Factors Influencing the Production Efficiency of Cloned Pigs: A Large-Scale Retrospective Analysis
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Study Design and Data Collection
2.3. Oocyte Collection and Maturation
2.4. Preparation of Donor Cells
2.5. Preparation of Somatic Cell Nuclear Transfer Embryos
2.6. Statistical Analysis
3. Results
3.1. Overview of Five-Year Large-Scale Cloning Production
3.2. Effect of Embryo Transfer Season on Cloning Outcomes
3.3. Influence of Donor Cell Breed on Cloning Efficiency
3.4. Comparison of Cloning Efficiency Between WT and GM Donor Cells
3.5. Transferred Embryo Number Significantly Affects Cloning Efficiency
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| SCNT | Somatic cell nuclear transfer |
| GM | Genetically modified |
| WT | Wild type |
References
- Galli, C.; Lazzari, G. 25th ANNIVERSARY OF CLONING BY SOMATIC-CELL NUCLEAR TRANSFER: Current applications of SCNT in advanced breeding and genome editing in livestock. Reproduction 2021, 162, F23–F32. [Google Scholar]
- Dai, Y.; Vaught, T.D.; Boone, J.; Chen, S.H.; Phelps, C.J.; Ball, S.; Monahan, J.A.; Jobst, P.M.; McCreath, K.J.; Lamborn, A.E.; et al. Targeted disruption of the alpha1,3-galactosyltransferase gene in cloned pigs. Nat. Biotechnol. 2002, 20, 251–255. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.; Tu, Z.C.; Liu, Z.M.; Fan, N.N.; Yang, H.M.; Yang, S.; Yang, W.L.; Zhao, Y.; Ouyang, Z.; Lai, C.D.; et al. A Huntingtin Knockin Pig Model Recapitulates Features of Selective Neurodegeneration in Huntington’s Disease. Cell 2018, 173, 989–1002. [Google Scholar] [CrossRef]
- Niemann, H.; Lucas-Hahn, A. Somatic cell nuclear transfer cloning: Practical applications and current legislation. Reprod. Domest. Anim. 2012, 47, 2–10. [Google Scholar] [CrossRef]
- Park, J.-K.; Lee, Y.-K.; Lee, P.; Chung, H.-J.; Kim, S.; Lee, H.-G.; Seo, M.-K.; Han, J.-H.; Park, C.-G.; Kim, H.-T.; et al. Recombinant human erythropoietin produced in milk of transgenic pigs. J. Biotechnol. 2006, 122, 362–371. [Google Scholar] [CrossRef]
- Onishi, A.; Iwamoto, M.; Akita, T.; Mikawa, S.; Takeda, K.; Awata, T.; Hanada, H.; Perry, A.C.F. Pig cloning by microinjection of fetal fibroblast nuclei. Science 2000, 289, 1188–1190. [Google Scholar] [CrossRef] [PubMed]
- Vajta, G.; Gjerris, M. Science and technology of farm animal cloning: State of the art. Anim. Reprod. Sci. 2006, 92, 211–230. [Google Scholar] [CrossRef]
- Liu, T.; Dou, H.; Xiang, X.; Li, L.; Li, Y.; Lin, L.; Pang, X.; Zhang, Y.; Chen, Y.; Luan, J.; et al. Factors Determining the Efficiency of Porcine Somatic Cell Nuclear Transfer: Data Analysis with Over 200,000 Reconstructed Embryos. Cell. Reprogram. 2015, 17, 463–471. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, J.; Løvendahl, P.; Schmidt, M.; Larsen, K.; Callesen, H. In vitro manipulation techniques of porcine embryos: A meta-analysis related to transfers, pregnancies and piglets. Reprod. Fertil. Dev. 2015, 27, 429–439. [Google Scholar] [CrossRef]
- Koo, O.J.; Kang, J.T.; Kwon, D.K.; Park, H.J.; Lee, B.C. Influence of ovulation status, seasonality and embryo transfer method on development of cloned porcine embryos. Reprod. Domest. Anim. 2010, 45, 773–778. [Google Scholar]
- Zhao, H.; Dong, Y.; Zhang, Y.; Wu, X.; Zhang, X.; Liang, Y.; Li, Y.; Zeng, F.; Shi, J.; Zhou, R.; et al. Supplementation of SDF1 during Pig Oocyte In Vitro Maturation Improves Subsequent Embryo Development. Molecules 2022, 27, 6830. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.X.; Lee, S.; Setyawan, E.M.N.; Taweechaipaisankul, A.; Kim, G.A.; Han, H.J.; Ahn, C.; Lee, B.C. A potential role of knockout serum replacement as a porcine follicular fluid substitute for in vitro maturation: Lipid metabolism approach. J. Cell. Physiol. 2018, 233, 6984–6995. [Google Scholar] [CrossRef]
- Jiao, D.; Cheng, W.; Zhang, X.; Zhang, Y.; Guo, J.; Li, Z.; Shi, D.; Xiong, Z.; Qing, Y.; Jamal, M.A.; et al. Improving porcine SCNT efficiency by selecting donor cells size. Cell Cycle 2021, 20, 2264–2277. [Google Scholar] [CrossRef]
- Hyun, H.; Lee, S.E.; Son, Y.J.; Shin, M.Y.; Park, Y.G.; Kim, E.Y.; Park, S.P. Cell Synchronization by Rapamycin Improves the Developmental Competence of Porcine SCNT Embryos. Cell. Reprogram. 2016, 18, 195–205. [Google Scholar] [CrossRef]
- Kurome, M.; Fujimura, T.; Murakami, H.; Takahagi, Y.; Wako, N.; Ochiai, T.; Miyazaki, K.; Nagashima, H. Comparison of electro-fusion and intracytoplasmic nuclear injection methods in pig cloning. Cloning Stem Cells 2003, 5, 367–378. [Google Scholar] [CrossRef]
- Lee, K.; Davis, A.; Zhang, L.; Ryu, J.; Spate, L.D.; Park, K.-W.; Samuel, M.S.; Walters, E.M.; Murphy, C.N.; Machaty, Z.; et al. Pig oocyte activation using a Zn(2)(+) chelator, TPEN. Theriogenology 2015, 84, 1024–1032. [Google Scholar] [CrossRef]
- Shi, J.; Zhou, R.; Luo, L.; Mai, R.; Zeng, H.; He, X.; Liu, D.; Zeng, F.; Cai, G.; Ji, H.; et al. Influence of embryo handling and transfer method on pig cloning efficiency. Anim. Reprod. Sci. 2015, 154, 121–127. [Google Scholar] [CrossRef]
- Huang, Y.; Ouyang, H.; Yu, H.; Lai, L.; Pang, D.; Li, Z. Efficiency of porcine somatic cell nuclear transfer—A retrospective study of factors related to embryo recipient and embryos transferred. Biol. Open 2013, 2, 1223–1228. [Google Scholar] [CrossRef] [PubMed]
- Polge, C.; Rowson, L.E.A.; Chang, M.C. The effect of reducing the number of embryos during early stages of gestation on the maintenance of pregnancy in the pig. J. Reprod. Fertil. 1966, 12, 395–397. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; He, X.; Zhang, X.; Shi, J.; Zhou, R.; Mai, R.; Su, Q.; Cai, G.; Huang, S.; Xu, Z.; et al. Progesterone and Androstenedione Are Important Follicular Fluid Factors Regulating Porcine Oocyte Maturation Quality. Animals 2023, 13, 1811. [Google Scholar] [CrossRef]
- Zhao, H.; Xie, S.; Zhang, N.; Ao, Z.; Wu, X.; Yang, L.; Shi, J.; Mai, R.; Zheng, E.; Cai, G.; et al. Source and Follicular Fluid Treatment During the In Vitro Maturation of Recipient Oocytes Affects the Development of Cloned Pig Embryo. Cell. Reprogram. 2020, 22, 71–81. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Li, Z.; Yang, H.; Liu, D.; Cai, G.; Li, G.; Mo, J.; Wang, D.; Zhong, C.; Wang, H.; et al. Novel transgenic pigs with enhanced growth and reduced environmental impact. eLife 2018, 7, e34286. [Google Scholar] [CrossRef]
- Yoshioka, K.; Suzuki, C.; Itoh, S.; Kikuchi, K.; Iwamura, S.; Rodriguez-Martinez, H. Production of piglets derived from in vitro-produced blastocysts fertilized and cultured in chemically defined media: Effects of theophylline, adenosine, and cysteine during in vitro fertilization. Biol. Reprod. 2003, 69, 2092–2099. [Google Scholar] [CrossRef]
- Hale, B.J.; Hager, C.L.; Seibert, J.T.; Selsby, J.T.; Baumgard, L.H.; Keating, A.F.; Ross, J.W. Heat stress induces autophagy in pig ovaries during follicular development. Biol. Reprod. 2017, 97, 426–437. [Google Scholar] [CrossRef]
- Yin, C.; Liu, J.; He, B.; Jia, L.; Gong, Y.; Guo, H.; Zhao, R. Heat stress induces distinct responses in porcine cumulus cells and oocytes associated with disrupted gap junction and trans-zonal projection colocalization. J. Cell. Physiol. 2019, 234, 4787–4798. [Google Scholar] [PubMed]
- De Rensis, F.; Ziecik, A.J.; Kirkwood, R.N. Seasonal infertility in gilts and sows: Aetiology, clinical implications and treatments. Theriogenology 2017, 96, 111–117. [Google Scholar] [CrossRef]
- Bertoldo, M.J.; Holyoake, P.K.; Evans, G.; Grupen, C.G. Seasonal variation in the ovarian function of sows. Reprod. Fertil. Dev. 2012, 24, 822–834. [Google Scholar] [CrossRef]
- Huang, T.; Li, Z.; Lv, P.; Zhou, J.; Ye, C.; Li, A.; Yuan, M.; Liu, H.; Cao, G. Influence of season and conditions of surrogate sows on efficiency of somatic cell cloning production. Reprod. Domest. Anim. 2023, 58, 1261–1269. [Google Scholar] [CrossRef]
- Kurome, M.; Geistlinger, L.; Kessler, B.; Zakhartchenko, V.; Klymiuk, N.; Wuensch, A.; Richter, A.; Baehr, A.; Kraehe, K.; Burkhardt, K.; et al. Factors influencing the efficiency of generating genetically engineered pigs by nuclear transfer: Multi-factorial analysis of a large data set. BMC Biotechnol. 2013, 13, 43. [Google Scholar] [CrossRef]
- Hua, Z.; Xu, G.; Liu, X.; Bi, Y.; Xiao, H.; Hua, W.; Li, L.; Zhang, L.; Ren, H.; Zheng, X. Impact of different sources of donor cells upon the nuclear transfer efficiency in Chinese indigenous Meishan pig. Pol. J. Vet. Sci. 2016, 19, 205–212. [Google Scholar] [PubMed]
- Li, Z.; Shi, J.; Liu, D.; Zhou, R.; Zeng, H.; Zhou, X.; Mai, R.; Zeng, S.; Luo, L.; Yu, W.; et al. Effects of donor fibroblast cell type and transferred cloned embryo number on the efficiency of pig cloning. Cell. Reprogram. 2013, 15, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Yoo, J.-G.; Kim, B.-W.; Park, M.-R.; Kwon, D.-N.; Choi, Y.-J.; Shin, T.-S.; Cho, B.-W.; Seo, J.; Kim, J.-H.; Cho, S.-K. Influences of somatic donor cell sex on in vitro and in vivo embryo development following somatic cell nuclear transfer in pigs. Asian-Australas. J. Anim. Sci. 2017, 30, 585–592. [Google Scholar] [CrossRef]
- Cho, J.; Kim, G.; Qamar, A.Y.; Fang, X.; Roy, P.K.; Tanga, B.M.; Bang, S.; Kim, J.K.; Galli, C.; Perota, A.; et al. Improved efficiencies in the generation of multigene-modified pigs by recloning and using sows as the recipient. Zygote 2022, 30, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Christenson, R.K.; Leymaster, K.A.; Young, L.D. Justification of unilateral hysterectomy-ovariectomy as a model to evaluate uterine capacity in swine. J. Anim. Sci. 1987, 65, 738–744. [Google Scholar] [CrossRef] [PubMed]
- Bennett, G.L.; Leymaster, K.A. Integration of ovulation rate, potential embryonic viability and uterine capacity into a model of litter size in swine. J. Anim. Sci. 1989, 67, 1230–1241. [Google Scholar] [CrossRef] [PubMed]

| Season | No. Surrogates (Embryos Transferred) | No. Pregnancy (%) | No. Delivery (%) | No. Piglets (Mean ± SD) | Total Cloning Efficiency (%) |
|---|---|---|---|---|---|
| Spring | 834 (149,838) | 639 (76.62) a | 573 (89.67) a | 3301 (5.76 ± 2.45 a) | 2.20 a |
| Summer | 243 (46,333) | 165 (67.90) b | 132 (80.00) b | 807 (6.11 ± 2.93 ab) | 1.74 b |
| Autumn | 427 (77,956) | 311 (72.83) ab | 278 (89.39) a | 1600 (5.76 ± 2.46 a) | 2.05 a |
| Winter | 515 (93,574) | 373 (72.43) ab | 333 (89.28) a | 2073 (6.23 ± 2.50 b) | 2.22 a |
| Total | 2019 (367,701) | 1488 (73.70) | 1316 (88.44) | 7781 (5.91 ± 2.52) | 2.12 |
| Donor Cell Breeds | No. Surrogates (Embryos Transferred) | No. Pregnancy (%) | No. Delivery (%) | No. Piglets (Mean ± SD) | Total Cloning Efficiency (%) |
|---|---|---|---|---|---|
| WT-Duroc | 1062 (190,401) | 791 (74.48) | 719 (90.90) | 4244 (5.90 ± 2.49 a) | 2.23 a |
| WT-Large White | 527 (96,644) | 397 (75.33) | 342 (86.15) | 1886 (5.51 ± 2.29 b) | 1.95 b |
| WT-Yorkshire | 76 (16,340) | 55 (72.37) | 48 (87.27) | 296 (6.17 ± 2.73 ab) | 1.81 b |
| WT-Pietrain | 25 (5130) | 18 (72.00) | 13 (72.22) | 127 (9.77 ± 3.09 c) | 2.48 a |
| WT total | 1690 (308,515) | 1261 (74.65) | 1122 (88.98) | 6553 (5.84 ± 2.49) | 2.12 |
| Donor Cell Breeds | No. Surrogates (Embryos Transferred) | No. Pregnancy (%) | No. Delivery (%) | No. Piglets (Mean ± SD) | Total Cloning Efficiency (%) |
|---|---|---|---|---|---|
| GM-Duroc | 71 (11,663) | 53 (74.65) | 45 (84.91) | 280 (6.22 ± 2.70) | 2.40 a |
| GM-Large White | 22 (4110) | 14 (63.64) | 13 (92.86) | 69 (5.31 ± 2.36) | 1.68 b |
| GM-Yorkshire | 173 (30,749) | 117 (67.63) | 104 (88.89) | 660 (6.35 ± 2.61) | 2.15 a |
| GM-Bama | 63 (12,664) | 43 (68.25) | 32 (74.42) | 219 (6.84 ± 2.93) | 1.73 bc |
| GM total | 329 (59,186) | 227 (69.00) | 194 (85.46) | 1228 (6.33 ± 2.67) | 2.08 |
| No. Transferred Embryos per Surrogates | No. Surrogates (Embryos Transferred) | No. Pregnancy (%) | No. Delivery (%) | No. Piglets (Mean ± SD) | Total Cloning Efficiency (%) |
|---|---|---|---|---|---|
| 100~150 | 340 (46,421) | 263 (77.35) | 234 (88.97) | 1337 (5.71 ± 2.40) | 2.88 a |
| 151~200 | 1120 (196,465) | 822 (73.39) | 719 (87.47) | 4206 (5.85 ± 2.46) | 1.91 b |
| 201~250 | 512 (113,649) | 365 (71.29) | 328 (89.86) | 2040 (5.85 ± 2.47) | 1.80 c |
| 251~300 | 47 (12,977) | 38 (80.85) | 35 (92.10) | 198 (5.66 ± 2.84) | 1.53 c |
| No. Transferred Embryos per Surrogates | No. Surrogates (Embryos Transferred) | No. Pregnancy (%) | No. Delivery (%) | No. Piglets (Mean ± SD) | Total Cloning Efficiency (%) |
|---|---|---|---|---|---|
| 150 | 15 (2265) | 13 (86.67) | 13 (100.00) | 83 (6.38 ± 3.04 a) | 3.66 a |
| 200 | 15 (2985) | 9 (60.00) | 9 (100.00) | 38 (4.22 ± 1.39 b) | 1.27 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Zhao, H.; Zhang, S.; Tang, X.; Zhou, R.; Mai, R.; Luo, L.; Su, Q.; Huang, S.; Wu, Z.; Li, Z.; et al. Factors Influencing the Production Efficiency of Cloned Pigs: A Large-Scale Retrospective Analysis. Animals 2026, 16, 168. https://doi.org/10.3390/ani16020168
Zhao H, Zhang S, Tang X, Zhou R, Mai R, Luo L, Su Q, Huang S, Wu Z, Li Z, et al. Factors Influencing the Production Efficiency of Cloned Pigs: A Large-Scale Retrospective Analysis. Animals. 2026; 16(2):168. https://doi.org/10.3390/ani16020168
Chicago/Turabian StyleZhao, Huaxing, Shouquan Zhang, Xiaopeng Tang, Rong Zhou, Ranbiao Mai, Lvhua Luo, Qiaoyun Su, Sixiu Huang, Zhenfang Wu, Zicong Li, and et al. 2026. "Factors Influencing the Production Efficiency of Cloned Pigs: A Large-Scale Retrospective Analysis" Animals 16, no. 2: 168. https://doi.org/10.3390/ani16020168
APA StyleZhao, H., Zhang, S., Tang, X., Zhou, R., Mai, R., Luo, L., Su, Q., Huang, S., Wu, Z., Li, Z., Cai, G., & Shi, J. (2026). Factors Influencing the Production Efficiency of Cloned Pigs: A Large-Scale Retrospective Analysis. Animals, 16(2), 168. https://doi.org/10.3390/ani16020168

