Whole Farm Net Greenhouse Gas Abatement from Establishing Kikuyu-Based Perennial Pastures in South-Western Australia
Abstract
:Simple Summary
Abstract
1. Introduction
2. Experimental Section
2.1. Farming System
- Business-as-usual without the establishment of Kikuyu pasture, “Current”
- Kikuyu pastures established on land that was allocated to pasture, “Improved”
2.2. Soil Carbon
- CKS is stored soil carbon in the Kikuyu pasture (t C ha−1)
- CAS is stored soil carbon in the comparable annual pasture (t C ha−1)
- MWCO2 and MWC are the molecular weight of CO2 (44.0) and C (12.0), respectively
- TK is the time since the Kikuyu pasture was established (years)
2.3. Methane Emissions
- CCM is the methane produced in the Current farm (t CH4 pasture ha−1 yr−1)
- CIM is the methane produced in the Improved farm (t CH4 pasture ha−1 yr−1)
- GWPCH4 is the global warming potential of methane (21 CO2-e, 100 year time horizon [22])
2.4. Nitrous Oxide Emissions
Stocking rate | Liveweight | Liveweight gain# | Dry Matter Availability | Lambing Rates | Forage Protein | Forage Digestibility | ||
---|---|---|---|---|---|---|---|---|
(DSE/pasture ha) | (kg/animal) | (kg/day) | (tonnes/hectare) | (% of ewes lambing) | (% CP*) | (% DMD**) | ||
Current farm — No Kikuyu established | ||||||||
Maiden Ewes | Spring | 1.8 | 63 | 0.04 | 2.0 | 0.00 | 15 | 73 |
Summer | 1.8 | 58 | −0.06 | 2.0 | 0.00 | 14 | 68 | |
Autumn | 1.8 | 60 | 0.03 | 2.0 | 0.00 | 13 | 67 | |
Winter | 1.8 | 59 | 0.11 | 2.0 | 0.00 | 15 | 75 | |
Mature Ewes | Spring | 6.3 | 69 | 0.03 | 2.0 | 0.75 | 15 | 73 |
Summer | 6.3 | 61 | −0.11 | 2.0 | 0.00 | 14 | 68 | |
Autumn | 6.3 | 60 | 0.00 | 2.0 | 0.00 | 13 | 67 | |
Winter | 6.3 | 64 | 0.06 | 2.0 | 0.25 | 15 | 75 | |
Improved farm — 45% Kikuyu established | ||||||||
Maiden Ewes | Spring | 2.4 | 62 | 0.03 | 2.0 | 0.00 | 14 | 71 |
Summer | 2.4 | 56 | −0.06 | 2.0 | 0.00 | 13 | 67 | |
Autumn | 2.4 | 58 | 0.04 | 2.0 | 0.00 | 14 | 68 | |
Winter | 2.4 | 58 | 0.11 | 2.0 | 0.00 | 15 | 75 | |
Mature Ewes | Spring | 8.3 | 67 | 0 | 2.0 | 0.75 | 14 | 71 |
Summer | 8.3 | 58 | −0.11 | 2.0 | 0.00 | 13 | 67 | |
Autumn | 8.3 | 57 | 0.03 | 2.0 | 0.00 | 14 | 68 | |
Winter | 8.3 | 62 | 0.07 | 2.0 | 0.25 | 15 | 75 |
- CCN is the nitrous oxide produced in the Current farm (t N2O pasture ha−1 yr−1)
- CIN is the nitrous oxide produced in the Improved farm (t N2O pasture ha−1 yr−1)
- GWPN2O is the global warming potential of nitrous oxide (310 CO2-e, 100 year time horizon [22])
2.5. Net Greenhouse Gas Emissions and Farm Production Efficiency
- AK is the proportion of winter grazed (pasture) farm area that has Kikuyu established
- AWG is the proportion of the farm that is allocated to winter grazed pasture
3. Results
Annual Paddock | Perennial Paddock | |||||||
---|---|---|---|---|---|---|---|---|
Survey site | Years since conversion* | Mean | 95% CI** | Mean | 95% CI | Total SOC increase | Annual SOC increase | |
t C ha−1 | t C ha−1 | t C ha−1 | t C ha−1 yr−1 | t CO2-e ha−1 yr−1 | ||||
1 | 3 | 14.35 | 2.52 | 14.40 | 1.84 | 0.05 | 0.02 | 0.06 |
2 | 7 | 21.68 | 2.61 | 24.54 | 2.75 | 2.85 | 0.41 | 1.49 |
3 | 11 | 13.70 | 1.26 | 23.79 | 2.35 | 10.09 | 0.92 | 3.36 |
4 | 12 | 36.06 | 2.03 | 44.15 | 8.18 | 8.10 | 0.67 | 2.47 |
5 | 16 | 27.08 | 1.56 | 33.83 | 2.38 | 6.75 | 0.42 | 1.55 |
Mean | 9.8 | 22.57 | 28.14 | 5.57 | 0.49 | 1.79 |
Farm model | Current | Improved | Difference |
---|---|---|---|
Soil carbon storage (t CO2-e farm ha−1 yr−1) | 0.00 | 0.80 | 0.80 |
Livestock methane emissions (t CO2-e farm ha−1 yr−1) | 0.67 | 0.84 | 0.17 |
Livestock nitrous oxide emissions (t CO2-e farm ha−1 yr−1) | 0.07 | 0.09 | 0.02 |
Net greenhouse gas emissions (t CO2-e farm ha−1 yr−1) | 0.74 | 0.13 | −0.61 |
Meat production (kg liveweight farm ha−1 yr−1) | 92 | 118 | 26 |
Wool production (kg clean fleece farm ha−1 yr−1) | 17.3 | 22.9 | 5.6 |
Meat GHG intensity (t farm CO2-e t liveweight−1) | 4.2 | 0.6 | −3.6 |
Wool GHG intensity (t farm CO2-e t clean fleece−1) | 20.8 | 2.8 | −18.0 |
Perennial pasture species | Methane emissions | Net abatement value |
---|---|---|
t CO2-e farm ha−1 yr−2 | t CO2-e farm ha−1 yr−1 | |
Perennial ryegrass | 1.21 | 0.613 |
Kikuyu (beta version) | 1.16 | 0.649 |
Lucerne | 1.22 | 0.606 |
Phalaris | 1.19 | 0.629 |
4. Discussion
4.1. Livestock Systems and Greenhouse Gas Emissions
4.2. Value of Kikuyu Pasture for GHG Emissions Abatement
4.3. Estimating Farm Net GHG Emissions
5. Conclusions
Acknowledgments
Conflict of Interest
References
- Eady, S.J.; Grundy, M.; Battaglia, M.; Keating, B. An Analysis of Greenhouse Gas Mitigation and Carbon Biosequestration Opportunities from Rural Land Use; CSIRO Sustainable Agriculture Flagship: Brisbane, QLD, Australia, 2009. Available online: http://www.csiro.au/ resources/carbon-and-rural-land-use-report.html (accessed on 20 February 2012).
- Brown, P.; Cabarle, B.; Livernash, R. Carbon Counts: Estimating Climate Change Mitigation in Forestry Projects; World Resources Institute: Washington, DC, USA, 1997; pp. 1–25. [Google Scholar]
- Garnett, T. Livestock-related greenhouse gas emissions: Impacts and options for policy makers. Environ. Sci. Policy. 2009, 12, 491–503. [Google Scholar] [CrossRef]
- Johnson, K.A.; Johnson, D.E. Methane emissions from cattle. J. Anim. Sci. 1995, 73, 2483–2492. [Google Scholar]
- Charmley, E.; Stephens, M.L.; Kennedy, P.M. Predicting livestock productivity and methane emissions in northern Australia: Development of a bio-economic modelling approach. Aust. J. Exp. Agr. 2008, 48, 109–113. [Google Scholar] [CrossRef]
- Sanford, P.; Wang, X.; Greathead, K.D.; Gladman, J.H.; Speijers, J. Impact of Tasmanian blue gum belts and kikuyu based pasture on sheep production and groundwater recharge in south-western Western Australia. Aust. J. Exp. Agric. 2003, 43, 755–767. [Google Scholar] [CrossRef]
- Hill, N.; Zhang, H.; Trezise, T.; Young, J.; Moyes, N.; Carslake, L.; McTaggart, R.; Turner, N.C.; Anderson, W.; Poole, M. Successful Cropping in the High Rainfall Zone of Western Australia; Bulletin 4661; Department of Agriculture, Western Australia: South Perth, WA, Australia, 2005; pp. 1–54. [Google Scholar]
- Young, R.R.; Wilson, B.; Harden, S.; Bernardi, A. Accumulation of soil carbon under zero tillage cropping and perennial vegetation on the Liverpool Plains, eastern Australia. Aust. J. Soil Res. 2009, 47, 273–285. [Google Scholar] [CrossRef]
- Sanderman, J.; Farquharson, R.; Baldock, J. Soil Carbon Sequestration Potential: A Review for Australian Agriculture; CSIRO Land and Water: Glen Osmond, SA, Australia, 2010. Available online: http://www.csiro.au/resources/Soil-Carbon-Sequestration-Potential-Report.html (accessed on 20 February 2012).
- Masters, D.; Edwards, N.; Sillence, M.; Avery, A.; Revell, D.; Friend, M.; Sanford, P.; Saul, G.; Beverly, C.; Young, J. The role of livestock in the management of dryland salinity. Aust. J. Exp. Agr. 2006, 46, 733–741. [Google Scholar] [CrossRef]
- Omodei, P. Kikuyu Provides Flexible Grazing for Sheep South-West of Kojonup. Evergraze Case Study; Future Farm Industries CRC: Perth, WA, Australia, 2010; pp. 1–8. [Google Scholar]
- Moore, A.D.; Holzworth, D.P.; Hermann, N.I.; Huth, N.I.; Robertson, M.J. The Common Modelling Protocol: A hierarchical framework for simulation of agricultural and environmental systems. Agr. Syst. 2007, 95, 37–48. [Google Scholar] [CrossRef]
- Mokany, K.; Moore, A.D.; Graham, P.; Simpson, R.J. Optimal management of fertiliser and stocking rates in temperate grazing systems. Anim. Prod. Sci. 2010, 60, 6–16. [Google Scholar]
- DAFF. Reducing Greenhouse Gas Emissions Using Soil Carbon. 2011. Available online: http://www.daff.gov.au/__data/assets/pdf_file/0003/1905168/reducing-greenhouse-gas-fsheet.pdf (accessed on 2 July 2012).
- Kingwell, R.S.; Pannell, D.J. MIDAS, A Bioeconomic Model of a Dryland Farm System; Pudoc: Wageningen, The Netherlands, 1987; pp. 1–207. [Google Scholar]
- Northcote, K.H. A Factual Key for the Recognition of Australian Soils, 4th ed.; Rellim Technical Publications: Glenside, SA, Australia, 1979; pp. 1–124. [Google Scholar]
- Jeffrey, S.J.; Carter, J.O.; Moodie, K.B.; Beswick, A.R. Using spatial interpolation to construct a comprehensive archive of Australian climate data. Environ. Modell. Softw. 2001, 16, 309–330. [Google Scholar] [CrossRef]
- Sanderman, J.; Fillery, I.; Jongepier, R.; Massalsky, A.; Roper, M.; Macdonald, L.; Maddern, T.; Murphy, D.; Baldock, J. Quantification of Carbon Input to Soils Under Important Perennial Pasture Systems Used in Australian Agriculture: C3/C4 Transitions; A Report to the Australian Department of Agriculture, Fisheries and Forestry, 2012; in preparation.
- Isbell, R.F. Australian Soil Classification; CSIRO Publishing: Collingwood, VIC, Australia, 1996; pp. 1–152. [Google Scholar]
- Eckard, R.J. Sheep Greenhouse Accounting Framework. V4. 2010. Available online: http://www.greenhouse.unimelb.edu.au/Tools.htm (accessed on 2 March 2011).
- National Greenhouse Gas Inventory (NGGI) Committee, Australian Methodology for the Estimation of Greenhouse Gas Emissions and Sinks 2006—Agriculture; Department of Climate Change and Energy Efficiency: Canberra, ACT, Australia, 2006; pp. 1–116.
- IPCC, Climate Change 1995—The Science of Climate Change; Summary for Policymakers, and Technical Summary of the Working Group I Report; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 1996; pp. 1–56.
- Thomas, D.T.; Finlayson, J.; Moore, A.D.; Robertson, M.J. The profitability of grazing crop stubbles may be over-estimated by using metabolizable energy intake from the stubble. Anim. Prod. Sci. 2010, 50, 699–704. [Google Scholar]
- Soussana, J.F.; Allard, V.; Pilegaard, K.; Ambus, C.; Campbell, C.; Ceschia, E.; Clifton-Brown, J.; Czobel, S.; Domingues, R.; Flechard, C.; Fuhrer, J.; Hensen, A.; Horvath, L.; Jones, M.; Kasper, G.; Martin, C.; Nagy, Z.; Neftel, A.; Raschi, A.; Baronti, S.; Rees, R.M.; Skiba, U.; Stefani, P.; Manca, G.; Sutton, M., Tuba; Valentini, R. Full accounting of the greenhouse gas (CO2, N2O, CH4) budget of nine European grassland sites. Agri. Eco. Environ. 2007, 121, 121–134. [Google Scholar] [CrossRef]
- Biswas, W.K.; Barton, L.; Carter, D. Global warming potential of wheat production in Western Australia: A life cycle assessment. Water Environ. J. 2008, 22, 206–216. [Google Scholar] [CrossRef]
- Conant, R.T.; Paustian, K.; Elliot, T. Grassland management and conversion into grassland: Effects on soil carbon. Ecolog. Appl. 2001, 11, 343–355. [Google Scholar] [CrossRef]
- Monteny, G.-J.; Bannink, A.; Chadwick, D. Greenhouse gas abatement strategies for animal husbandry. Agric. Ecosyst. Environ. 2006, 112, 163–170. [Google Scholar] [CrossRef]
- Herrero, M.; Thornton, P.K.; Gerber, P.; Reid, R.S. Livestock, livelihoods and the environment: understanding the trade-offs. Curr. Opin. Environ. Sustain. 2009, 1, 111–120. [Google Scholar] [CrossRef]
- Doyle, P.T.; Grimm, M.; Thompson, A.N. Grazing for pasture and sheep management in the Annual Pasture Zone. In Pasture Management—Technology for the 21st Century; Kemp, D.R., Michalk, D.S., Eds.; CSIRO Publishing: East Melbourne, Australia, 1993; pp. 71–90. [Google Scholar]
- Chan, K.Y.; McCoy, D. Soil carbon storage potential under perennial pastures in the mid-north coast of New South Wales, Australia. Trop. Grassl. 2010, 44, 184–191. [Google Scholar]
- Chan, K.Y.; Conyers, M.K.; Li, G.D.; Helyar, K.R.; Poile, G.; Oates, A.; Barchia, I.M. Soil carbon dynamics under different cropping and pasture management in temperate Australia: Results of three long-term experiments. Soil Res. 2011, 49, 320–328. [Google Scholar] [CrossRef]
- Post, W.M.; Kwon, K.C. Soil carbon sequestration and land-use change: Processes and potential. Glob. Chan. Biol. 2000, 6, 317–327. [Google Scholar] [CrossRef]
- Fisher, M.J.; Rao, I.M.; Ayarza, M.A.; Lascano, C.E.; Sanz, J.I.; Thomas, R.J.; Vera, R.R. Carbon storage by introduced deep-rooted grasses in the South American savannas. Nature 1994, 371, 236–238. [Google Scholar]
- Russelle, M.P.; Ents, M.H.; Franzluebbers, A.J. Reconsidering integrated crop-livestock systems in North America. Agron. J. 2007, 99, 325–334. [Google Scholar] [CrossRef]
- Ripoll-Bosch, R.; Díez-Unquera, B.; Ruiz, R.; Villalba, D.; Molina, E.; Joy, M.; Olaizola, A.; Bernués, A. An integrated sustainability assessment of mediterranean sheep farms with different degrees of intensification. Agr. Syst. 2012, 105, 46–56. [Google Scholar] [CrossRef]
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Thomas, D.T.; Sanderman, J.; Eady, S.J.; Masters, D.G.; Sanford, P. Whole Farm Net Greenhouse Gas Abatement from Establishing Kikuyu-Based Perennial Pastures in South-Western Australia. Animals 2012, 2, 316-330. https://doi.org/10.3390/ani2030316
Thomas DT, Sanderman J, Eady SJ, Masters DG, Sanford P. Whole Farm Net Greenhouse Gas Abatement from Establishing Kikuyu-Based Perennial Pastures in South-Western Australia. Animals. 2012; 2(3):316-330. https://doi.org/10.3390/ani2030316
Chicago/Turabian StyleThomas, Dean T., Jonathan Sanderman, Sandra J. Eady, David G. Masters, and Paul Sanford. 2012. "Whole Farm Net Greenhouse Gas Abatement from Establishing Kikuyu-Based Perennial Pastures in South-Western Australia" Animals 2, no. 3: 316-330. https://doi.org/10.3390/ani2030316
APA StyleThomas, D. T., Sanderman, J., Eady, S. J., Masters, D. G., & Sanford, P. (2012). Whole Farm Net Greenhouse Gas Abatement from Establishing Kikuyu-Based Perennial Pastures in South-Western Australia. Animals, 2(3), 316-330. https://doi.org/10.3390/ani2030316