Aromatic Profile, Physicochemical and Sensory Traits of Dry-Fermented Sausages Produced without Nitrites Using Pork from Krškopolje Pig Reared in Organic and Conventional Husbandry
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Physicochemical Traits
3.2. Fatty Acids Analysis
3.3. Volatiles Profile Analysis
3.4. Instrumental Texture Parameters
3.5. Sensory Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pieniak, Z.; Verbeke, W.; Vanhonacker, F.; Guerrero, L.; Hersleth, M. Association between traditional food consumption and motives for food choice in six European countries. Appetite 2009, 53, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Sebranek, J.G.; Bacus, J.N. Cured meat products without direct addition of nitrate and nitrite: What are the issues? Meat Sci. 2007, 77, 136–147. [Google Scholar] [CrossRef] [PubMed]
- Cassens, R.G. Composition and safety of cured meats in the USA. Food Chem. 1997, 59, 561–566. [Google Scholar] [CrossRef] [Green Version]
- Alahakoon, A.U.; Jayasena, D.D.; Ramachandra, S.; Jo, C. Alternatives to nitrite in processed meat: Up to date. Trends Food Sci. Technol. 2015, 45, 37–49. [Google Scholar] [CrossRef]
- Lücke, F.K. Utilization of microbes to process and preserve meat. Meat Sci. 1998, 56, 105–115. [Google Scholar] [CrossRef]
- Toldrá, F.; Flores, M. Sausages, Types of: Dry and Semidry. In Encyclopedia of Meat Sciences; Devine, C., Dikeman, M., Eds.; Academic Press: Oxford, UK, 2014; pp. 248–255. [Google Scholar]
- Flores, M.; Olivares, A. Flavor. In Handbook of Fermented Meat and Poultry; Toldrá, F., Ed.; John Wiley & Sons: Chichester, West Sussex, UK, 2015; pp. 217–225. [Google Scholar]
- Commission regulation 889/2008 of 5 September 2008 laying down detailed rules for the implementation of Council Regulation (EC) No 834/2007 on organic production and labelling of organic products with regard to organic production, labelling and control. Off. J. Eur. Union 2008, L 250, 1–84.
- Kastelic, A.; Čandek-Potokar, M. Application of quality labels in support of conservation of local breeds—A challenge for Slovenian Krškopolje pig. Acta Agric. Slov. 2013, 4, 205–209. [Google Scholar]
- Tomažin, U.; Batorek Lukač, N.; Škrlep, M.; Prevolnik Povše, M.; Čandek-Potokar, M. Meat and fat quality of Krškopolje pigs reared in conventional and organic production systems. Animal 2018. [Google Scholar] [CrossRef] [PubMed]
- SO 6888-2; Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Coagulase-Positive Staphylococci (Staphylococcus aureus and Other Species)—Part 2: Technique Using Rabbit Plasma Fibrinogen Agar Medium; International Organization for Standardization: Genève, Switzerland, 1999.
- ISO/CD 15213; Microbiology of the Food and animal feeding stuffs - Horizontal method for the enumeration of sulfite-reducing bacteria growing under anaerobic conditions; International Organization for Standardization: Genève, Switzerland, 2003.
- ISO 11290-1; Microbiology of the Food Chain—Horizontal Method for the Detection and Enumeration of Listeria monocytogenes and of Listeria spp.; International Organization for Standardization: Genève, Switzerland, 2017.
- ISO 6579; Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Detection of Salmonella spp.; International Organization for Standardization: Genève, Switzerland, 2002.
- Škrlep, M.; Čandek-Potokar, M.; Batorek Lukač, N.; Prevolnik Povše, M.; Pugliese, C.; Labussière, E.; Flores, M. Comparison of entire male and immunocastrated pigs for dry-cured ham production under two salting regimes. Meat Sci. 2016, 111, 27–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rezar, V.; Salobir, J.; Levart, A.; Tomažin, U.; Škrlep, M.; Batorek Lukač, N.; Čandek-Potokar, M. Supplementing entire male pig diet with hydrolysable tannins: Effect on carcass traits, meat quality and oxidative stability. Meat Sci. 2017, 133, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Lynch, S.M.; Frei, B. Mechanisms of copper- and irondependent oxidative modification of human low-density lipoprotein. J. Lipid Res. 1993, 34, 1745–1751. [Google Scholar] [PubMed]
- Škrlep, M.; Čandek-Potokar, M.; Tomažin, U.; Batorek Lukač, N.; Flores, M. Properties and aromatic profile of dry-fermented sausages produced from Krškopolje pigs reared under organic and conventional rearing regime. Animal 2018, 12, 1316–1323. [Google Scholar] [CrossRef] [PubMed]
- Pugliese, C.; Sirtori, F.; Škrlep, M.; Piasentier, E.; Calamai, L.; Franci, O.; čandek-Potokar, M. The effect of ripening time on biochemical, textural, volatile and sensorial traits of Biceps femoris and Semimembranosus muscles of the Slovenian dry-cured ham Kraški pršut. Meat Sci. 2015, 100, 58–68. [Google Scholar] [CrossRef] [PubMed]
- Ordoñez, A.; Hierro, E.M.; Bruna, J.M.; de la Hoz, L. Changes in the components of dry-fermented sausages during ripening. Crit. Rev. Food Sci. Nutr. 1999, 39, 329–367. [Google Scholar] [CrossRef] [PubMed]
- Gandemer, G. Lipids in muscles and addipose tissues, changes during processing and sensory properties of meat products. Meat Sci. 2002, 62, 309–321. [Google Scholar] [CrossRef]
- Ferrocino, I.; Bellio, A.; Giordano, M.; Macori, G.; Romano, A.; Rantsiou, K.; Decastelli, L.; Cocolina, L. Shotgun Metagenomics and Volatilome Profile of the Microbiota of Fermented Sausages. Appl. Environ. Microbiol. 2018, 84, e02120-17. [Google Scholar] [CrossRef] [PubMed]
- Estévez, M. Protein carbonyls in meat systems: A review. Meat Sci. 2011, 89, 259–279. [Google Scholar] [CrossRef]
- Lund, M.N.; Heinonen, M.; Baron, C.P.; Estévez, M. Protein oxidation in muscle foods: A review. Mol. Nutr. Food Res. 2011, 55, 83–95. [Google Scholar] [CrossRef]
- Armenteros, M.; Heinonen, M.; Ollilainen, V.; Toldra, F.; Estévez, M. Analysis of protein carbonyls in meat products by using the DNPH-method, fluorescence spectroscopy and liquid chromatography-electrospray ionisation-mass spectrometry (LC-ESI-MS). Meat Sci. 2010, 83, 104–112. [Google Scholar] [CrossRef]
- Boufaïed, H.; Chouinard, P.Y.; Tremblay, G.F.; Petit, H.V.; Michaid, R.; Bélanger, G. Fatty acids in forages. I. Factors affecting concentrations. Can. J. Anim. Sci. 2003, 83, 501–511. [Google Scholar] [CrossRef] [Green Version]
- Nilzén, V.; Babol, J.; Dutta, P.C.; Lundeheim, N.; Enfält, A.-C.; Lundström, K. Free range rearing of pigs with access to pasture grazing—Effect on fatty acid composition and lipid oxidation products. Meat Sci. 2001, 58, 267–275. [Google Scholar] [CrossRef]
- Hansen, L.L.; Claudi-Magnussen, C.; Jensen, S.K.; Andersen, H.J. Effect of organic pig production on performance and meat quality. Meat Sci. 2006, 74, 605–615. [Google Scholar] [CrossRef] [PubMed]
- Helge, J.V.; Ayre, K.J.; Hulbert, A.J.; Kiens, B.; Storlien, L.H. Regular exercise modulates muscle membrane phospholipid profile in rats. J. Nutr. 1999, 129, 1636–1642. [Google Scholar] [CrossRef]
- Quiles, J.L.; Huertas, J.R.; Ochoa, J.J.; Battino, M.; Mataix, J. Dietary fat (virgin olive oil or sunflower oil) and physical training interactions on blood lipids in the rat. Nutrition 2003, 19, 363–368. [Google Scholar] [CrossRef]
- Daza, A.; Rey, A.I.; Olivares, A.; Cordero, G.; Toldrá, F.; López-Bote, C.J. Physical activity-induced alterations on tissue lipid composition and lipid metabolism in fattening pigs. Meat Sci. 2009, 81, 641–646. [Google Scholar] [CrossRef] [PubMed]
- Montel, M.C.; Masson, F.; Talon, R. Bacterial Role in Flavour Development. Meat Sci. 1998, 49 (Suppl. 1), S111–S123. [Google Scholar] [CrossRef]
- Zanardi, E.; Ghidini, S.; Battaglia, A.; Chizzolini, R. Lipolysis and lipid oxidation in fermented sausages depending on different processing conditions and different antioxidants. Meat Sci. 2004, 66, 415–423. [Google Scholar] [CrossRef]
- Toldrá, F.; Flores, M. The role of muscle proteases and lipases in flavour development during the processing of dry-cured ham. Crit. Rev. Food Sci. Nutr. 1998, 38, 331–352. [Google Scholar] [CrossRef]
- Turek, C.; Stintzing, F.C. Stability of essential oils: A review. Compr. Rev. Food Sci. 2013, 12, 40–53. [Google Scholar] [CrossRef]
- Perea Sanz, L.; Montero, R.; Belloch, C.; Flores, M. Nitrate reduction in the fermentation process of salt reduced dry sausages: Impact on microbial and physicochemical parameters and aroma profile. Int. J. Food Microbiol. 2018, 282, 84–91. [Google Scholar] [CrossRef]
- Shaikh, J.; Bhosale, R.; Singhal, R. Microencapsulation of black pepper oleoresin. Food Chem. 2006, 94, 105–110. [Google Scholar] [CrossRef]
- Lee, S.-Y.; Kim, D.-S.; Kyung, K.H. Factors influencing the stability of garlic thiosulfinates. Food Sci. Biotechnol. 2014, 23, 1593–1600. [Google Scholar] [CrossRef]
- Fujisawa, H.; Suma, K.; Origuchi, K.; Kumagi, H.; Seki, T.; Ariga, T. Biological and chemical stability of garlic-derived allicin. J. Agric. Food Chem. 2008, 56, 4229–4235. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Bote, C.J.; Toldrá, F.; Daza, A.; Ferrer, J.M.; Menoyo, D.; Silió, L.; Rodríguez, M.C. Effect of exercise on skeletal muscle proteolytic enzyme activity and meat characteristics in Iberian pigs. Meat Sci. 2008, 79, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Stahnke, L.H. Aroma components from dried sausages fermented with Staphylococcus xylosus. Meat Sci. 1994, 38, 39–53. [Google Scholar] [CrossRef]
- Belitz, H.-D.; Grosch, W. Quimica de los Alimentos; Acribia: Zaragoza, Spain, 1997; 1087p. [Google Scholar]
- Girard, J.P.; Bout, J.; Salort, D. Lipides et qualitiés des tissues adipeux et musculaires de porc, facteurs de variations. J. Recherce Porc. Fr. 1988, 20, 255–278. [Google Scholar]
- Ruiz, J.; García, C.; Muriel, E.; Andrés, A.I.; Ventanas, J. Influence of sensory characteristics on the acceptability of dry-cured ham. Meat Sci. 2002, 61, 347–354. [Google Scholar] [CrossRef]
- Faustman, C.; Sun, Q.; Mancini, R.; Suman, S.P. Myoglobin and lipid oxidation interactions: Mechanistic bases and control. Meat Sci. 2010, 86, 86–94. [Google Scholar] [CrossRef]
- Burdock, G.A. (Ed.) Fenaroli’s Handbook of Flavour Ingredients, 5th ed.; CRC Press: Boca Raton, FL, USA, 2004; p. 558. [Google Scholar]
- Garcia-Gonzalez, D.L.; Tena, N.; Aparicio-Ruiz, R.; Morales, M.T. Relationship between sensory attributes and volatile compounds qualifying dry-cured hams. Meat Sci. 2008, 80, 315–325. [Google Scholar] [CrossRef]
- Flores, M.; Grimm, C.C.; Toldra, F.; Spanier, A.M. Correlations of sensory and volatile compounds of Spanish “Serrano” dry-cured ham as a function of two processing times. J. Agric. Food Chem. 1997, 45, 2178–2186. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, M.; Xie, J.; Zhao, M.; Hou, L.; Liang, J.; Wang, S.; Cheng, J. Volatile flavour constituents in the pork broth of black-pig. Food Chem. 2017, 226, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Corral, S.; Salvador, A.; Flores, M. Salt reduction in slow fermented sausages affect the generation of aroma active compounds. Meat Sci. 2013, 93, 776–785. [Google Scholar] [CrossRef] [PubMed]
Physicochemical Traits | Organic | Conventional | RMSE | Significance |
---|---|---|---|---|
Weight loss during processing, % | 32.8 | 37.1 | 0.63 | *** |
Water activity (aw) | 0.910 | 0.868 | 0.0098 | *** |
Moisture, % | 31.3 | 26.7 | 0.40 | *** |
Fat, g/kg DM | 599 | 593 | 14.2 | NS |
Protein, g/kg DM | 329 | 327 | 13.52 | NS |
pH | 5.83 | 6.27 | 0.082 | *** |
Proteolysis index, % | 9.2 | 9.6 | 1.51 | NS |
NaCl, g/kg DM | 64.7 | 67.5 | 1.78 | * |
TBARS, μg MDA/kg DM | 87.8 | 80.5 | 3.17 | ** |
Carbonyls, nmol/mg proteins | 5.3 | 4.1 | 1.11 | † |
Fatty Acid Composition | Organic | Conventional | RMSE | Significance |
---|---|---|---|---|
Fatty acids | ||||
C14:0 | 1.40 | 1.30 | 0.000 | *** |
C16:0 | 24.70 | 25.17 | 0.131 | ** |
C16:1n7 | 2.28 | 2.17 | 0.065 | ** |
C17:0 | 0.70 | 0.70 | 0.045 | NS |
C17:1 | 0.38 | 0.30 | 0.029 | ** |
C18:0 | 13.67 | 14.37 | 0.144 | *** |
C18:1n-9 | 37.75 | 38.65 | 0.207 | *** |
C18:1 other | 3.08 | 3.07 | 0.079 | NS |
C18:2n-6 | 12.38 | 10.85 | 0.246 | *** |
C18:3 n-3 | 0.85 | 0.68 | 0.048 | *** |
C20:1n-9 | 0.80 | 0.92 | 0.029 | *** |
C20:4n-6 | 0.28 | 0.22 | 0.002 | ** |
SFA | 41.00 | 41.98 | 0.291 | *** |
MUFA | 44.18 | 44.98 | 0.271 | ** |
PUFA | 14.47 | 12.65 | 0.288 | *** |
Free fatty acids | ||||
C14:0 | 0.07 | 0.08 | 0.008 | ** |
C16:0 | 0.67 | 1.08 | 0.105 | *** |
C18:0 | 0.25 | 0.37 | 0.054 | ** |
C18:1n-9 | 1.58 | 2.37 | 0.202 | *** |
C18:1 other | 0.17 | 0.23 | 0.024 | ** |
C18:2n-6 | 0.96 | 1.06 | 0.066 | * |
C18:3n-3 | 0.07 | 0.07 | 0.006 | NS |
C20:1n-9 | nd | 0.07 | ||
C20:2n-6 | 0.07 | 0.08 | 0.008 | * |
C20:4n-6 | 0.01 | 0.03 | 0.028 | NS |
C22:3n-3 | 0.06 | 0.07 | 0.023 | NS |
C24:1n-9 | 0.02 | 0.04 | 0.035 | NS |
SFA | 0.98 | 1.23 | 0.164 | *** |
MUFA | 1.90 | 2.86 | 0.232 | *** |
PUFA | 1.17 | 1.31 | 0.088 | * |
Total | 4.05 | 5.70 | 0.476 | *** |
Supposed Origin of Volatiles | LRI | RI | Organic | Conventional | RMSE | Significance |
Spices | ||||||
Allyl mercaptan | 610 | b | 0.43 | 0.37 | 0.163 | NS |
Allyl methyl sulphide | 718 | a | 4.43 | 5.69 | 1.004 | † |
(Z)-1-(methylthio) 1-propene | 759 | b | 0.40 | 0.28 | 0.062 | ** |
Allyl sulfide | 883 | a | 0.15 | 0.42 | 0.178 | * |
Terpene | 934 | a | 1.14 | 4.21 | 0.885 | *** |
α-pinene | 940 | a | 0.63 | 2.37 | 0.501 | *** |
Sabinene | 986 | a | 3.25 | 12.80 | 2.518 | *** |
β-myrcene | 1003 | a | 0.25 | 2.01 | 0.375 | *** |
α-phellandrene | 1022 | a | 1.24 | 8.39 | 1.555 | *** |
a-terpinene | 1034 | a | 0.19 | 0.76 | 0.159 | *** |
Limonene | 1045 | a | 3.70 | 15.09 | 2.902 | *** |
Terpene | 1050 | b | 0.92 | 5.04 | 1.442 | * |
γ-terpinene | 1074 | b | 0.28 | 1.01 | 0.201 | *** |
Terpene | 1099 | b | nd | 0.09 | / | / |
Terpinolene | 1101 | a | 0.09 | 0.47 | 0.095 | *** |
Diallyl disulphide | 1119 | a | 0.20 | 0.20 | 0.042 | NS |
1,2-dimethoxy-Benzene | 1197 | b | 0.07 | 0.11 | 0.027 | * |
Toluene | 788 | a | 0.10 | 0.15 | 0.050 | NS |
Copaene | 1403 | b | 0.21 | 0.37 | 0.068 | ** |
Caryophyllene | 1434 | a | 0.78 | 1.65 | 0.295 | *** |
Aminoacid degradation | ||||||
Benzaldehyde | 1018 | a | 1.15 | 3.64 | 0.861 | ** |
Benzeneacetaldehyde | 1111 | a | 7.10 | 10.29 | 2.307 | * |
2-Methyl propanal | 592 | a | nd | 0.08 | ||
3-Methyl butanal | 689 | a | 0.25 | 0.99 | 0.287 | ** |
Methional | 966 | a | nd | 0.10 | ||
Lipid β-oxidation | ||||||
Isopropyl alcohol | 537 | a | 0.24 | 0.39 | 0.094 | * |
(R)-2-Butanol | 642 | a | 9.90 | 1.54 | 4.182 | ** |
2-Pentanone | 733 | a | 0.17 | 0.18 | 0.050 | NS |
1-Octen-3-ol | 1031 | a | 0.51 | nd | ||
2-Octanone | 1039 | a | 0.10 | 0.10 | 0.027 | NS |
2-Nonanone | 1140 | a | 0.22 | 0.30 | 0.109 | NS |
Carbohydrate fermentation | ||||||
Ethyl alcohol | 505 | a | 2.66 | 3.86 | 0.715 | * |
Acetaldehyde | 466 | a | 0.07 | 0.11 | 0.036 | † |
Acetic acid | 711 | a | 6.93 | 4.80 | 1.374 | * |
Acetone | 527 | a | 2.33 | 12.76 | 7.668 | * |
2-Butanone | 630 | a | 11.51 | 3.57 | 3.287 | ** |
3-Hydroxy-2-butanone | 779 | a | 0.41 | 1.51 | 0.606 | * |
Butanoic acid | 887 | a | 0.85 | 1.11 | 0.417 | NS |
Lipid autooxidation | ||||||
1-Propanol | 611 | a | 0.76 | 0.93 | 0.532 | NS |
Propanal | 523 | a | 0.09 | 0.07 | 0.034 | NS |
2-Pentyl-furan | 1009 | a | 0.09 | 0.05 | 0.011 | ** |
Pentane | 500 | a | 2.29 | 2.06 | 0.698 | NS |
Pentanal | 738 | a | 0.34 | 0.29 | 0.085 | * |
Hexane | 600 | a | 0.94 | 1.10 | 1.015 | NS |
1-Hexanol | 923 | a | 0.47 | 0.05 | 0.253 | NS |
Hexanal | 840 | a | 5.13 | 4.29 | 1.578 | NS |
Heptane | 700 | a | 2.42 | 2.45 | 0.610 | NS |
(Z)-2-Heptenal | 1011 | a | nd | 0.19 | ||
Octane | 800 | a | 2.95 | 2.62 | 0.638 | NS |
Octanal | 1049 | a | 0.19 | nd | ||
Octanoic acid | 1264 | a | 0.03 | 0.05 | 0.018 | NS |
Nonanal | 1149 | a | 0.47 | 0.62 | 0.114 | * |
Esterase activity | ||||||
Methyl acetate | 549 | a | 4.76 | 5.04 | 1.363 | NS |
Ethyl acetate | 634 | a | 0.71 | 0.48 | 0.228 | NS |
Methyl propionate | 650 | a | 0.89 | 1.31 | 0.763 | NS |
Methyl butanoate | 755 | a | 3.19 | 5.00 | 1.821 | NS |
Methyl 2-hydroxypropanoate | 792 | a | 0.20 | 0.13 | 0.047 | * |
Methyl 3-methylbutanoate | 805 | a | 0.96 | 1.31 | 0.576 | NS |
Ethyl butanoate | 830 | a | 0.51 | 0.70 | 0.147 | NS |
Methyl pentanoate | 855 | a | 0.13 | 0.13 | 0.029 | NS |
Propyl butanoate | 925 | a | nd | 0.09 | ||
Methyl hexanoate | 951 | a | 1.53 | 1.63 | 0.373 | NS |
Methyl heptanoate | 1057 | a | 0.07 | 0.05 | 0.014 | † |
Methyl octanoate | 1156 | a | 0.78 | 1.16 | 0.352 | † |
Methyl nonanoate | 1260 | a | nd | 0.14 | ||
Methyl decanoate | 1358 | a | 0.14 | 0.24 | 0.127 | NS |
Texture Parameter | Conventional | Organic | RMSE | Significance |
---|---|---|---|---|
Force decay coefficient | 0.57 | 0.60 | 0.066 | NS |
Hardness, N | 57.7 | 30.7 | 7.60 | *** |
Cohesiveness | 0.51 | 0.38 | 0.054 | *** |
Gumminess, N | 29.9 | 11.9 | 5.90 | *** |
Springiness, mm | 4.4 | 4.5 | 0.68 | NS |
Chewiness, N | 135.3 | 53.8 | 33.98 | *** |
Adhesiveness, N*mm | −2.5 | −2.9 | 1.10 | NS |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Škrlep, M.; Čandek-Potokar, M.; Batorek-Lukač, N.; Tomažin, U.; Flores, M. Aromatic Profile, Physicochemical and Sensory Traits of Dry-Fermented Sausages Produced without Nitrites Using Pork from Krškopolje Pig Reared in Organic and Conventional Husbandry. Animals 2019, 9, 55. https://doi.org/10.3390/ani9020055
Škrlep M, Čandek-Potokar M, Batorek-Lukač N, Tomažin U, Flores M. Aromatic Profile, Physicochemical and Sensory Traits of Dry-Fermented Sausages Produced without Nitrites Using Pork from Krškopolje Pig Reared in Organic and Conventional Husbandry. Animals. 2019; 9(2):55. https://doi.org/10.3390/ani9020055
Chicago/Turabian StyleŠkrlep, Martin, Marjeta Čandek-Potokar, Nina Batorek-Lukač, Urška Tomažin, and Mónica Flores. 2019. "Aromatic Profile, Physicochemical and Sensory Traits of Dry-Fermented Sausages Produced without Nitrites Using Pork from Krškopolje Pig Reared in Organic and Conventional Husbandry" Animals 9, no. 2: 55. https://doi.org/10.3390/ani9020055