Reproductive Characteristics of Cockatiels (Nymphicus hollandicus) Maintained in Captivityand Receiving Madagascar Cockroach (Gromphadorhina portentosa) Meal
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Location, Animals and Experimental Design
- (a)
- Laying: The laying phase from the appearance of the first egg to the last egg of each pair before incubation.
- (b)
- Incubation: The phase of the last egg laying until the hatching of the first chick of each pair.
- (c)
- Post hatching: The phase from the hatching of the first chick of each pair until the moment when the last chick completed 30 days of life.
- (d)
- Return to reproduction: The phase from the exit of the last chick from the nest box until the appearance of the first egg of each pair.
- (e)
- After leaving the nest boxes, chicks continued to be evaluated until 90 days of age, when the number and final weight of the birds were recorded.
2.2. Experimental Procedure
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Liz, H.; Wilson, C.V.T. Considerations in selecting an appropriate pet bird. In Avma Animal Welfare Forum: Pet Bird Welfare; JAVMA: Rosemont, IL, USA, 1998; Volume 112, pp. 1222–1225. [Google Scholar]
- Palmer, S.B. Domestic animal handling. In Veterinary Disaster Response; Wingfield, W.E., Palmer, S.B., Eds.; Wiley-Blackwell: Ames, IA, USA, 2009; pp. 257–278. [Google Scholar]
- Martin, S.G.; Millam, J.R. Nest box selection by floor laying and reproductively naive captive cockatiels (nymphicus hollandicus). Appl. Anim. Behav. Sci. 1995, 43, 95–109. [Google Scholar] [CrossRef]
- Gardner, C. Protocols for the hand-raising and care of cockatiels (nymphicus hollandicus). Available online: http://rehabbersden.org/rehabbers/Hand-raisingAndCareOfCockatiels.html (accessed on 11 May 2017).
- Koutsos, E.A.; Matson, K.D.; Klasing, K.C. Nutrition of birds in the order psittaciformes: A review. J. Avian Med. Surg. 2001, 15, 257–275. [Google Scholar] [CrossRef]
- Grindol, D. Is your cockatiel being weird. In The Complete Book of Cockatiels; Grindol, G., Ed.; Macmillan Publishing: New York, NY, USA, 1998; pp. 99–104. [Google Scholar]
- Hwangbo, J.; Hong, E.C.; Jang, A.; Kang, H.K.; Oh, J.S.; Kim, B.W.; Park, B.S. Utilization of house fly-maggots, a feed supplement in the production of broiler chickens. J. Environ. Biol. 2009, 30, 609–614. [Google Scholar] [PubMed]
- Barroso, F.G.; Haro, C.; Sánchez-Muros, M.-J.; Venegas, E.; Martínez-Sánchez, A.; Pérez-Bañón, C. The potential of various insect species for use as food for fish. Aquaculture 2014, 422, 193–201. [Google Scholar] [CrossRef]
- Finke, M.D.; DeFoliart, G.R.; Benevenga, N.J. Use of a four-parameter logistic model to evaluate the quality of the protein from three insect species when fed to rats. J. Nutr. 1989, 119, 864–871. [Google Scholar] [CrossRef] [PubMed]
- De Marco, M.; Martínez, S.; Hernandez, F.; Madrid, J.; Gai, F.; Rotolo, L.; Belforti, M.; Bergero, D.; Katz, H.; Dabbou, S. Nutritional value of two insect larval meals (tenebrio molitor and hermetia illucens) for broiler chickens: Apparent nutrient digestibility, apparent ileal amino acid digestibility and apparent metabolizable energy. Anim. Feed Sci. Technol. 2015, 209, 211–218. [Google Scholar] [CrossRef]
- Veldkamp, T.; van Duinkerken, G.; van Huis, A.; Lakemond, C.M.M.; Ottevanger, E.; Bosch, G.; van Boekel, T. Insects as a Sustainable Feed Ingredient in Pig and Poultry Diets: A Feasibility Study; Wageningen UR Livestock Research: Wageningen, The Netherlands, 2012; ISBN 1570-8616. [Google Scholar]
- Fontes, T.V.; Oliveira, K.R.B.; Almeida, I.L.G.; Orlando, T.M.; Rodrigues, P.B.; Costa, D.V. Digestibility of insect meals for nile tilapia fingerlings. Animals 2019, 9, 181. [Google Scholar] [CrossRef] [PubMed]
- Makkar, H.P.S.; Tran, G.; Heuzé, V.; Ankers, P. State-of-the-art on use of insects as animal feed. Anim. Feed Sci. Technol. 2014, 197, 1–33. [Google Scholar] [CrossRef]
- Oyegoke, O.O.; Akintola, A.J.; Fasoranti, J.O. Dietary potentials of the edible larvae of cirina forda (westwood) as a poultry feed. Afr. J. Biotechnol. 2006, 5, 1799–1802. [Google Scholar]
- Ijaiya, A.T.; Eko, E.O. Effect of replacing dietary fish meal with silkworm (anaphe infracta) caterpillar meal on performance, carcass characteristics and haematological parameters of finishing broiler chicken. Pak. J. Nutr. 2009, 8, 850–855. [Google Scholar] [CrossRef]
- Yoo, J.; Cho, K.; Hong, J.; Jang, H.; Chung, Y.; Kwon, G.; Shin, D.; Kim, Y. Nutrient ileal digestibility evaluation of dried mealworm (tenebrio molitor) larvae compared to three animal protein by-products in growing pigs. Asian-Australas. J. Anim. Sci. 2019, 32, 387–394. [Google Scholar] [CrossRef]
- Heinze, C.R.; Hawkins, M.G.; Gillies, L.A.; Wu, X.; Walzem, R.L.; German, J.B.; Klasing, K.C. Effect of dietary omega-3 fatty acids on red blood cell lipid composition and plasma metabolites in the cockatiel, nymphicus hollandicus. J. Anim. Sci. Biotechnol. 2012, 90, 3068–3079. [Google Scholar] [CrossRef] [PubMed]
- Diehl, E.; Valsamakis, G.; van der Veen, I.; Merkus, K.; di Mag, L.P.; Sauren, S.; Jager, W.; Di Magliano, L.P. Alternative Invertebrate Source for Animal: Implications and Constraints towards Sustainable Protein Recycling; Wageningen University: Wageningen, The Netherlands, 2014. [Google Scholar]
- Oonincx, D.; Dierenfeld, E. An investigation into the chemical composition of alternative invertebrate prey. Zoo Biol. 2012, 31, 40–54. [Google Scholar] [CrossRef]
- Shields, K.M.; Yamamoto, J.T.; Millam, J.R. Reproductive behavior and lh levels of cockatiels (nymphicus hollandicus) associated with photostimulation, nest-box presentation, and degree of mate access. Horm. Behav. 1989, 23, 68–82. [Google Scholar] [CrossRef]
- Torloni, C.E.C. Creation of Cockatiels; LIS Gráfica e Editora LTDA: Guarulhos, Brasil, 1991; p. 80. [Google Scholar]
- Hempe, J.M.; Lauxen, R.C.; Savage, J.E. Rapid determination of egg weight and specific gravity using a computerized data collection system. Poult. Sci. 1988, 67, 902–907. [Google Scholar] [CrossRef] [PubMed]
- Haugh, R.R. The haugh unit for measuring egg quality. United States Egg Poult. Mag. 1937, 43, 552–555. [Google Scholar]
- Folch, J.; Lees, M.; Sloane-Stanley, G.H. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [PubMed]
- Hartman, L.; Lago, R.C. Rapid preparation of fatty acid methyl esters from lipids. Lab. Pract. 1973, 22, 475–476. [Google Scholar]
- Dinh, T.T.N.; Thompson, L.D.; Galyean, M.L.; Brooks, J.C.; Patterson, K.Y.; Boylan, L.M. Cholesterol content and methods for cholesterol determination in meat and poultry. Compr. Rev. Food Sci. F 2011, 10, 269–289. [Google Scholar] [CrossRef]
- Faria, P.B.; Cantarelli, V.S.; Fialho, E.T.; Pinto, A.M.B.G.; Faria, J.H.; Rocha, M.F.M.; Guerreiro, M.C.; Bressan, M.C. Lipid profile and cholesterol of pork with the use of glycerin in feeding. Arq. Bras. Med. Vet. Zootec. 2015, 67, 535–546. [Google Scholar] [CrossRef] [Green Version]
- SAS Institute Inc. Sas/stat® 9.2 User’s Guide, 2nd ed.; SAS Institute Inc.: Cary, NC, USA, 2009; p. 7886. [Google Scholar]
- Marono, S.; Loponte, R.; Lombardi, P.; Vassalotti, G.; Pero, M.; Russo, F.; Gasco, L.; Parisi, G.; Piccolo, G.; Nizza, S. Productive performance and blood profiles of laying hens fed hermetia illucens larvae meal as total replacement of soybean meal from 24 to 45 weeks of age. Poult. Sci. 2017, 96, 1783–1790. [Google Scholar] [CrossRef]
- Brereton, J.L.G. Evolution within the psittaciformes. In Proceedings 13th International Ornithological Congress; American Ornithologist Union: Chicago, IL, USA, 1963; pp. 499–517. [Google Scholar]
- Koutsos, E.A.; Smith, J.; Woods, L.W.; Klasing, K.C. Adult cockatiels (nymphicus hollandicus) metabolically adapt to high protein diets. J. Nutr. 2001, 131, 2014–2020. [Google Scholar] [CrossRef] [PubMed]
- Biasato, I.; de Marco, M.; Rotolo, L.; Renna, M.; Lussiana, C.; Dabbou, S.; Capucchio, M.T.; Biasibetti, E.; Costa, P.; Gai, F.; et al. Effects of dietary tenebrio molitor meal inclusion in free-range chickens. J. Anim. Physiol. Anim. Nutr. 2016, 100, 1104–1112. [Google Scholar] [CrossRef]
- Livingston, S.; Lavin, S.R.; Sullivan, K.; Attard, L.; Valdes, E.V. Challenges with effective nutrient supplementation for amphibians: A review of cricket studies. Zoo Biol. 2014, 33, 565–576. [Google Scholar] [CrossRef]
- Halloran, A.; Vantomme, P. The contribution of insects to food security, livelihoods and the environment. In Food and Agriculture Organization of the United Nations (FAO); FAO: Rome, Italy, 2013. [Google Scholar]
- Kinyuru, J.N.; Konyole, S.O.; Roos, N.; Onyango, C.A.; Owino, V.O.; Owuor, B.O.; Estambale, B.B.; Friis, H.; Aagaard-Hansen, J.; Kenji, G.M. Nutrient composition of four species of winged termites consumed in western kenya. J. Food Compost. Anal. 2013, 30, 120–124. [Google Scholar] [CrossRef]
- Bukkens, S.G.F. Insects in the human diet: Nutritional aspects. In Ecological Implications of Minilivestock; Paoletti, M.G., Ed.; Science Publishers, Inc.: Enfield, NH, USA, 2005; pp. 545–577. [Google Scholar]
- Ramos-Elorduy, J. Insects: A hopeful food source. In Ecological Implications of Minilivestock; Science Publishers: Rawalpindi, Pakistan, 2005; pp. 263–291. [Google Scholar]
- Leiber, F.; Gelencsér, T.; Stamer, A.; Amsler, Z.; Wohlfahrt, J.; Früh, B.; Maurer, V. Insect and legume-based protein sources to replace soybean cake in an organic broiler diet: Effects on growth performance and physical meat quality. Renew. Agric. Food Syst. 2017, 32, 21–27. [Google Scholar] [CrossRef]
- Biasato, I.; Gasco, L.; de Marco, M.; Renna, M.; Rotolo, L.; Dabbou, S.; Capucchio, M.T.; Biasibetti, E.; Tarantola, M.; Sterpone, L. Yellow mealworm larvae (tenebrio molitor) inclusion in diets for male broiler chickens: Effects on growth performance, gut morphology, and histological findings. Poult. Sci. 2017, 97, 540–548. [Google Scholar] [CrossRef]
- Schiavone, A.; de Marco, M.; Martínez, S.; Dabbou, S.; Renna, M.; Madrid, J.; Hernandez, F.; Rotolo, L.; Costa, P.; Gai, F. Nutritional value of a partially defatted and a highly defatted black soldier fly larvae (hermetia illucens l.) meal for broiler chickens: Apparent nutrient digestibility, apparent metabolizable energy and apparent ileal amino acid digestibility. J. Anim. Sci. Biotechnol. 2017, 8, 51. [Google Scholar] [CrossRef] [PubMed]
- Akpodiete, O.J.; Ologhobo, A.D.; Onifade, A.A. Maggot meal as a substitute for fish meal in laying chicken diet. Ghana J. Agric. Sci. 1998, 31, 137–142. [Google Scholar] [CrossRef]
- Altuntas, E.; Sekeroglu, A. Effect of egg shape index on mechanical properties of chicken eggs. J. Food Eng. 2008, 85, 606–612. [Google Scholar] [CrossRef]
- Sutton, C.D.; Muir, W.M.; Mitchell, G.E., Jr. Cholesterol metabolism in the laying hen as influenced by dietary cholesterol, caloric intake, and genotype. Poult. Sci. 1984, 63, 972–980. [Google Scholar] [CrossRef]
- Sonia, C.; Tyagi, P.K.; Mandal, A.; Tyagi, P.K.; Rokade, J.J.; Singh, S. Effect of dietary inclusion of fenugreek (trigonella foenum-graecum l.) and black cumin (nigella sativa l.) on performance, egg quality traits and egg yolk cholesterol in laying japanese quails. Indian J. Poult. Sci. 2015, 50, 42–47. [Google Scholar]
- Hossain, S.M.; Blair, R. Chitin utilisation by broilers and its effect on body composition and blood metabolites. Br. Poult. Sci. 2007, 48, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Prajapati, B.G.; Patel, R.P. Nutrition, dietary supplements and herbal medicines: A safest approach for obesity. Res. J. Pharm. Biol. Chem. Sci. 2010, 1, 39–45. [Google Scholar]
- Sánchez-Muros, M.-J.; Barroso, F.G.; Manzano-Agugliaro, F. Insect meal as renewable source of food for animal feeding: A review. J. Clean. Prod. 2014, 65, 16–27. [Google Scholar] [CrossRef]
- Ravindran, V.; Blair, R. Feed resources for poultry production in asia and the pacific. Iii. Animal protein sources. Worlds Poult. Sci. J. 1993, 49, 219–235. [Google Scholar] [CrossRef]
- Menge, H.; Littlefield, L.H.; Frobish, L.T.; Weinland, B.T. Effect of cellulose and cholesterol on blood and yolk lipids and reproductive efficiency of the hen. J. Nutr. 1974, 104, 1554–1566. [Google Scholar] [CrossRef]
- Wang, F.R.; Dong, X.F.; Zhang, X.M.; Tong, J.M.; Xie, Z.G.; Zhang, Q. Effects of dietary taurine on egg production, egg quality and cholesterol levels in japanese quail. J. Sci. Food Agric. 2010, 90, 2660–2663. [Google Scholar] [CrossRef] [PubMed]
- Iskender, H.; Yenice, G.; Dokumacioglu, E.; Kaynar, O.; Hayirli, A.; Kaya, A. Comparison of the effects of dietary supplementation of flavonoids on laying hen performance, egg quality and egg nutrient profile. Br. Poult. Sci. 2017, 58, 550–556. [Google Scholar] [CrossRef]
- Franco, J.R.G.; Sakamoto, M.I. Egg quality: An overview of the factors influencing it. Available online: http://www.aveworld.com.br (accessed on 1 July 2017).
- Finke, M.D. Complete nutrient content of four species of feeder insects. Zoo Biol. 2013, 32, 27–36. [Google Scholar] [CrossRef]
- Houston, D.C.; Donnan, D.; Jones, P. The source of the nutrients required for egg production in zebra finches poephila guttata. J. Zool. 1995, 235, 469–483. [Google Scholar] [CrossRef]
- Veloso, R.C.; Pires, A.V.; Timpani, V.D.; Drumond, E.S.C.; Gonçalves, F.M.; Faria Filho, D.E. Protein and metabolizable energy on a meat quail line. Acta Sci. 2012, 34. [Google Scholar] [CrossRef]
- Liu, Z.; Wu, G.; Bryant, M.M.; Roland, D.A., Sr. Influence of added synthetic lysine in low-protein diets with the methionine plus cysteine to lysine ratio maintained at 0.75. J. Appl. Poultry Res. 2005, 14, 174–182. [Google Scholar] [CrossRef]
- Zou, S.G.; Wu, Y.Z. Effect of supplemental fat on performance of laying hens. Int. J. Poult. Sci. 2005, 4, 998–1000. [Google Scholar]
- Wu, G.; Bryant, M.M.; Voitle, R.A.; Roland, D.A. Effect of dietary energy on performance and egg composition of bovans white and dekalb white hens during phase I. Poult. Sci. 2005, 84, 1610–1615. [Google Scholar] [CrossRef] [PubMed]
- McDonald, D. Nutritional considerations: Section I. In Clinical Avian Medicine; Harrison, G.J., Lightfoot, T.L., Eds.; Spix Publishing: Palm Beach, FL, USA, 2006; Volume 1, pp. 86–107. [Google Scholar]
- Szymczyk, B.; Pisulewski, P.M. Effects of dietary conjugated linoleic acid on fatty acid composition and cholesterol content of hen egg yolks. Br. J. Nutr. 2003, 90, 93–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliveira, D.D.; Baião, N.C.; Cançado, S.V.; Grimaldi, R.; Souza, M.R.; Lara, L.J.C.; Lana, A.M.Q. Effects of lipid sources in the diet of laying hens on the fatty acid profiles of egg yolks. Poult. Sci. 2010, 89, 2484–2490. [Google Scholar] [CrossRef]
- Ceylan, N.; Ciftci, I.; Mızrak, C.; Kahraman, Z.; Efil, H. Influence of different dietary oil sources on performance and fatty acid profile of egg yolk in laying hens. J. Anim. Feed Sci. 2011, 20, 71–83. [Google Scholar] [CrossRef] [Green Version]
- Zuidhof, M.J.; Molnar, C.L.; Morley, F.M.; Wray, T.L.; Robinson, F.E.; Khan, B.A.; Al-Ani, L.; Goonewardene, L.A. Nutritive value of house fly (musca domestica) larvae as a feed supplement for turkey poults. Anim. Feed Sci. Technol. 2003, 105, 225–230. [Google Scholar] [CrossRef]
- Roudybush, T.E.; Grau, C.R. Food and water interrelations and the protein requirement for growth of an altricial bird, the cockatiel (nymphicus hollandicus). J. Nutr. 1986, 116, 552–559. [Google Scholar] [CrossRef]
Component | Seed Mixture a | Commercial Food b (CF) | Cockroach Meal c (CM) | CF + CM |
---|---|---|---|---|
Dry matter (%) | 88.47 | 89.08 | 93.62 | 89.62 |
Crude protein (%) | 14.23 | 17.08 | 57.79 | 18.81 |
Energy (kcal/kg) | 3904 | 5153 | 5784 | 5246 |
Ether extract (%) | 8.33 | 8.84 | 22.05 | 9.32 |
Mineral matter (%) | 4.00 | 4.28 | 3.56 | 4.98 |
Calcium (%) e | 0.41 | 2.50 | 0.48 | 2.38 |
Phosphorus (%) e | 0.65 | 0.55 | 1.76 | 0.65 |
Variable | Control | Cockroach Meal * | p = | SEM |
---|---|---|---|---|
Seed intake (g/day) | ||||
Laying phase | 15.66 | 16.05 | 0.71 | 1.03 |
Incubation phase | 18.38 | 17.56 | 0.21 | 0.61 |
Post-hatching phase | 24.32 | 24.70 | 0.81 | 2.74 |
Return to reproduction phase | 16.01 | 13.86 | 0.65 | 6.13 |
Feed Intake (g/day) | ||||
Laying phase | 1.55 | 2.73 | 0.07 | 0.57 |
Incubation phase | 2.20 | 2.94 | 0.29 | 0.65 |
Post-hatching phase | 8.99 | 11.54 | 0.42 | 5.33 |
Return to reproduction phase | 2.30 | 3.78 | 0.02 | 1.21 |
Crude Protein Intake (g/day) | ||||
Laying phase | 2.49 | 2.80 | 0.10 | 0.11 |
Incubation phase | 2.99 | 3.05 | 0.19 | 0.12 |
Post-hatching phase | 5.00 | 5.69 | 0.58 | 0.44 |
Return to reproduction phase | 2.67 | 2.68 | 0.86 | 0.11 |
Fat Intake (g/day) | ||||
Laying phase | 1.44 | 1.59 | 0.14 | 0.06 |
Incubation phase | 1.73 | 1.74 | 0.86 | 0.07 |
Post-hatching phase | 2.82 | 3.13 | 0.68 | 0.24 |
Return to reproduction phase | 1.54 | 1.51 | 0.62 | 0.06 |
Number of eggs laid | 4.33 | 3.53 | 0.02 | |
% of hatching | 51.3 | 56.7 | 0.04 | |
Mean period of incubation (days) | 19 | 18 | 0.78 | 1.35 |
Number of Viable Chicks/pair | ||||
1 day | 2.33 | 2.00 | 0.46 | |
30 days | 1.83 | 1.71 | 0.32 | |
90 days | 1.33 | 1.29 | 0.56 | |
Number of days to return to reproduction | 10.17 | 9.00 | 0.02 | 1.15 |
Variable | Control | Cockroach Meal* | p = | SEM |
---|---|---|---|---|
Egg Characteristics in the Nest Box | ||||
Weight (g) | 5.38 | 5.61 | 0.32 | 0.51 |
Height (mm) | 25.98 | 25.19 | 0.22 | 1.42 |
Width (mm) | 19.30 | 20.12 | 0.03 | 0.81 |
Shape index (%) | 0.74 | 0.80 | 0.01 | 0.05 |
Egg Characteristics After Storage | ||||
Total weight (g) | 5.35 | 5.56 | 0.37 | 0.53 |
Density (g/cm3) | 1.04 | 1.03 | 0.31 | 0.01 |
Eggshell weight (g) | 0.33 | 0.35 | 0.33 | 0.05 |
Eggshell thickness (mm) | 0.22 | 0.20 | 0.30 | 0.05 |
Eggshell calcium (%) | 29.10 | 30.80 | 0.42 | 3.50 |
Yolk weight (g) | 1.34 | 1.37 | 0.61 | 0.14 |
Yolk height (mm) | 8.96 | 8.78 | 0.47 | 0.55 |
Yolk color | 8.07 | 6.87 | 0.04 | 1.26 |
Protein in yolk (%) | 16.56 | 17.65 | 0.18 | 1.30 |
Albumen weight (g) | 3.57 | 3.85 | 0.16 | 0.41 |
Albumen height (mm) | 3.00 | 3.08 | 0.75 | 0.58 |
Protein in albumen (%) | 9.59 | 10.14 | 0.36 | 0.99 |
Haugh unit | 80.88 | 81.15 | 0.86 | 3.43 |
Variable | Control | Cockroach Meal* | p = | SEM |
---|---|---|---|---|
Cholesterol (mg/g of yolk) | 5.22 | 6.00 | 0.04 | 49.38 |
Saturated Fatty Acids | ||||
C10:0 capric | 0.0051 | 0.0089 | <0.01 | <0.01 |
C12:0 lauric | 0.0163 | 0.0178 | 0.64 | <0.01 |
C14:0 myristic | 0.4625 | 0.4872 | 0.62 | 0.08 |
C15:0 pentadecylic | 0.0152 | 0.0180 | 0.22 | <0.01 |
C16:0 palmitic | 25.1575 | 25.5385 | 0.51 | 0.96 |
C17:0 margaric | 0.0824 | 0.0928 | 0.03 | <0.01 |
C18:0 stearic | 8.2454 | 8.4259 | 0.69 | 0.76 |
C20:0 arachidonic | 0.0325 | 0.0339 | 0.67 | <0.01 |
C22:0 behenic | 0.0074 | 0.0080 | 0.72 | <0.01 |
Total | 34.0243 | 34.6309 | 0.34 | 1.06 |
Monounsaturated Fatty Acids | ||||
C14:1 myristoleic | 0.0890 | 0.0829 | 0.74 | 0.03 |
C15:1 pentadecanoic | 0.0141 | 0.0182 | 0.13 | <0.01 |
C16:1 palmitoleic | 4.4652 | 4.3227 | 0.86 | 1.36 |
C17:1 cis-10-heptadecanoic | 0.0428 | 0.0515 | 0.08 | <0.01 |
C18:1ω9T elaidic | 0.1650 | 0.1765 | 0.31 | 0.02 |
C18:1ω9C oleic | 43.6096 | 44.1952 | 0.64 | 2.09 |
C20:1 gadoleic | 0.0977 | 0.1033 | 0.78 | 0.03 |
Total | 48.4834 | 48.9504 | 0.75 | 2.45 |
Polyunsaturated Fatty Acids | ||||
C18:2ω6 linoleic | 12.0332 | 11.1941 | 0.41 | 1.70 |
C18:3ω6 γ-linolenic | 0.2583 | 0.2151 | 0.28 | 0.07 |
C18:3ω3α-linolenic | 0.1400 | 0.1272 | 0.52 | 0.03 |
C20:2 eicosadienoic | 0.0597 | 0.0610 | 0.93 | 0.03 |
C20:3ω6 dihomo-gamma-linolenic | 0.0945 | 0.0775 | 0.06 | 0.01 |
C20:4ω6 arachidonic | 4.2526 | 4.0720 | 0.49 | 0.44 |
C20:5ω3 timnodonic | 0.0365 | 0.0320 | 0.54 | 0.01 |
C22:6ω3 docosahexaenoic | 0.6175 | 0.6398 | 0.72 | 0.10 |
Total | 17.4494 | 16.3672 | 0.36 | 1.96 |
Totalunsaturated Fatty Acids | 65.9328 | 65.3176 | 0.34 | 1.06 |
Total ω3 | 0.7939 | 0.7990 | 0.94 | 0.12 |
Total ω6 | 16.6386 | 15.5587 | 0.35 | 1.90 |
ω6/ω3 | 20.9523 | 19.9179 | 0.54 | 2.83 |
∆9-desaturase C16 | 14.9592 | 14.2870 | 0.75 | 3.55 |
∆9-desaturase C18 | 84.0820 | 83.9988 | 0.92 | 1.35 |
Elongase C16-C18 | 63.6109 | 63.8163 | 0.88 | 2.24 |
Thioesterase C16-14 | 98.1955 | 98.1246 | 0.72 | 0.33 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carvalho, T.S.G.d.; Saad, C.E.d.P.; Esposito, M.; Faria, P.B.; Alvarenga, R.R.; Ferreira, L.G.; Ferreira, W.M.; Gonçalves, T.M.; Zangeronimo, M.G. Reproductive Characteristics of Cockatiels (Nymphicus hollandicus) Maintained in Captivityand Receiving Madagascar Cockroach (Gromphadorhina portentosa) Meal. Animals 2019, 9, 312. https://doi.org/10.3390/ani9060312
Carvalho TSGd, Saad CEdP, Esposito M, Faria PB, Alvarenga RR, Ferreira LG, Ferreira WM, Gonçalves TM, Zangeronimo MG. Reproductive Characteristics of Cockatiels (Nymphicus hollandicus) Maintained in Captivityand Receiving Madagascar Cockroach (Gromphadorhina portentosa) Meal. Animals. 2019; 9(6):312. https://doi.org/10.3390/ani9060312
Chicago/Turabian StyleCarvalho, Thatijanne Santos Gonzaga de, Carlos Eduardo do Prado Saad, Marcelo Esposito, Peter Bitencourt Faria, Renata Ribeiro Alvarenga, Livia Geraldi Ferreira, Walter Motta Ferreira, Tarcisio Moraes Gonçalves, and Marcio Gilberto Zangeronimo. 2019. "Reproductive Characteristics of Cockatiels (Nymphicus hollandicus) Maintained in Captivityand Receiving Madagascar Cockroach (Gromphadorhina portentosa) Meal" Animals 9, no. 6: 312. https://doi.org/10.3390/ani9060312