; Shingfield, K.J. Effect of dietary fish oil supplements alone or in combination with sunflower and linseed oil on ruminal lipid metabolism and bacterial populations in lactating cows. J. Dairy Sci. 2018, 101, 3021–3035. [Google Scholar] [CrossRef] [Green Version]
- Vafeiadou, K.; Weech, M.; Altowaijri, H.; Todd, S.; Yaqoob, P.; Jackson, K.G.; Lovegrove, J.A. Replacement of saturated with unsaturated fats had no impact on vascular function but beneficial effects on lipid biomarkers, E-selectin, and blood. Am. J. Clin. Nutr. 2015, 102, 40–48. [Google Scholar] [CrossRef]
- Chen, P.B.; Park, Y. Conjugated Linoleic Acid in Human Health: Effects on Weight Control. Nutr. Prev. Treat. Abdom. Obes. 2019, 355–382. [Google Scholar]
- Aime, D.; Arntfield, S.; Malcolmson, L.; Ryland, D. Textural analysis of fat reduced vanilla ice cream products. Food Res. Int. 2001, 34, 237–246. [Google Scholar] [CrossRef]
- Akbari, M.; Eskandari, M.H.; Davoudi, Z. Application and functions of fat replacers in low-fat ice cream: A review. Trends Food Sci. Technol. 2019, 86, 34–40. [Google Scholar] [CrossRef]
- Nazaruddin, R.; Syaliza, A.S.; Wan Rosnani, A.I. The effect of vegetable fat on the physicochemical characteristics of dates ice cream. Int. J. Dairy Technol. 2008, 61, 265–269. [Google Scholar] [CrossRef]
- Cadena, R.S.; Cruz, A.G.; Faria, J.A.F.; Bolini, H.M.A. Reduced fat and sugar vanilla ice creams: Sensory profiling and external preference mapping. J. Dairy Sci. 2012, 95, 4842–4850. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roland, A.M.; Phillips, L.G.; Boor, K.J. Effects of Fat Content on the Sensory Properties, Melting, Color, and Hardness of Ice Cream. J. Dairy Sci. 1999, 82, 32–38. [Google Scholar] [CrossRef]
- Walstra, P.; Geurts, T.J.; Noomen, A.; Jellema, A.; Van Boeckel, M.A.J.S. Dairy Technology: Principles of Milk Processing and Processes; Marcel Dekker Inc.: New Jork, NY, USA, 1999; p. 728. [Google Scholar]
- Baer, R.J.; Ryali, J.; Schingoethe, D.J.; Kasperson, K.M.; Donovan, D.C.; Hippen, A.R.; Franklin, S.T. Composition and Properties of Milk and Butter from Cows Fed Fish Oil. J. Dairy Sci. 2001, 84, 345–353. [Google Scholar] [CrossRef]
- Forss, D.A. The flavors of dairy fats—A review. J. Am. Oil Chem. Soc. 1971, 48, 702–710. [Google Scholar] [CrossRef]
Component | Diet | ||
---|---|---|---|
Control | SO | FO | |
Ingredient composition (% DM) | |||
Corn silage | 32.0 | 31.1 | 31.1 |
Fresh alfalfa | 24.0 | 23.3 | 23.3 |
Malt distillers | 19.2 | 18.6 | 18.6 |
Corn grain | 7.6 | 7.4 | 7.4 |
Canola meal | 6.2 | 6.0 | 6.0 |
Alfalfa hay | 5.0 | 4.9 | 4.9 |
Soybean grain | 4.0 | 3.9 | 3.9 |
Wheat bran | 1.6 | 1.6 | 1.6 |
Vitamin and mineral premix 1 | 0.4 | 0.4 | 0.4 |
Soybean oil | 0 | 2.9 | 0 |
Fish oil | 0 | 0 | 2.9 |
Chemical composition (% DM) | |||
Dry matter | 42.5 | 44.3 | 43.8 |
Crude protein | 13.7 | 12.9 | 13.0 |
Ether extract | 3.4 | 7.6 | 7.4 |
Neural detergent fibre | 29.9 | 29.8 | 28.9 |
Acid detergent fibre | 17.3 | 17.5 | 17.7 |
Lignin | 3.5 | 3.6 | 3.5 |
Ash | 7.2 | 6.8 | 6.8 |
Fatty acid composition (g/100 g of FA) | |||
C6:0 | 0.93 | 0.1 | 0.1 |
C10:0 | 0.25 | nd | nd |
C12:0 | 1.13 | 0.2 | 0.1 |
C14:0 | 10.35 | 0.6 | 7.05 |
C15:0 | 5.44 | nd | 4.06 |
C16:0 | 6.72 | 13.79 | 16.14 |
C16:1 cis-9 | nd 2 | 1.7 | 4.53 |
C17:0 | 1.29 | 0.97 | 1.05 |
C18:0 | 22.55 | 5.17 | 8.72 |
C18:1 cis-9 | 0.92 | 17.94 | 7.94 |
C18:2 cis-9, cis-12 | 33.73 | 49.89 | 16.07 |
C18:3 cis-6, cis-9, cis-12 | 7.72 | 2.83 | 2.63 |
C18:3 cis-9, cis-12, cis-15 | 8.97 | 6.81 | 3.25 |
C20:5n-3 | nd 2 | nd | 15.62 |
C22:5n-3 | nd | nd | 4.79 |
C22:6n-3 | nd | nd | 7.95 |
Parameter | Diet 2 | SEM | p-Value | |||
---|---|---|---|---|---|---|
Control | SO | FO | Diet | Time 3 | ||
Production | ||||||
Dry matter intake (kg/DM day) | 26.5 | 26.5 | 26.5 | * | * | * |
Milk yield, kg/day | 43.2 | 42.4 | 43.2 | 1.5 | 0.966 | <0.001 |
Fat, kg/day | 1.61 | 1.51 | 1.43 | 0.10 | 0.430 | 0.750 |
Protein, kg/day | 1.47 | 1.53 | 1.50 | 0.06 | 0.800 | 0.650 |
Body weight, kg | 633 | 640 | 628 | 15 | 0.966 | 0.033 |
Body condition score 4 | 2.55 | 2.61 | 2.48 | 0.08 | 0.178 | 0.792 |
Milk composition, g/100 g | ||||||
Fat | 3.72 | 3.53 | 3.31 | 0.24 | 0.493 | 0.236 |
Protein | 3.40 b | 3.59 a | 3.45 b | 0.05 | 0.040 | 0.425 |
Urea (mg/100 mL) | 34.5 | 27.6 | 32.4 | 2.4 | 0.120 | 0.350 |
Somatic cell count, × 103/mL | 85 | 382 | 481 | 269 | 0.520 | 0.577 |
Fatty Acid (g/100 g of FA) | Diets 2 | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|
Control | SO | FO | Diet (D) | Time (T) 3 | D × T | ||
C4:0 | 2.27 b | 2.22 b | 2.34 a | 0.19 | <0.001 | 0.084 | 0.031 |
C6:0 | 1.75 a | 1.15 b | 1.49 b | 0.12 | <0.001 | 0.006 | 0.196 |
C8:0 | 1.34 a | 0.78 b | 0.88 b | 0.16 | 0.002 | 0.240 | 0.754 |
C10:0 | 2.11 a | 1.79 b | 1.69 b | 0.16 | 0.031 | 0.266 | <0.001 |
C11:0 | 0.32 | 0.19 | 0.32 | 0.10 | 0.320 | 0.582 | 0.018 |
C12:0 | 2.10 | 2.11 | 2.36 | 0.17 | 0.265 | <0.001 | <0.001 |
C13:0 | 0.13 | 0.12 | 0.15 | 0.07 | 0.895 | 0.332 | 0.023 |
C14:0 | 11.89 a | 8.42 b | 9.97 b | 0.40 | <0.001 | <0.001 | <0.001 |
C14:1 cis-9 | 0.58 b | 0.34 c | 0.99 a | 0.12 | <0.001 | <0.001 | 0.056 |
C15:0 | 0.41 | 0.37 | 0.38 | 0.11 | 0.901 | 0.333 | 0.007 |
C15:1 cis-9 | 0.76 | 0.42 | 0.70 | 0.10 | 0.005 | 0.056 | 0.540 |
C16:0 | 31.26 a | 32.79 a | 28.92 b | 0.69 | <0.001 | <0.001 | <0.001 |
C16:1 cis-9 | 1.21 a | 0.66 b | 1.36 a | 0.12 | <0.001 | 0.588 | 0.012 |
C17:0 | 0.34 | 0.35 | 0.36 | 0.17 | 0.994 | 0.459 | 0.298 |
C17:1 cis-9 | 0.34 | 0.24 | 0.30 | 0.04 | 0.011 | 0.308 | 0.982 |
C18:0 | 19.55 b | 20.95 a | 22.03 a | 0.78 | 0.011 | <0.001 | <0.001 |
C18:1 trans-10 | 0.37 | 0.31 | 0.39 | 0.11 | 0.759 | <0.001 | 0.576 |
C18:1 trans-11 | 0.15 c | 0.19 b | 0.26 a | 0.03 | 0.090 | <0.001 | 0.012 |
C18:1 cis-9 | 17.46 c | 18.90 b | 19.05 a | 0.76 | 0.041 | <0.001 | <0.001 |
C18:2 cis-9, cis-12 | 0.66 b | 1.86 a | 0.40 b | 0.18 | <0.001 | 0.169 | <0.01 |
C18:2 trans-9, trans-12 | 0.73 b | 0.63 b | 1.00 a | 0.10 | <0.001 | 0.580 | 0.044 |
C18:3 cis-6, cis-9, cis-12 | 0.51 | 0.69 | 0.46 | 0.15 | 0.304 | 0.044 | 0.030 |
C18:3 cis-9, cis-12, cis-15 | 0.20 b | 0.61 a | 0.33 b | 0.13 | <0.001 | <0.001 | <0.001 |
C18:2 cis-9, trans-11 | 0.50 c | 1.18 b | 1.75 a | 0.17 | <0.001 | 0.048 | <0.001 |
C20:0 | 0.08 | 0.17 | 0.08 | 0.06 | 0.234 | 0.393 | 0.278 |
C20:1n-9 | 0.06 | 0.08 | 0.03 | 0.03 | 0.411 | 0.014 | 0.122 |
C20:2 | 0.02 b | nd 4 | 0.04 a | 0.03 | 0.024 | 0.029 | 0.343 |
C22:0 | 0.08 | 0.04 | 0.04 | 0.03 | 0.392 | 0.014 | 0.540 |
C20:3n-3 | 0.19 b | 0.12 c | 0.34 a | 0.05 | <0.001 | <0.001 | 0.045 |
C20:3n-6 | 0.20 b | 0.17b | 0.29 a | 0.04 | 0.026 | <0.001 | 0.096 |
C22:1n-9 | 0.01 b | nd | 0.05 a | 0.02 | 0.010 | 0.017 | 0.006 |
C23:0 | 0.02 | 0.05 | 0.03 | 0.03 | 0.525 | 0.014 | 0.044 |
C20:4n-6 | 0.04 b | 0.11 a | 0.11 a | 0.03 | 0.018 | 0.010 | <0.001 |
C22:2 | 0.02 b | nd | 0.04 a | 0.01 | 0.024 | 0.029 | 0.343 |
C24:0 | 0.01 | 0.02 | 0.02 | 0.01 | 0.737 | 0.560 | 0.075 |
C20:5n-3 | 0.11 b | 0.11 b | 1.17 a | 0.07 | <0.001 | <0.001 | <0.001 |
C24:1n-9 | 0.07 b | 0.10 b | 0.56 a | 0.06 | <0.001 | 0.005 | <0.001 |
C22:6n-3 | 0.07 b | 0.06 b | 0.41 a | 0.05 | <0.001 | <0.001 | <0.001 |
Fatty Acids (g/100 g of FA) | Diets 2 | p-Value | |||||
---|---|---|---|---|---|---|---|
Control | SO | FO | SEM | Diet (D) | Time (T) 3 | D × T | |
Σ Saturated fatty acids | 74.75 a | 71.49 b | 71.06 b | 0.78 | <0.001 | <0.001 | <0.001 |
Σ Monounsaturated fatty acids | 21.08 b | 21.21 b | 23.69 a | 0.80 | <0.001 | <0.001 | <0.001 |
Σ Polyunsaturated fatty acids | 4.16 b | 7.30 a | 5.25 b | 0.37 | <0.001 | 0.031 | <0.001 |
Σ n-6 polyunsaturated fatty acids | 2.15 b | 3.46 a | 2.27 b | 0.26 | <0.001 | 0.258 | <0.001 |
Σ n-3 polyunsaturated fatty acids | 0.69 c | 2.01 b | 2.40 a | 0.16 | <0.001 | <0.001 | <0.001 |
Indices | |||||||
n-6/n-3 | 3.82 a | 1.88 b | 1.36 b | 0.33 | <0.001 | 0.232 | <0.001 |
PUFA/SFA | 0.06 b | 0.10 a | 0.07 b | 0.01 | <0.001 | <0.001 | <0.001 |
Atherogenicity index | 1.55 a | 0.87 c | 1.22 b | 0.06 | <0.001 | 0.016 | <0.001 |
Thrombogenicity index | 2.67 a | 2.13 b | 1.96 c | 0.07 | <0.001 | <0.001 | <0.001 |
C14:1 cis-9/C14:0 | 0.05 b | 0.04 b | 0.10 a | 0.01 | <0.001 | <0.001 | 0.053 |
C18:2 cis-9, trans-11/ C18:1 trans-11 | 0.03 b | 0.09 a | 0.09 a | 0.01 | <0.001 | 0.032 | <0.001 |
Item | Diet 2 | SEM | p-Value | |||
---|---|---|---|---|---|---|
Control | SO | FO | Diet | Time 3 | ||
Fat, g/100 g | 16.15 | 16.15 | 16.14 | <0.01 | 0.518 | 0.754 |
Protein, g/100 g | 2.78 b | 2.93 a | 2.82 ab | 0.03 | 0.030 | 0.630 |
Lactose, g/100 g | 3.99 | 3.99 | 3.98 | <0.01 | 0.325 | <0.001 |
Sucrose, g/100 g | 17.09 | 17.09 | 17.10 | 0.01 | 0.780 | 0.383 |
Draw temperature (°C) | −4.90 a | −5.17 a | −4.10 b | 0.15 | 0.016 | 0.229 |
Overrun (%) | 8.02 a | 5.10 ab | 3.08 b | 0.60 | 0.011 | 0.708 |
Firmness (N) | 15.90 a | 15.55 a | 12.59 b | 0.44 | 0.011 | 0.370 |
Melting | ||||||
Dripping time (min) | 53.20 | 68.17 | 60.17 | 4.13 | 0.143 | 0.022 |
Melting rate (g/min) | 0.62 b | 0.87 ab | 0.94 a | 0.08 | 0.037 | 0.666 |
CIELAB color | ||||||
L * | 84.36 | 88.44 | 84.97 | 2.38 | 0.492 | 0.526 |
a * | −1.08 | −0.99 | −1.17 | 0.04 | 0.060 | 0.642 |
b * | 20.49 a | 17.18 b | 15.36 b | 0.80 | 0.025 | 0.987 |
Whiteness index (WI) | 75.69 | 77.17 | 78.66 | 2.05 | 0.296 | 0.627 |
Attribute | Diet 2 | SEM | p-Value | |||
---|---|---|---|---|---|---|
Control | SO | FO | Diet | Time 3 | ||
Appearance | 6.5 | 6.6 | 6.6 | 0.1 | 0.921 | 0.904 |
Texture | 6.8 | 6.7 | 6.9 | 0.2 | 0.606 | 0.565 |
Melting resistance | 6.1 b | 6.3 b | 6.8 a | 0.1 | 0.004 | 0.057 |
Taste | 6.6 | 6.4 | 6.4 | 0.4 | 0.959 | 0.416 |
Aroma | 6.1 | 5.6 | 5.8 | 0.2 | 0.401 | 0.213 |
Milk fat | 7.0 | 6.5 | 7.0 | 0.2 | 0.327 | 0.610 |
General acceptability | 6.7 | 6.5 | 6.5 | 0.4 | 0.889 | 0.596 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vargas-Bello-Pérez, E.; Cancino-Padilla, N.; Geldsetzer-Mendoza, C.; Vyhmeister, S.; Morales, M.S.; Leskinen, H.; Romero, J.; Garnsworthy, P.C.; Ibáñez, R.A. Effect of Feeding Cows with Unsaturated Fatty Acid Sources on Milk Production, Milk Composition, Milk Fatty Acid Profile, and Physicochemical and Sensory Characteristics of Ice Cream. Animals 2019, 9, 568. https://doi.org/10.3390/ani9080568
Vargas-Bello-Pérez E, Cancino-Padilla N, Geldsetzer-Mendoza C, Vyhmeister S, Morales MS, Leskinen H, Romero J, Garnsworthy PC, Ibáñez RA. Effect of Feeding Cows with Unsaturated Fatty Acid Sources on Milk Production, Milk Composition, Milk Fatty Acid Profile, and Physicochemical and Sensory Characteristics of Ice Cream. Animals. 2019; 9(8):568. https://doi.org/10.3390/ani9080568
Chicago/Turabian StyleVargas-Bello-Pérez, Einar, Nathaly Cancino-Padilla, Carolina Geldsetzer-Mendoza, Stefanie Vyhmeister, María Sol Morales, Heidi Leskinen, Jaime Romero, Philip C. Garnsworthy, and Rodrigo A. Ibáñez. 2019. "Effect of Feeding Cows with Unsaturated Fatty Acid Sources on Milk Production, Milk Composition, Milk Fatty Acid Profile, and Physicochemical and Sensory Characteristics of Ice Cream" Animals 9, no. 8: 568. https://doi.org/10.3390/ani9080568
APA StyleVargas-Bello-Pérez, E., Cancino-Padilla, N., Geldsetzer-Mendoza, C., Vyhmeister, S., Morales, M. S., Leskinen, H., Romero, J., Garnsworthy, P. C., & Ibáñez, R. A. (2019). Effect of Feeding Cows with Unsaturated Fatty Acid Sources on Milk Production, Milk Composition, Milk Fatty Acid Profile, and Physicochemical and Sensory Characteristics of Ice Cream. Animals, 9(8), 568. https://doi.org/10.3390/ani9080568