Supplementing Oregano Essential Oil in a Reduced-Protein Diet Improves Growth Performance and Nutrient Digestibility by Modulating Intestinal Bacteria, Intestinal Morphology, and Antioxidative Capacity of Growing-Finishing Pigs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. Animals, Diets, and Experimental Design
2.2. Growth Performance and Nutrient Digestibility Analysis
2.3. Carcass Measurement
2.4. Sample Collection
2.5. Determination of Jejunal and Ileal Morphology
2.6. Detection of Plasma Antioxidant Enzyme Activity and Oxidative Status
2.7. Quantification of Selected Ileal Bacteria
2.8. Statistical Analysis
3. Results
3.1. Growth Performance
3.2. Apparent Total Tract Digestibility
3.3. Carcass Characteristics
3.4. Selected Microbial Populations in Ileal Digesta
3.5. Morphology of the Jejunum and Ileum
3.6. Antioxidant Activity and Lipid Peroxidation in Plasma
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Ouyang, W.; Hao, F.; Wei, X.; Huang, H. Spatial and temporal trend of Chinese manure nutrient pollution and assimilation capacity of cropland and grassland. Environ. Sci. Pollut. Res. 2013, 20, 5036–5046. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Li, D. Impact of increased demand for animal protein products in Asian countries: Implications on global food security. Anim. Front. 2013, 3, 48–55. [Google Scholar] [CrossRef] [Green Version]
- Kerr, B.J.; McKeith, F.K.; Easter, R.A. Effect on performance and carcass characteristics of nursery to finisher pigs fed reduced crude protein, amino acid-supplemented diets. J. Anim. Sci. 1995, 73, 433–440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kerr, B.J.; Yen, J.T.; Nienaber, J.A.; Easter, R.A. Influences of dietary protein level, amino acid supplementation and environmental temperature on performance, body composition, organ weights and total heat production of growing pigs. J. Anim. Sci. 2003, 81, 1998–2007. [Google Scholar] [CrossRef] [PubMed]
- Kerr, B.J.; Ziemer, C.J.; Trabue, S.L.; Crouse, J.D.; Parkin, T.B. Manure composition of swine as affected by dietary protein and cellulose concentrations. J. Anim. Sci. 2006, 84, 1584–1592. [Google Scholar] [CrossRef] [PubMed]
- Windisch, W.; Schedle, K.; Plitzner, C.; Kroismayr, A. Use of phytogenic products as feed additives for swine and poultry. J. Anim. Sci. 2008, 86, 140–148. [Google Scholar] [CrossRef] [PubMed]
- Shittu, A.O.; Okon, K.; Adesida, S.; Oyedara, O.; Witte, W.; Strommenger, B.; Layer, F.; Nübel, U. Antibiotic resistance and molecular epidemiology of Staphylococcus aureus in Nigeria. BMC Microbiol. 2011, 11, 92. [Google Scholar] [CrossRef] [PubMed]
- Sarmah, A.K.; Meyer, M.T.; Boxall, A.B.A. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere 2006, 65, 725–759. [Google Scholar] [CrossRef] [PubMed]
- Savoia, D. Plant-derived antimicrobial compounds: Alternatives to antibiotics. Future Microbiol. 2012, 7, 979–990. [Google Scholar] [CrossRef] [PubMed]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils—A review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Zhou, Y.F.; Zou, Y.; Hu, X.M.; Zheng, L.F.; Wei, H.K.; Giannenas, I.; Jin, L.Z.; Peng, J.; Jiang, S.W. Effects of dietary oregano essential oil supplementation on the stress response, antioxidative capacity, and HSPs mRNA expression of transported pigs. Livest. Sci. 2015, 180, 143–149. [Google Scholar] [CrossRef]
- Zhou, L.; Fang, L.; Yue, S.; Yong, S.; Zhu, W. Effects of the dietary protein level on the microbial composition and metabolomic profile in the hindgut of the pig. Anaerobe 2016, 38, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.; Liu, Z.; Zhou, Y.; Wei, H.; Zhang, X.; Xia, M.; Deng, Z.; Zou, Y.; Jiang, S.; Peng, J. Effect of oregano essential oil supplementation to a reduced-protein, amino acid-supplemented diet on meat quality, fatty acid composition, and oxidative stability of Longissimus thoracis muscle in growing-finishing pigs. Meat. Sci. 2017, 133, 103. [Google Scholar] [CrossRef] [PubMed]
- National Research Council (NRC). Nutrient Requirements of Swine, 10th ed.; NRC: Washington, DC, USA, 1998. [Google Scholar]
- Yu, M.; Zhang, C.; Yang, Y.; Mu, C.; Su, Y.; Yu, K.; Zhu, W. Long-term effects of early antibiotic intervention on blood parameters, apparent nutrient digestibility, and fecal microbial fermentation profile in pigs with different dietary protein levels. J. Anim. Sci. Biotechnol. 2017, 8, 60. [Google Scholar] [CrossRef] [PubMed]
- Kaewtapee, C.; Burbach, K.; Tomforde, G.; Hartinger, T.; Camarinhasilva, A.; Heinritz, S.; Seifert, J.; Wiltafsky, M.; Mosenthin, R.; Rosenfelderkuon, P. Effect of Bacillus subtilis and Bacillus licheniformis supplementation in diets with low- and high-protein content on ileal crude protein and amino acid digestibility and intestinal microbiota composition of growing pigs. J. Anim. Sci. Biotechnol. 2017, 8, 686–700. [Google Scholar] [CrossRef] [PubMed]
- National Research Council (NRC). Nutrient Requirements of Swine, 11th ed.; NRC: Washington, DC, USA, 2012. [Google Scholar]
- Zou, Y.; Xiang, Q.; Wang, J.; Wei, H.; Peng, J. Effects of oregano essential oil or quercetin supplementation on body weight loss, carcass characteristics, meat quality and antioxidant status in finishing pigs under transport stress. Livest. Sci. 2016, 192, 33–38. [Google Scholar] [CrossRef]
- AOAC International. Official Methods of Analysis, 17th ed.; AOAC International: Gaithersburg, MD, USA, 2000. [Google Scholar]
- Sauer, W.C.; Lange, K.D. Novel methods for determining protein and amino acid digestibilities in feedstuffs. Mod. Methods Protein Nutr. Metab. 1992, 1992, 87–120. [Google Scholar]
- Huang, F.R.; Zhan, Z.P.; Luo, J.; Liu, Z.X.; Peng, J. Duration of dietary linseed feeding affects the intramuscular fat, muscle mass and fatty acid composition in pig muscle. Livest. Sci. 2008, 118, 132–139. [Google Scholar] [CrossRef]
- Wei, H.K.; Xue, H.X.; Zhou, Z.X.; Peng, J. A carvacrol-thymol blend decreased intestinal oxidative stress and influenced selected microbes without changing the messenger RNA levels of tight junction proteins in jejunal mucosa of weaning piglets. Animal 2017, 11, 193–201. [Google Scholar] [CrossRef] [PubMed]
- Duncan, D.B. Multiple range and multiple f tests. Biometrics 1955, 11, 1–42. [Google Scholar] [CrossRef]
- Madrid, J.; Martínez, S.; López, C.; Orengo, J.; López, M.J.; Hernández, F. Effects of low protein diets on growth performance, carcass traits and ammonia emission of barrows and gilts. Anim. Prod. Sci. 2013, 53, 146–153. [Google Scholar] [CrossRef]
- Noblet, J.; Van Milgen, J. Energy value of pig feeds: Effect of pig body weight and energy evaluation system. J. Anim. Sci. 2004, 82, 229–238. [Google Scholar]
- Kerr, B.J.; Southern, L.L.; Bidner, T.D.; Friesen, K.G.; Easter, R.A. Influence of dietary protein level, amino acid supplementation, and dietary energy levels on growing-finishing pig performance and carcass composition. J. Anim. Sci. 2003, 81, 3075–3087. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Wu, L.; Xu, Z.; Li, T.; Yao, K.; Cui, Z.; Yin, Y.; Wu, G. Low-protein diets affect ileal amino acid digestibility and gene expression of digestive enzymes in growing and finishing pigs. Amino Acids 2016, 48, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Yan, W.; Sun, C.; Yuan, J.; Yang, N. Gut metagenomic analysis reveals prominent roles of Lactobacillus and cecal microbiota in chicken feed efficiency. Sci. Rep. 2017, 7, 45308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, Z.; Yang, T.; Wang, Y.; Xing, K.; Zhang, F.; Zhao, X.; Ao, H.; Chen, S.; Liu, J.; Wang, C. Metagenomic analysis of cecal microbiome identified microbiota and functional capacities associated with feed efficiency in landrace finishing pigs. Front. Microbiol. 2017, 8, 1546. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Hou, C.; Zeng, X.; Qiao, S. The use of lactic acid bacteria as a probiotic in swine diets. Pathogens 2015, 4, 34–45. [Google Scholar] [CrossRef] [PubMed]
- Thacker, P.A. Alternatives to antibiotics as growth promoters for use in swine production: A review. J. Anim. Sci. Biotechnol. 2013, 4, 35. [Google Scholar] [CrossRef] [PubMed]
- Cho, I.; Yamanishi, S.; Cox, L.; Methé, B.A.; Zavadil, J.; Li, K.; Gao, Z.; Mahana, D.; Raju, K.; Teitler, I. Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature 2012, 488, 621–626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allen, H.K.; Looft, T.; Bayles, D.O.; Humphrey, S.; Levine, U.Y.; Alt, D.; Stanton, T.B. Antibiotics in feed induce prophages in swine fecal microbiomes. Mbio 2011, 2, 1867–1877. [Google Scholar] [CrossRef] [PubMed]
- Li, X.J.; Piao, X.S.; Kim, S.W.; Liu, P.; Wang, L.; Shen, Y.B.; Jung, S.C.; Lee, H.S. Effects of chito-oligosaccharide supplementation on performance, nutrient digestibility, and serum composition in broiler chickens. Poult. Sci. 2007, 86, 1107–1114. [Google Scholar] [CrossRef] [PubMed]
- Ranucci, D.; Beghelli, D.; Trabalzamarinucci, M.; Branciari, R.; Forte, C.; Olivieri, O.; Pazmay, B.G.V.; Cavallucci, C.; Acuti, G. Dietary effects of a mix derived from oregano (Origanum vulgare L.) essential oil and sweet chestnut (Castanea sativa mill.) wood extract on pig performance, oxidative status and pork quality traits. Meat Sci. 2015, 100, 319–326. [Google Scholar] [CrossRef] [PubMed]
- Forte, C.; Ranucci, D.; Beghelli, D.; Branciari, R.; Acuti, G.; Todini, L.; Cavallucci, C.; Trabalza-Marinucci, M. Dietary integration with oregano (Origanum vulgare L.) essential oil improves growth rate and oxidative status in outdoor-reared, but not indoor-reared, pigs. J. Anim. Physiol. Anim. Nutr. 2017, 101, 352–361. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Z.; Zhang, S.; Wang, H.; Piao, X. Essential oil and aromatic plants as feed additives in non-ruminant nutrition: A review. J. Anim. Sci. Biotechnol. 2016, 6, 10–19. [Google Scholar] [CrossRef] [PubMed]
- Platel, K.; Srinivasan, K. Influence of dietary spices and their active principles on pancreatic digestive enzymes in albino rats. Mol. Nut. Food Res. 2000, 44, 42–46. [Google Scholar] [CrossRef]
- Lee, K.W.; Everts, H.; Kappert, H.J.; Frehner, M.; Losa, R.; Beynen, A.C. Effects of dietary essential oil components on growth performance, digestive enzymes and lipid metabolism in female broiler chickens. Br. Poult. Sci. 2003, 44, 450–457. [Google Scholar] [CrossRef] [PubMed]
- Peng, Q.Y.; Li, J.D.; Li, Z.; Duan, Z.Y.; Wu, Y.P. Effects of dietary supplementation with oregano essential oil on growth performance, carcass traits and jejunal morphology in broiler chickens. Anim. Feed. Sci. Technol. 2016, 214, 148–153. [Google Scholar] [CrossRef]
- Lykkesfeldt, J.; Svendsen, O. Oxidants and antioxidants in disease: Oxidative stress in farm animals. Vet. J. 2007, 173, 502–511. [Google Scholar] [CrossRef] [PubMed]
- Pluske, J.R.; Hampson, D.J.; Williams, I.H. Factors influencing the structure and function of the small intestine in the weaned pig: A review. Livest. Prod. Sci. 1997, 51, 215–236. [Google Scholar] [CrossRef]
Diets (%) | Growing Stage | Finishing Stage | ||
---|---|---|---|---|
NPD | RPD | NPD | RPD | |
Corn | 60.55 | 65.35 | 65.72 | 69.81 |
Soybean meal | 16.20 | 9.70 | 13.72 | 7.20 |
DDGS 2 | 12.50 | 12.50 | 10.00 | 10.00 |
Wheat bran | 6.00 | 7.30 | 6.77 | 8.70 |
Soybean oil | 1.21 | 1.21 | 0.80 | 0.80 |
CaHPO4 | 0.70 | 0.80 | 0.60 | 0.60 |
Limestone | 0.80 | 0.80 | 0.60 | 0.80 |
Salt | 0.36 | 0.36 | 0.36 | 0.36 |
L-Lysine·HCl | 0.49 | 0.67 | 0.35 | 0.53 |
DL-Met | 0.04 | 0.06 | 0.00 | 0.01 |
L-Thr | 0.11 | 0.18 | 0.06 | 0.15 |
L-Trp | 0.04 | 0.07 | 0.02 | 0.04 |
1% Premix 3 | 1.00 | 1.00 | 1.00 | 1.00 |
Calculated nutrients | ||||
Net energy 4, Kcal/kg | 2475 | 2475 | 2475 | 2475 |
Crude protein, % | 17.00 | 15.00 | 15.60 | 13.60 |
Standardized ileal digestible amino acids 5, % | ||||
Lys | 0.98 | 0.97 | 0.81 | 0.82 |
Met | 0.28 | 0.28 | 0.22 | 0.21 |
Met + Cys | 0.55 | 0.53 | 0.47 | 0.45 |
Thr | 0.59 | 0.58 | 0.50 | 0.51 |
Trp | 0.17 | 0.17 | 0.14 | 0.13 |
Analysed nutrients, % | ||||
Crude protein | 17.02 | 15.03 | 15.62 | 13.60 |
Dry matter | 87.20 | 87.40 | 88.13 | 88.45 |
Crude fiber | 3.85 | 3.78 | 3.62 | 3.56 |
Total ash | 6.10 | 6.13 | 5.80 | 5.94 |
Ether extract | 4.10 | 4.09 | 4.15 | 4.13 |
Ca | 0.60 | 0.59 | 0.58 | 0.57 |
Total P | 0.42 | 0.42 | 0.40 | 0.41 |
Item 2 | NPD | RPD | RPA | RPO | SEM | p-Value |
---|---|---|---|---|---|---|
Growing Period | ||||||
Initial BW, kg | 29.69 | 29.67 | 29.56 | 29.52 | 0.15 | 0.97 |
Final BW, kg | 62.52 | 62.85 | 65.48 | 64.08 | 0.54 | 0.20 |
ADG, kg/d | 0.672 | 0.675 | 0.733 | 0.707 | 0.01 | 0.13 |
ADFI, kg/d | 1.66 b | 1.79 b | 2.14 a | 1.80 b | 0.04 | <0.01 |
G:F, kg/kg | 0.408 a | 0.377 b | 0.345 c | 0.395 a,b | 0.01 | <0.01 |
Finishing Period | ||||||
Final BW, kg | 104.52 c | 105.72 b,c | 111.01 a,b | 113.53 a | 1.16 | 0.01 |
ADG, kg/d | 0.857 b | 0.865 b | 0.929 a,b | 1.000 a | 0.02 | 0.055 |
ADFI, kg/d | 2.67 b | 2.94 a,b | 3.22 a | 2.94 a,b | 0.07 | 0.03 |
G:F, kg/kg | 0.322 a | 0.293 b | 0.289 b | 0.343 a | 0.01 | <0.01 |
Overall | ||||||
ADG, kg/d | 0.765 c | 0.775 b,c | 0.831 a,b | 0.857 a | 0.01 | 0.01 |
ADFI, kg/d | 2.17 b | 2.38 b | 2.63 a | 2.37 b | 0.05 | <0.01 |
G:F, kg/kg | 0.355 a | 0.327 b | 0.316 b | 0.363 a | 0.00 | <0.01 |
DAYS 3 | 185 a | 181 a,b | 174 b,c | 170 c | 1.88 | 0.02 |
Item 2 | NPD | RPD | RPA | RPO | SEM | p-Value |
---|---|---|---|---|---|---|
Growing Period | ||||||
Dry matter, % | 87.61 a | 85.36 b | 84.89 b | 87.56 a | 0.70 | 0.02 |
Crude protein, % | 82.43 b | 82.55 b | 79.50 c | 84.35 a | 0.68 | <0.01 |
Gross energy, % | 85.96 | 85.40 | 85.33 | 85.30 | 1.90 | 0.78 |
Finishing Period | ||||||
Dry matter, % | 83.24 a | 81.40 b | 81.36 b | 83.55 a | 0.85 | 0.03 |
Crude protein, % | 79.87 b | 80.13 b | 76.30 c | 82.10 a | 0.65 | <0.01 |
Gross energy, % | 81.05 | 81.15 | 81.23 | 81.43 | 0.10 | 0.80 |
Item 2 | NPD | RPD | RPA | RPO | SEM | p-Value |
---|---|---|---|---|---|---|
Slaughter body weight, kg | 104.92 | 106.22 | 107.50 | 105.17 | 0.48 | 0.21 |
HCW, kg | 79.14 | 79.65 | 79.87 | 78.18 | 0.43 | 0.55 |
Dressing percentage | 75.52 | 74.98 | 74.28 | 74.35 | 0.25 | 0.29 |
Backfat thickness, mm | ||||||
1st rib | 34.37 | 35.16 | 34.57 | 35.82 | 0.92 | 0.96 |
10th rib | 16.55 b | 17.55 b | 23.00 a | 15.06 b | 0.86 | <0.01 |
last rib | 13.25 | 12.90 | 15.92 | 13.96 | 0.71 | 0.46 |
LEA, cm2 | 45.20 | 48.26 | 47.53 | 48.27 | 0.68 | 0.33 |
CLP, % | 61.75 b | 64.03 a,b | 61.53 b | 65.82 a | 0.62 | 0.04 |
Item 2 | NPD | RPD | RPA | RPO | SEM | p-Value |
---|---|---|---|---|---|---|
Jejunum | ||||||
Villous height, um | 372 b | 375 b | 392 b | 432 a | 6.71 | <0.01 |
Crypt depth, um | 212 | 211 | 217 | 222 | 4.40 | 0.84 |
Villous height: crypt depth | 178 | 1.81 | 1.82 | 1.96 | 0.05 | 0.62 |
Ileum | ||||||
Villous height, um | 327 b | 339 b | 352 b | 388 a | 6.54 | <0.01 |
Crypt depth, um | 182 | 183 | 186 | 197 | 4.65 | 0.64 |
Villous height: crypt depth | 1.85 | 1.88 | 1.91 | 1.97 | 0.05 | 0.89 |
Item 2 | NPD | RPD | RPA | RPO | SEM | p-Value |
---|---|---|---|---|---|---|
TBARS, nmol/mL | 4.67 | 4.58 | 4.46 | 4.40 | 0.07 | 0.69 |
T-AOC, U/mL | 3.49 b | 3.59 b | 3.55 b | 4.32 a | 0.10 | <0.01 |
T-SOD, U/mL | 129 b | 139 b | 133 b | 159 a | 3.62 | <0.01 |
CAT, U/mL | 571 | 577 | 563 | 582 | 4.93 | 0.56 |
GPx, U/mL | 616 b | 641 b | 625 b | 722 a | 11.22 | <0.01 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, C.; Xia, M.; Zhang, X.; Wang, C.; Jiang, S.; Peng, J. Supplementing Oregano Essential Oil in a Reduced-Protein Diet Improves Growth Performance and Nutrient Digestibility by Modulating Intestinal Bacteria, Intestinal Morphology, and Antioxidative Capacity of Growing-Finishing Pigs. Animals 2018, 8, 159. https://doi.org/10.3390/ani8090159
Cheng C, Xia M, Zhang X, Wang C, Jiang S, Peng J. Supplementing Oregano Essential Oil in a Reduced-Protein Diet Improves Growth Performance and Nutrient Digestibility by Modulating Intestinal Bacteria, Intestinal Morphology, and Antioxidative Capacity of Growing-Finishing Pigs. Animals. 2018; 8(9):159. https://doi.org/10.3390/ani8090159
Chicago/Turabian StyleCheng, Chuanshang, Mao Xia, Xiaming Zhang, Chao Wang, Siwen Jiang, and Jian Peng. 2018. "Supplementing Oregano Essential Oil in a Reduced-Protein Diet Improves Growth Performance and Nutrient Digestibility by Modulating Intestinal Bacteria, Intestinal Morphology, and Antioxidative Capacity of Growing-Finishing Pigs" Animals 8, no. 9: 159. https://doi.org/10.3390/ani8090159
APA StyleCheng, C., Xia, M., Zhang, X., Wang, C., Jiang, S., & Peng, J. (2018). Supplementing Oregano Essential Oil in a Reduced-Protein Diet Improves Growth Performance and Nutrient Digestibility by Modulating Intestinal Bacteria, Intestinal Morphology, and Antioxidative Capacity of Growing-Finishing Pigs. Animals, 8(9), 159. https://doi.org/10.3390/ani8090159