Palatability of Protein Hydrolysates from Industrial Byproducts for Nile Tilapia Juveniles
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
- (a)
- FPE (positive control) = diet with 5% inclusion of fishmeal;
- (b)
- PHF = diet with 5% inclusion of poultry protein hydrolysate;
- (c)
- PHP = diet with 5% inclusion of feather protein hydrolysate;
- (d)
- PHM = diet with 5% inclusion of swine mucus protein hydrolysate;
- (e)
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- FAO, Food and Agriculture Organization of the United Nations. The State of World Fisheries and Aquaculture; FAO: Rome, Italy, 2018; 227p. [Google Scholar]
- Ostrensky, A.; Borghetti, J.R.; Soto, D. Aquicultura no Brasil: O Desafio é Crescer; Secretaria Especial de Aquicultura e Pesca: Brasília, Brazil, 2008; 276p.
- Higuchi, L.H.; Feiden, A.; Matsushita, M.; Santarosa, M.; Zanqui, A.B.; Bittencourt, F.; Boscolo, W.R. Quantificação de ácidos graxos de alevinos de tilápia do Nilo (Oreochromis niloticus) alimentados com diferentes fontes de óleos vegetais. Semina Ciências Agrarias 2013, 34, 1913–1924. Available online: https://doi.org/10.5433/1679-0359.2013v34n4p1913 (accessed on 9 February 2019). (In Portuguese). [CrossRef]
- Instituto Brasileiro de Geografia e Estatística (IBGE). Produção Pecuária Municipal; IBG: Rio de Janeiro, Brazil, 2015; 49p. [Google Scholar]
- Brito, J.M.; Pontes, T.C.; Tsujii, K.M.; Araújo, F.E.; Ricther, B.L. Automação na tilapicultura: Revisão de literatura, desempenho, piscicultura, tecnologias, tilápias. Nutritime 2017, 14, 5053–5062. [Google Scholar]
- Instituto Brasileiro de Geografia e Estatística (IBGE). SIDRA: Sistema IBGE de Recuperação Automática. Available online: https://sidra.ibge.gov.br/pesquisa/ppm/quadros/brasil/2017 (accessed on 22 November 2018).
- Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA). Dimensão Socioeconômica da Tilapicultura no Brasil; EMBRAPA: Brasília, Brazil, 2017; 116p. [Google Scholar]
- Decarli, J.A.; Pedron, F.A.; Lazzari, R.; Signor, A.; Boscolo, W.R.; Feiden, A. Hidrolisados proteicos na alimentação do jundiá Rhamdia voulezi. Revista Brasileira de Ciência Veterinária 2016, 23, 168–173. Available online: http://dx.doi.org/10.4322/rbcv.2016.051 (accessed on 12 September 2018). [CrossRef]
- Boscolo, W.R.; Hayashi, C.; Meurer, F.; Feiden, A.; Bombardelli, R.A.; Reidel, A. Farinha de resíduos da filetagem de tilápias na alimentação de tilápia do Nilo (Oreochromis niloticus). Revista Brasileira de Zootecnia 2005, 34, 1807–1812. [Google Scholar] [CrossRef]
- Furuya, W.M. Tabelas Brasileiras para a Nutrição de Tilápias, 1st ed.; GFM: Toledo, Brazil, 2010; 100p. [Google Scholar]
- Zhou, Q.C.; Yue, R. Apaparent digestibility coefficients of selected feed ingredients for juvenile hybrid tilapia, Oreochromis niloticus x Oreochromis aureus. Aquacult. Res. 2012, 43, 806–814. Available online: https://doi.org/10.1111/j.1365-2109.2011.02892.x (accessed on 15 November 2018). [CrossRef]
- Silva, T.C.; Rocha, J.D.M.; Moreira, P.; Signor, A.; Boscolo, W.R. Fish protein hydrolysate in diets for Nile tilapia post-larvae. Pesquisa Agropecuária Brasileira 2017, 52, 485–492. Available online: http://dx.doi.org/10.1590/s0100-204x2017000700002 (accessed on 25 October 2018).[Green Version]
- Tantikitti, C. Feed palatability and the alternative protein sources in shrimp feed. Songklanakarin J. Sci. Tech. 2014, 36, 51–55. [Google Scholar]
- Apper, E.; Weissman, D.; Respondek, F.; Guyonvarch, A.; Baron, F.; Boisot, P.; Rodilesd, A.; Merrifield, D.L. Hydrolysed wheat gluten as part of a diet based on animal and plant proteins supports good growth performance of Asian seabass (Lates calcarifer), without impairing intestinal morphology or microbiota. Aquaculture 2016, 453, 40–48. Available online: https://doi.org/10.1016/j.aquaculture.2015.11.018 (accessed on 1 November 2018). [CrossRef]
- Rocha, J.D.M. Proteína Hidrolisada de Frango para Tilápia do Nilo: Digestibilidade e Desempenho Produtivo. Ph.D. Thesis, Universidade Estadual do Oeste do Paraná, Toledo, Brazil, 2018. [Google Scholar]
- Mullen, A.M.; Álvarez, C.; Zeugolis, D.I.; Henchion, M.; O’neill, E.; Drummond, L. Alternative uses for co-products: Harnessing the potential of valuable compounds from meat processing chains. Meat Sci. 2017, 132, 90–98. Available online: https://doi.org/10.1016/j.meatsci.2017.04.243 (accessed on 15 March 2018). [CrossRef]
- Ferreira, A.; Kunh, S.S.; Cremonez, P.A.; Dieter, J.; Teleken, J.G.; Sampaio, S.C.; Kunh, P.D. Brazilian poultry activity waste: Destinations and energetic potential. Renew. Sustain. Energy Rev. 2017, 81, 1–9. Available online: https://doi.org/10.1016/j.rser.2017.08.078 (accessed on 18 September 2018). [CrossRef]
- Bui, H.T.D.; Khosravi, S.; Fourmier, V.; Herault, M.; Lee, L. Growth performance, feed utilization, innate immunity, digestibility and disease resistance of juvenile red seabream (Pagrus major) fed diets supplemented with protein hydrolysates. Aquaculture 2014, 418, 11–16. [Google Scholar] [CrossRef]
- Wisuthiphaet, N.; Kongruang, S. Production of Fish Protein Hydrolysates by Acid and Enzymatic Hydrolysis. J. Med. Bioeng. 2015, 4, 466–470. Available online: http://doi.org/10.12720/jomb.4.6.466-470 (accessed on 11 November 2018). [CrossRef]
- Ronnestad, I.; Kamisaka, Y.; Conceição, L.E.C.; Morais, S.; Tonheim, S.K. Digestive physiology of marine fish larvae: Hormonal control and processing capacity for proteins, peptides and amino acids. Aquaculture 2007, 268, 82–97. Available online: https://doi.org/10.1016/j.aquaculture.2007.04.031 (accessed on 17 January 2019). [CrossRef]
- Bernardi, D.M.; Paris, L.D.; Dieterich, F.; Silva FG, D.; Boscolo, W.R.; Sary, C.; Signor, A.; Bertol, T.M.; Sgarbieri, V.C. Production of hydrolysate from processed Nile tilapia (Oreochromis niloticus) residues and assessment of its antioxidant activity. Food Sci. Technol. 2016, 36, 709–716. Available online: http://dx.doi.org/10.1590/1678-457x.15216 (accessed on 17 November 2018). [CrossRef]
- Toldrá, F.; Mora, L.; Reig, M. New insights into meat by-product utilization. Meat Sci. 2016, 120, 54–59. Available online: https://doi.org/10.1016/j.meatsci.2016.04.021 (accessed on 27 October 2018). [CrossRef] [Green Version]
- Alves, D.R.S. Atrato-Palatabilidade para Juvenis de Tilápia do Nilo (Oreochromis niloticus). Ph.D. Thesis, Universidade Estadual do Oeste do Paraná, Toledo, Brazil, 2019. [Google Scholar]
- Alves, D.R.S.; Silva, T.C.; Rocha, J.D.M.; Oliveira, S.R.; Signor, A.; Boscolo, W.R. Compelling palatability of protein hydrolysates for nile tilapia juveniles. Lat. Am. J. Aqua. Res. 2019, 47, 371–376. Available online: https://doi.org/10.4322/rbcv.2014.008 (accessed on 10 May 2018). [CrossRef]
- Nielsen, P.M.; Petersen, D.; Dambmann, C. Improved Method for Determining Food Protein Degree of Hydrolysis. J. Food Sci. 2001, 66, 642–646. Available online: https://doi.org/10.1111/j.1365-2621.2001.tb04614.x (accessed on 15 July 2018). [CrossRef]
- Instituto Adolfo Lutz. Normas Analíticas do Instituto Adolfo Lutz. Métodos Físico-Químicos para Análises de Alimentos, 4th ed.; ANVISA: São Paulo, Brazil, 2004; 1020p.
- White, J.A.; Hart, R.J.; Fry, J.C. An Evaluation of the Waters pico-tag system for the amino-acid-analysis of food materials. J. Autom. Chem. 1986, 8, 170–177. [Google Scholar] [CrossRef]
- Hagen, S.R.; Frost, B.; Augustin, J. Precolumn phenylsothiocyanate derivatization and liquid-chromatography of amino-acids in food. J. Assoc. Off. Anal. Chem. 1989, 72, 912–916. [Google Scholar]
- Ridha, M.T.; Cruz, E.M. Effect of biofilter media on water quality and biological performance of the tilápia (Oreochromis niloticus L.) reared in a simple recirculating system. Aquacult. Eng. 2001, 24, 157–166. Available online: https://doi.org/10.1016/S0144-8609(01)00060-7 (accessed on 17 January 2019). [CrossRef]
- Kasumyan, A.O.; Morsi, A.M. Taste sensitivity of common carp cyprinus carpio to free amino acids and classical taste substances. J. Ichthyol. 1986, 36, 391–403. [Google Scholar]
- Kasumyan, A.O.; Doving, K.B. Taste preferences in fish. Fish Fish. 2003, 4, 289–347. Available online: https://doi.org/10.1046/j.1467-2979.2003.00121.x (accessed on 15 February 2018). [CrossRef]
- Kasumyan, A.O.; Sidorov, S.S. Effects of the long-term anosmia combined with vision deprivation on the taste sensitivity and feeding behavior of the rainbow trout Parasalmo (=Oncorhynchus) mykiss. J. Ichthyol. 2012, 52, 109–119. [Google Scholar] [CrossRef]
- Suresh, A.V.; Vasagam, K.P.; Nates, S. Attractability and palatability of protein ingredientes of aquatic and terrestrial animal origin, and their practical value for blue shrimp, Litopenaeus stylirostris fed diets formulated with high levels of poutry byproduct meal. Aquaculture 2011, 319, 132–140. [Google Scholar] [CrossRef]
- Martinez, C.M.; Soria, H.N.; Villasante, F.V.; Farnés, C.O.; Gonzáles, A.A.; Cerecedo, R.C. Attractability and palatability of ingredients in longarm river prawn Macrobrachium tenellum feed. Lat. Am. J. Aqua. Res. 2018, 46, 615–620. Available online: http://dx.doi.org/10.3856/vol46-issue3-fulltext-17 (accessed on 23 March 2018). [CrossRef]
- Alves, G.K. Uso de Papaína e Bromelina para Obtenção de Hidrolisados Proteicos de Fígado Suíno. Master’s Thesis, Universidade Federal de Santa Catarina, Florianópolis, Brazil, 2015; 91p. [Google Scholar]
- Broggi, J.A. Hidrolisado Proteico de Sardinha (Clupeidae) como Atrativo Alimentar para o Jundiá (Rhamdia quelen). Master’s Thesis, Universidade Estadual de Santa Catarina, Lages, Brazil, 2014; 49p. [Google Scholar]
- Choi, Y.J.; Hur, S.; Choi, B.D.; Konno, K.; Park, J.W. Enzymatic hydrolysis of recovered protein from frozen small croaker and functional properties of its hydrolysates. J. Food Sci. 2009, 74, 17–24. [Google Scholar] [CrossRef]
- Oliveira, M.S.R.; Franzen, F.L.; Terra, N.N. Utilização da carne mecanicamente separada de frango para a produção de hidrolisados proteicos a partir de diferentes enzimas proteolíticas. Semina Ciências Agrárias 2014, 35, 291–302. Available online: https://doi.org/10.5433/1679-0359.2014v35n1p291 (accessed on 18 July 2018). [CrossRef]
- Kasumyan, A.O. Gustatory reception and feeding behavior in fish. J. Icchthyol. 1997, 37, 78–93. [Google Scholar]
- Hara, T.J. Smell, Taste, And Chemical Sensing. Chemoreception (Smell and Taste): An Introduction. In Encyclopedia of Fish Physiology; Farrell, A.P., Ed.; Academic Press: San Diego, CA, USA, 2011; pp. 183–186. Available online: http://dx.doi.org/10.1016/B978-0-12-374553-8.00021-6 (accessed on 10 February 2019).
- Lokkeborg, S.; Siikavuopio, S.I.; Humborstad, O.B.; Palm, A.C.U.; Ferter, K. Towards more efficient longline fisheries: Fish feeding behavior, bait characteristics and development of alternative baits. Rev. Fish Biol. Fish. 2014, 24, 985–1003. [Google Scholar] [CrossRef]
- Olsen, K.H.; Lundh, T. Feeding stimulants in an omnivorous species, crucian carp Carassius carassius (Linnaeus 1758). Aquacult. Rep. 2016, 4, 66–73. Available online: https://doi.org/10.1016/j.aqrep.2016.06.005 (accessed on 18 January 2019). [CrossRef]
- Siikavuopio, S.I.; James, P.; Stenberg, E.; Evensen, T.; Saether, B.S. Evaluation of protein hydrolysate of by-product from the fish industry for inclusion in bait for longline and pot fisheries of Atlantic cod. Fish. Res. 2017, 188, 121–124. Available online: https://doi.org/10.1016/j.fishres.2016.11.024 (accessed on 25 January 2019). [CrossRef]
- Naylor, R.L.; Hardy, R.W.; Bureau, D.P.; Chiu, A.; Elliott, M.; Farrel, A.P.; Forster, I.; Gatlin, D.M.; Goldburg, R.J.; Hua, K.; et al. Feeding aquacultures in an era of finite resources. Proc. Natl. Acad. Sci. USA 2009, 106, 15103–15110. Available online: https://doi.org/10.1073/pnas.0905235106 (accessed on 23 July 2018). [CrossRef] [PubMed]
- National Research Council (NRC). Nutrient Requirements of Fish and Shrimp; NRC: Washington, DC, USA, 2011; 390p. [Google Scholar]
- Hu, M.; Wang, Y.; Wang, Q.; Zhao, M.; Xiong, B.; Qian, X.; Zhao, Y.; Luo, Z. Replacement of fish meal by rendered animal protein ingredients with lysine and methionine supplementation to practical diets for gibel carp, Carassius auratus gibelio. Aquaculture 2008, 275, 260–265. [Google Scholar] [CrossRef]
- Fries, E.M.; Luchesi, J.D.; Costa, J.M.; Ressel, C.; Signor, A.A.; Boscolo, W.R.; Feiden, A. Hidrolisados cárneos proteicos em rações para alevinos de Kinguio (Carassius auratus). Boletim do Instituto de Pesca 2011, 37, 401–407. Available online: https://doi.org/10.4322/rbcv.2014.008 (accessed on 18 September 2018).
- Cyrino JE, P.; Bicudo, A.J.A.; Sado, R.Y.; Borghesi, R.; Dairiki, J.K. A piscicultura e o ambiente—O uso de alimentos ambientalmente corretos em piscicultura. Revista Brasileira de Zootecnia 2010, 39, 68–87. Available online: http://producao.usp.br/handle/BDPI/5522 (accessed on 10 March 2018). [CrossRef]
- Broggi, J.A.; Wosniak, B.; Uczay, J.; Pessati, M.L.; Fabregat, T.E.H.P. Hidrolisado proteico de resíduo de sardinha como atrativo alimentar para juvenis de jundiá. Arquivo Brasileiro Medicina Veterinária Zootecnia 2017, 69, 505–512. Available online: http://dx.doi.org/10.1590/1678-4162-8348 (accessed on 16 December 2018). [CrossRef]
- Tesser, M.B.; Portella, M.C. Estimulantes alimentares para larvas de pacu. Revista Brasileira de Zootecnia 2011, 40, 1851–1855. [Google Scholar] [CrossRef] [Green Version]
- Pastore, S.C.G.; Gaiotto, J.R.; Ribeiro, F.A.S.; Nunes, A.J.P. Formulação de rações e boas práticas de fabricação In Nutriaqua; Fracalossi, D.M., Cyrino, J.E.P., Eds.; Sociedade Brasileira de Aquicultura e Biologia Aquática: Florianópolis, Brazil, 2012; pp. 295–308. [Google Scholar]
- Chotikachinda, R.; Tantikitti, C.; Benjakul, S.; Rustad, T.; Kumarnsit, E. Production of protein hydrolisates from skipjack tuna Katsuwonus pelamis viscera as feeding attractants for Asian seabass Lates calcarifer. Aquacult. Nutr. 2013, 19, 773–784. Available online: https://doi.org/10.1111/anu.12024 (accessed on 12 December 2017). [CrossRef]
- Uczay, J. Utilização de Hidrolisados de Origem Animal e Vegetal em Dietas para Juvenis de Jundiá. Ph.D. Thesis, Universidade do Estado de Santa Catarina, Lages, Brazil, 2017. [Google Scholar]
Ingredients | Diets | ||||
---|---|---|---|---|---|
FPE | PHF | PHP | PHM | PHS | |
Soy bran (45%) 1 | 36.15 | 33.94 | 32.59 | 36.24 | 34.36 |
Cornmeal | 20.00 | 20.00 | 20.00 | 20.00 | 20.00 |
Rice grits (8.5%) 1 | 6.64 | 7.74 | 8.54 | 5.00 | 7.41 |
Poultry guts meal | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 |
Feather meal | 8.00 | 8.00 | 8.00 | 8.00 | 8.00 |
Fishmeal (55%) 1 | 5.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Poultry protein hydrolysate | 0.00 | 5.00 | 0.00 | 0.00 | 0.00 |
Feather protein hydrolysate | 0.00 | 0.00 | 5.00 | 0.00 | 0.00 |
Swine mucus protein hydrolysate | 0.00 | 0.00 | 0.00 | 5.00 | 0.00 |
Swine liver protein hydrolysate | 0.00 | 0.00 | 0.00 | 0.00 | 5.00 |
Corn gluten meal (60%) 1 | 5.00 | 5.00 | 5.00 | 5.10 | 5.00 |
Blood meal | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 |
Soy oil | 2.09 | 2.41 | 2.53 | 2.67 | 2.21 |
Dicalcium phosphate | 1.39 | 2.00 | 2.12 | 1.94 | 2.08 |
Mineral–vitamin supplement 2 | 0.60 | 0.60 | 0.60 | 0.60 | 0.60 |
Calcitic lime | 0.31 | 0.56 | 0.49 | 0.69 | 0.51 |
L-lysine HCL | 0.80 | 0.71 | 1.02 | 0.72 | 0.79 |
L-threonine | 0.63 | 0.62 | 0.64 | 0.62 | 0.64 |
Common salt | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 |
DL-methionine | 0.42 | 0.42 | 0.47 | 0.43 | 0.41 |
Vitamin C (35%) | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 |
Choline chloride (60%) | 0.15 | 0.15 | 0.15 | 0.15 | 0.15 |
Antifungal (calcium propionate) | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 |
Antioxidant (BHT) 3 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 |
Total | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
Calculated Composition | Diets | ||||
---|---|---|---|---|---|
FPE | PHF | PHP | PHM | PHS | |
Starch (%) | 22.73 | 23.29 | 23.72 | 21.55 | 23.09 |
Total arginine (%) | 2.50 | 2.50 | 2.49 | 2.43 | 2.45 |
Calcium (%) | 1.31 | 1.31 | 1.31 | 1.30 | 1.31 |
Digestible energy (kcal kg−1) | 3.323 | 3.379 | 3.323 | 3.150 | 3.371 |
Total phenylalanine (%) | 1.92 | 1.90 | 1.89 | 1.93 | 1.91 |
Crude fiber (%) | 2.35 | 2.24 | 2.17 | 2.35 | 2.26 |
Available phosphorus (%) | 0.85 | 0.81 | 0.79 | 0.76 | 0.79 |
Total phosphorus (%) | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Fat (%) | 6.00 | 6.00 | 6.00 | 6.00 | 6.00 |
Total histidine (%) | 0.90 | 0.91 | 0.80 | 0.92 | 0.90 |
Total isoleucine (%) | 1.64 | 1.63 | 1.62 | 1.64 | 1.63 |
Total leucine (%) | 3.34 | 3.31 | 3.30 | 3.34 | 3.33 |
Total lysine (%) | 2.60 | 2.60 | 2.60 | 2.60 | 2.60 |
Total methionine (%) | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Crude protein (%) | 40.00 | 40.00 | 40.00 | 40.00 | 40.00 |
Fish digestible protein (%) | 34.98 | 35.21 | 31.5 | 32.57 | 35.21 |
Total threonine (%) | 2.20 | 2.20 | 2.20 | 2.20 | 2.20 |
Total tryptophan (%) | 0.41 | 0.42 | 0.38 | 0.40 | 0.42 |
Total valine (%) | 2.08 | 2.07 | 2.09 | 2.08 | 2.09 |
Parameters | Poultry Protein Hydrolysate | Feather Protein Hydrolysate | Swine Mucus Protein Hydrolysate | Swine Liver Protein Hydrolysate |
---|---|---|---|---|
Crude protein (%) | 78.18 | 76.33 | 59.28 | 78.04 |
Lipids (%) | 8.13 | 2.61 | 0.00 | 11.97 |
Dry matter (%) | 93.57 | 96.27 | 94.01 | 93.62 |
Crude energy (Kcal kg−1) | 5900 | 4900 | 3320 | 5320 |
Chemical Composition | Swine Mucus Protein Hydrolysate (%) | Poultry Protein Hydrolysate (%) | Swine Liver Protein Hydrolysate (%) | Feather Protein Hydrolysate (%) |
---|---|---|---|---|
Aspartic Acid | 2.31 | 0.59 | 0.25 | 0.12 |
Glutamic Acid | 2.93 | 1.41 | 0.72 | 0.26 |
Serine | 1.67 | 0.48 | 0.64 | 0.26 |
Glycine | 1.61 | 0.41 | 0.42 | 0.16 |
Histidine | 0.93 | 0.33 | 0.31 | 0.16 |
Taurine | 0.22 | 0.48 | 0.12 | 0.07 |
Arginine | 1.28 | 1.32 | 0.40 | 0.13 |
Threonine | 1.61 | 0.55 | 0.57 | 0.14 |
Alanine | 2.30 | 0.93 | 1.14 | 0.31 |
Proline | 1.64 | 0.41 | 0.58 | 0.12 |
Tyrosine | 1.51 | 0.82 | 0.73 | 0.52 |
Valine | 2.11 | 0.82 | 1.08 | 0.33 |
Methionine | 0.84 | 0.47 | 0.41 | 0.38 |
Cystine | 0.20 | 0.16 | 0.14 | 0.27 |
Isoleucine | 1.44 | 0.56 | 0.81 | 0.38 |
Leucine | 3.12 | 1.47 | 2.09 | 0.47 |
Phenylalanine | 1.54 | 0.78 | 0.86 | 0.43 |
Lysine | 2.77 | 1.14 | 0.90 | 0.29 |
Asparagine | 0.03 | 0.03 | 0.08 | None detected |
Total | 30.06 | 13.17 | 12.25 | 4.81 |
Treatments | Palatability Index (%) | Consumption of Pellets (%) | Number of Rejections after Capturing the Pellet | Number of Approaches without Capturing the Pellet | Time to Capture the First Pellet (Seconds) |
---|---|---|---|---|---|
FPE | 0 | 74.72 ± 28.75 | 0.59 ± 0.87 | 0.90 ± 0.51 | 1.49 ± 0.34 |
PHS | 12.27 | 83.44 ± 16.05 | 0.50 ± 0.92 | 0.72 ± 0.39 | 1.23 ± 0.31 |
PHM | 9.33 | 83.39 ± 9.99 | 0.47 ± 0.57 | 0.79 ± 0.60 | 1.13 ± 0.21 |
PHF | 8.77 | 82.26 ± 11.43 | 0.39 ± 0.36 | 0.81 ± 0.56 | 1.14 ± 0.23 |
PHP | 7.74 | 81.99 ± 14.89 | 0.34 ± 0.59 | 0.59 ± 0.62 | 1.01 ± 0.06 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alves, D.R.S.; de Oliveira, S.R.; Luczinski, T.G.; Paulo, I.G.P.; Boscolo, W.R.; Bittencourt, F.; Signor, A. Palatability of Protein Hydrolysates from Industrial Byproducts for Nile Tilapia Juveniles. Animals 2019, 9, 311. https://doi.org/10.3390/ani9060311
Alves DRS, de Oliveira SR, Luczinski TG, Paulo IGP, Boscolo WR, Bittencourt F, Signor A. Palatability of Protein Hydrolysates from Industrial Byproducts for Nile Tilapia Juveniles. Animals. 2019; 9(6):311. https://doi.org/10.3390/ani9060311
Chicago/Turabian StyleAlves, Denis Rogério Sanches, Suzana Raquel de Oliveira, Thiago Gabriel Luczinski, Isabela Guterres Pinto Paulo, Wilson Rogério Boscolo, Fábio Bittencourt, and Altevir Signor. 2019. "Palatability of Protein Hydrolysates from Industrial Byproducts for Nile Tilapia Juveniles" Animals 9, no. 6: 311. https://doi.org/10.3390/ani9060311
APA StyleAlves, D. R. S., de Oliveira, S. R., Luczinski, T. G., Paulo, I. G. P., Boscolo, W. R., Bittencourt, F., & Signor, A. (2019). Palatability of Protein Hydrolysates from Industrial Byproducts for Nile Tilapia Juveniles. Animals, 9(6), 311. https://doi.org/10.3390/ani9060311