Whole-Genome Sequencing and Antimicrobial Resistance Analysis of Enterotoxigenic Escherichia coli F5 and F5-F41 Strains Isolated from Neonatal Calves in Inner Mongolia, China
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Strain Source
2.2. Drug Sensitivity Test
2.3. Whole-Genome Sequencing and Bioinformatics Analysis
3. Results
3.1. Drug Sensitivity Test
3.2. Whole-Genome Sequencing of ETEC F5- and F5-F41-Positive Strains
3.3. Carrying Antibiotic Resistance Genes
3.4. Relationship Between Antibiotic Resistance Genotype and Phenotype
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Maier, G.U.; Breitenbuecher, J.; Gomez, J.P.; Samah, F.; Fausak, E. Vaccination for the prevention of neonatal calf diarrhea in cow-calf operations: A scoping review. Vet. Anim. Sci. 2022, 15, 100238. [Google Scholar] [CrossRef]
- Wilson, D.J.; Habing, G.; Winder, C.B. A scoping review of neonatal calf diarrhea case definitions. Prev. Vet. Med. 2023, 211, 105818. [Google Scholar] [CrossRef]
- Jessop, E.; Li, L.; Renaud, D.L.; Verbrugghe, A.; Macnicol, J.; Gamsjäger, L. Neonatal calf diarrhea and gastrointestinal microbiota: Etiologic agents and microbiota manipulation for treatment and prevention of diarrhea. Vet. Sci. 2024, 11, 108. [Google Scholar] [CrossRef]
- Acres, S.D. Enterotoxigenic Escherichia coli infections in newborn calves: A review. J. Dairy. Sci. 1985, 68, 229–256. [Google Scholar] [CrossRef]
- He, Y.; Yuan, Q.; Mathieu, J.; Stadler, L.; Senehi, N.; Sun, R. Antibiotic resistance genes from livestock waste: Occurrence, dissemination, and treatment. NPJ Clean. Water 2020, 3, 4. [Google Scholar] [CrossRef]
- Bacanlı, M. Importance of antibiotic residues in animal food. Food Chem. Toxicol. 2019, 125, 462–466. [Google Scholar] [CrossRef] [PubMed]
- Smith, B.L.; Fernando, S. Escherichia coli resistance mechanism AcrAB-TolC efflux pump interactions with commonly used antibiotics: A molecular dynamics study. Sci. Rep. 2024, 14, 2742. [Google Scholar] [CrossRef] [PubMed]
- Piddock, L.J. Multidrug-resistance efflux pumps? not just for resistance. Nat. Rev. Microbiol. 2006, 4, 629–636. [Google Scholar] [CrossRef]
- Liu, P.P.; Xie, M.Y.; Li, W.H.; Hao, Y.R.; Wang, J.L.; Wang, X.H.; Xu, X.J. Survey on the prevalence of E. coli K99 in large-scale cattle farms in the surrounding areas of Hohhot. J. Anim. Ecol. 2023, 44, 69–73. [Google Scholar]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef]
- Wick, R.R.; Judd, L.M.; Gorrie, C.L.; Holt, K.E. Unicycler: Resolving bacterial genome assemblies fromshort and long sequencing reads. PLoS Comput. Biol. 2017, 13, e1005595. [Google Scholar] [CrossRef] [PubMed]
- Hyatt, D.; Chen, G.L.; Locascio, P.F.; Land, M.L.; Larimer, F.W.; Hauser, L.J. Prodigal: Prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 2010, 11, 119. [Google Scholar] [CrossRef]
- Besemer, J.; Borodovsky, M. GeneMark: Web software for gene finding in prokaryotes, eukaryotes and viruses. Nucleic Acids Res. 2005, 33, W451–W454. [Google Scholar] [CrossRef] [PubMed]
- Verschuuren, T.; Bosch, T.; Mascaro, V.; Willems, R. External validation of WGS-based anti-microbial susceptibility prediction tools, KOVER-AMR and ResFinder 4.1, for Escherichia coli clinical isolates. Clin. Microbiol. Infect. 2022, 28, 1465–1470. [Google Scholar] [CrossRef] [PubMed]
- Alcock, B.P.; Raphenya, A.R.; Lau, T.T.; Tsang, K.K.; Bouchard, M.; Edalatmand, A. CARD 2020: Antibiotic resistome surveillance with the comprehensive antibiotic resistance data-base. Nucleic Acids Res. 2020, 48, D517–D525. [Google Scholar] [CrossRef]
- Huygens, J.; Daeseleire, E.; Mahillon, J.; Van Elst, D.; Decrop, J.; Meirlaen, J. Presence of antibiotic residues and antibiotic resistant bacteria in cattle manure intended for fertilization of agricultural fields: A one health perspective. Antibiotics 2021, 10, 410. [Google Scholar] [CrossRef]
- Moredo, F.A.; Pineyro, P.E.; Márquez, G.C.; Sanz, M.; Colello, R.; Etcheverria, A. Entero-toxigenic Escherichia coli subclinical infection in pigs: Bacteriological and genotypic characterization and antimicrobial resistance profiles. Foodborne Pathog. Dis. 2015, 12, 704–711. [Google Scholar] [CrossRef]
- Palmeira, J.D. Extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae in cattle production—A threat around the world. Heliyon 2020, 6, e03206. [Google Scholar] [CrossRef]
- Husna, A.; Rahman, M.M.; Badruzzaman, A.T.M.; Sikder, M.H.; Islam, M.R.; Rahman, M.T. Extended-spectrum β-lactamases (ESBL): Challenges and opportunities. Biomedicines 2023, 11, 2937. [Google Scholar] [CrossRef]
- Smet, A.; Martel, A.; Persoons, D.; Dewulf, J.; Heyndrickx, M.; Catry, B. Diversity of ex-tended-spectrum β-lactamases and class C β-lactamases among cloacal Escherichia coli isolates in Belgian broiler farms. Antimicrob. Agents Chemother. 2008, 52, 1238–1243. [Google Scholar] [CrossRef]
- Poirel, L.; Madec, J.Y.; Lupo, A.; Schink, A.K.; Kieffer, N.; Nordmann, P. Antimicrobial resistance in Escherichia coli. Microbiol. Spectr. 2018, 6, 1–27. [Google Scholar] [CrossRef]
- Wellner, S.M.; Alobaidallah, M.S.A.; Fei, X.; Herrero-Fresno, A. Genome-wide identification of fitness-genes in aminoglycoside-resistant Escherichia coli during antibiotic stress. Sci. Rep. 2024, 14, 4163. [Google Scholar] [CrossRef]
- Robicsek, A.; Strahilevitz, J.; Jacoby, G.A.; Macielag, M.; Abbanat, D.; Hye Park, C. Fluoroquinolone-modifying enzyme: A new adaptation of a common aminoglycoside acetyltransferase. Nat. Med. 2005, 12, 83–88. [Google Scholar] [CrossRef]
- Tuckman, M.; Petersen, P.J.; Howe, A.Y.; Orlowski, M.; Mullen, S.; Chan, K. Occurrence of tetracycline resistance genes among Escherichia coli isolates from the phase 3 clinical trials for tigecycline. Antimicrob. Agents Chemother. 2007, 51, 3205–3211. [Google Scholar] [CrossRef]
- Koo, H.J. Distribution and transferability of tetracycline resistance determinants in Escherichia coli isolated from meat and meat products. Int. J. Food Microbiol. 2011, 145, 407–413. [Google Scholar] [CrossRef] [PubMed]
- Gomes, C.; Martínez-Puchol, S.; Palma, N.; Horna, G.; Ruiz-Roldán, L.; Pons, M.J. Macrolide resistance mechanisms in Enterobacteriaceae: Focus on azithromycin. Crit. Rev. Microbiol. 2016, 43, 1–30. [Google Scholar] [CrossRef] [PubMed]
- Tello, M.; Ocejo, M.; Oporto, B. Prevalence of cefotaxime-resistant Escherichia coli isolates from healthy cattle and sheep in northern Spain: Phenotypic and genome-based characterization of antimicrobial susceptibility. Appl. Environ. Microbiol. 2020, 86, e00742-20. [Google Scholar] [CrossRef] [PubMed]
- Kerek, Á.; Román, I.; Szabó, Á.; Kovács, D.; Kardos, G.; Kovács, L. Antibiotic resistance genes in Escherichia coli—Literature review. Crit. Rev. Microbiol. 2025, 1–35. [Google Scholar] [CrossRef]
- Noguchi, N.; Tamura, Y.; Katayama, J.; Narui, K. Expression of the mphB gene for macro-lide 2′-phosphotransferase II from Escherichia coli in Staphylococcus aureus. FEMS Microbiol. Lett. 1998, 159, 337–342. [Google Scholar]
- Haley, B.J.; Kim, S.W.; Salaheen, S.; Hovingh, E. Genome-wide analysis of Escherichia coli isolated from dairy animals identifies virulence factors and genes enriched in multi-drug-resistant strains. Antibiotics 2023, 12, 1559. [Google Scholar] [CrossRef]
- Gomi, R.; Matsuda, T.; Matsumura, Y.; Yamamoto, M.; Tanaka, M.; Ichiyama, S. Whole-genome analysis of antimicrobial-resistant and extraintestinal pathogenic Escherichia coli in river water. Appl. Environ. Microbiol. 2017, 83, e02703-16. [Google Scholar] [CrossRef]
- Nguyen, M.C.P.; Woerther, P.L.; Bouvet, M.; Andremont, A.; Leclercq, R. Escherichia coli as reservoir for macrolide resistance genes. Emerg. Infect. Dis. 2009, 15, 1648. [Google Scholar] [CrossRef]
- Urban-Chmiel, R.; Marek, A.; Stępień-Pyśniak, D.; Wieczorek, K.; Dec, M.; Nowaczek, A. Antibiotic resistance in bacteria—A review. Antibiotics 2022, 11, 1079. [Google Scholar] [CrossRef]
- Hopkins, K.L.; Davies, R.H. Mechanisms of quinolone resistance in Escherichia coli and Salmonella: Recent developments. Int. J. Antimicrob. Agents 2005, 25, 358–373. [Google Scholar] [CrossRef] [PubMed]
- White, D.G.; Hudson, C.; Maurer, J.J.; Ayers, S.; Zhao, S.; Lee, M.D. Characterization of chloramphenicol and florfenicol resistance in Escherichia coli associated with bovine diarrhea. J. Clin. Microbiol. 2000, 38, 4593–4598. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Li, Z.; Wang, Y.; Chen, Y.; Sun, J.; Yang, Y. Antimicrobial resistance and transconjugants characteristics of sul3 Positive Escherichia coli isolated from animals in Nanning, Guangxi province. Animals 2022, 12, 976. [Google Scholar] [CrossRef]
- Miranda, A.; Ávila, B.; Díaz, P.; Rivas, L.; Bravo, K.; Astudillo, J. Emergence of plasmid-borne dfrA14 trimethoprim resistance gene in Shigella sonnei. Front. Cell Infect. Microbiol. 2016, 6, 77. [Google Scholar] [CrossRef] [PubMed]
- Ayoub Moubareck, C. Polymyxins and bacterial membranes: A review of antibacterial activity and mechanisms of resistance. Membranes 2020, 10, 181. [Google Scholar] [CrossRef]
- Hu, J.; Li, J.; Huang, X.; Xia, J.; Cui, M.; Huang, Y. Genomic traits of multidrug resistant enterotoxigenic Escherichia coli isolates from diarrheic pigs. Front. Microbiol. 2023, 14, 1244026. [Google Scholar] [CrossRef] [PubMed]
- Webber, M.A. The importance of efflux pumps in bacterial antibiotic resistance. J. Antimicrob. Chemother. 2003, 51, 9–11. [Google Scholar] [CrossRef]
- Sharma, A.; Gupta, V.K. Efflux pump inhibitors for bacterial pathogens: From bench to bed-side. Indian. J. Med. Res. 2019, 149, 129–145. [Google Scholar] [CrossRef]
- Algammal, A.M.; El-Kholy, A.W.; Riad, E.M.; Mohamed, H.E.; Elhaig, M.M.; Yousef, S.A.A. Genes encoding the virulence and the antimicrobial resistance in enterotoxigenic and shi-ga-toxigenic E. coli isolated from diarrheic calves. Toxins 2020, 12, 383. [Google Scholar] [CrossRef]
- Shahrani, M.; Dehkordi, F.S.; Momtaz, H. Characterization of Escherichia coli virulence genes, pathotypes and antibiotic resistance properties in diarrheic calves in Iran. Biol. Res. 2014, 47, 28. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Nawrocki, E.M.; M’ikanatha, N.M. Host species shapes genotype, antimicrobial resistance, and virulence profiles of enterotoxigenic Escherichia coli (ETEC) from livestock in the United States. Appl. Environ. Microbiol. 2024, 90, e00749-24. [Google Scholar] [CrossRef]
- Xie, M.; Chen, Y.; Shang, H.; He, X.; Xu, X. Prevalence and antimicrobial resistance of Salmonella enterica isolated from cattle farms in Inner Mongolia. BMC Vet. Res. 2025, 21, 452. [Google Scholar] [CrossRef] [PubMed]
- Muteeb, G.; Rehman, M.T.; Shahwan, M.; Aatif, M. Origin of antibiotics and antibiotic resistance, and their impacts on drug development: A narrative review. Pharmaceuticals 2023, 16, 1615. [Google Scholar] [CrossRef] [PubMed]
- Vidovic, N.; Vidovic, S. Antimicrobial resistance and food animals: Influence of livestock environment on the emergence and dissemination of antimicrobial resistance. Antibiotics 2020, 9, 52. [Google Scholar] [CrossRef]
- Gould, D.; Kraa, E.; Dalton, C.B.; Givney, R.; Gregory, J.; Stafford, R.J.; Kirk, M.D. Foodborne disease outbreaks in Australia, 1995 to 2000. Commun. Dis. Intell. Q. Rep. 2004, 28, 211–224. [Google Scholar] [CrossRef]


| Isolate | Antibiotic Types | AMR Genes | AMR Phenotype |
|---|---|---|---|
| ETEC F5 | β-lactamase | blaCTX-M-15 blaCTX-M-65 blaOXA-10 ampC ampH | AMP CRO CAZ ATM |
| aminoglycoside antibiotic | acc(3)-IV aac(3)-IVa aadA2 ant(3″)-Ia ant(3″)-IIa aph(3′)-Ia aph(3″)-Ib aph(4)-Ia aph(6)-Id | GEN TOB S K AKM | |
| fluoroquinolone antibiotic | qnrS1 | CIP ENR | |
| tetracycline antibiotic | tet(A) | TET DOX | |
| phenicol antibiotic | cmlA1 cmlA5 floR | CHL FFC | |
| sulfonamide antibiotic | sul3 | SMX | |
| folate pathway antagonists | dfrA14 | TMP SXT | |
| macrolide antibiotic | mphB | N/A * | |
| peptide antibiotic | bacA eptA pmrF | N/A | |
| lincosamide antibiotic | linG lnu(F) | N/A | |
| rifamycin antibiotic | arr-2 arr-3 | N/A | |
| bacterial efflux pumps | acrA, acrB, acrD, acrE, acrF, acrS, baeR, baeS, cpxA, CRP, emrA, emrB emrK, emrR, emrY, evgA, evgS, gadW, gadX, H-NS, kdpE, marA mdfA, mdtA, mdtB, mdtC, mdtE mdtF, mdtG, mdtH, mdtM, mdtN mdtO, mdtP, msbA, qacH, tolC yojI | N/A |
| Isolate | Antibiotic Types | AMR Genes | AMR Phenotype |
|---|---|---|---|
| ETEC F5-F41 | β-lactamase | blaOXA-1 blaTEM-106 blaTEM-1 ampC ampH | AMP |
| aminoglycoside antibiotic | aac(3)-IV aac(6′)-Ib-cr aadA2 ant(3″)-Ia ant(3″)-IIa aph(3″)-Ib aph(4)-Ia aph(6)-Id | GEN TOB S K | |
| fluoroquinolone antibiotic | qnrS1 | CIP ENR | |
| tetracycline antibiotic | tet(A) | TET DOX | |
| phenicol antibiotic | cmlA1 catB3 floR | CHL FFC | |
| sulfonamide antibiotic | sul1 sul2 sul3 | SMX | |
| folate pathway antagonists | dfrA14 | TMP SXT | |
| macrolide antibiotic | mphB | N/A * | |
| peptide antibiotic | bacA eptA pmrF | N/A | |
| rifamycin antibiotic | arr-3 | N/A | |
| bacterial efflux pumps | acrB, acrD, acrE, acrF, baeR, baeS cpxA, CRP, emrA, emrB, emrK, emrR emrY, evgA, evgS, gadW, gadX H-NS, kdpE, marA, mdtA, mdtB mdtC, mdtE, mdtF, mdtG, mdtH mdtM, mdtN, mdtO, mdtP, msbA tolC, yojI, acrA, mdfA, qacH | N/A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Xie, M.; Shang, H.; Lv, L.; Liu, P.; Li, W.; Wang, D.; Yuan, Y.; Huang, T.; Wang, X.; Xu, X. Whole-Genome Sequencing and Antimicrobial Resistance Analysis of Enterotoxigenic Escherichia coli F5 and F5-F41 Strains Isolated from Neonatal Calves in Inner Mongolia, China. Animals 2026, 16, 151. https://doi.org/10.3390/ani16010151
Xie M, Shang H, Lv L, Liu P, Li W, Wang D, Yuan Y, Huang T, Wang X, Xu X. Whole-Genome Sequencing and Antimicrobial Resistance Analysis of Enterotoxigenic Escherichia coli F5 and F5-F41 Strains Isolated from Neonatal Calves in Inner Mongolia, China. Animals. 2026; 16(1):151. https://doi.org/10.3390/ani16010151
Chicago/Turabian StyleXie, Mengyuan, Hewei Shang, Liangliang Lv, Pingping Liu, Wenhao Li, Dong Wang, Yue Yuan, Tianqu Huang, Xiumin Wang, and Xiaojing Xu. 2026. "Whole-Genome Sequencing and Antimicrobial Resistance Analysis of Enterotoxigenic Escherichia coli F5 and F5-F41 Strains Isolated from Neonatal Calves in Inner Mongolia, China" Animals 16, no. 1: 151. https://doi.org/10.3390/ani16010151
APA StyleXie, M., Shang, H., Lv, L., Liu, P., Li, W., Wang, D., Yuan, Y., Huang, T., Wang, X., & Xu, X. (2026). Whole-Genome Sequencing and Antimicrobial Resistance Analysis of Enterotoxigenic Escherichia coli F5 and F5-F41 Strains Isolated from Neonatal Calves in Inner Mongolia, China. Animals, 16(1), 151. https://doi.org/10.3390/ani16010151
