Bacillus amyloliquefaciens CU33 Fermented Product Improves Growth Performance, Diarrhea, and Immunity of Goat Kids
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Fermented Product Preparation
2.2. The Physiochemical Characterizations and Nutrient Composition of CU33FP
2.3. Animal Management and Experimental Design
2.4. Growth Performance
2.5. General Health Performance
2.6. Hematological Traits
2.7. Clinical Blood Biochemistry
2.8. Isolation of Peripheral Blood Mononuclear Cells and Granulocytes
2.9. Phagocytosis of Granulocyte
2.10. Oxidative Burst Measurement
2.11. Lymphoblastogenesis
2.12. Skin Swelling Measurement
2.13. Blood Immunoglobulin Level
2.14. Statistical Analysis
3. Results
3.1. The Physiochemical Characterizations of CU33FP
3.2. Growth Performance
3.3. Health Performance
3.4. Hematological Traits
3.5. Clinical Blood Biochemistry
3.6. Immune Traits
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bélanger-Naud, S.; Vasseur, E. Graduate Student Literature Review: Current Recommendations and Scientific Knowledge on Dairy Goat Kid Rearing Practices in Intensive Production Systems in Canada, the United States, and France. J. Dairy Sci. 2021, 104, 7323–7333. [Google Scholar] [CrossRef] [PubMed]
- Zobel, G.; Freeman, H.; Watson, T.; Cameron, C.; Sutherland, M. Effect of Different Milk-Removal Strategies at Weaning on Feed Intake and Behavior of Goat Kids. J. Vet. Behav. 2020, 35, 62–68. [Google Scholar] [CrossRef]
- Aufy, A.A.; Magistrelli, D.; Rosi, F. Effect of Weaning and Milk Replacer Feeding on Plasma Insulin and Related Metabolites in Saanen Goat Kids. Ital. J. Anim. Sci. 2009, 8, 256–258. [Google Scholar] [CrossRef]
- Magistrelli, D.; Dimel, G.P.; Rosi, F. Endocrine and Metabolic Traits in Goat Kids around Weaning. Ital. J. Anim. Sci. 2010, 6, 625–627. [Google Scholar] [CrossRef]
- Kim, Y.-H.; Toji, N.; Kizaki, K.; Kushibiki, S.; Ichijo, T.; Sato, S. Effects of Dietary Forage and Calf Starter on Ruminal pH and Transcriptomic Adaptation of the Rumen Epithelium in Holstein Calves during the Weaning Transition. Physiol. Genom. 2016, 48, 803–809. [Google Scholar] [CrossRef]
- Greenwood, P.L. Rearing Systems for Dairy Goats. Small Rumin. Res. 1993, 10, 189–199. [Google Scholar] [CrossRef]
- Hong, H.-T.; Wu, C.-P. Bacillus Spp.-Fermented Mixture in Goat Starter Diets on Growth Performance, Blood, and Carcass and Gastrointestinal Traits. Rev. Bras. Zootec. 2021, 50, e20200242. [Google Scholar] [CrossRef]
- Plaza-Diaz, J.; Ruiz-Ojeda, F.J.; Gil-Campos, M.; Gil, A. Mechanisms of Action of Probiotics. Adv. Nutr. 2019, 10, S49–S66. [Google Scholar] [CrossRef]
- Misra, S.; Pandey, P.; Mishra, H.N. Novel Approaches for Co-Encapsulation of Probiotic Bacteria with Bioactive Compounds, Their Health Benefits and Functional Food Product Development: A Review. Trends Food Sci. Technol. 2021, 109, 340–351. [Google Scholar] [CrossRef]
- Lee, T.-Y.; Lee, Y.-S.; Yeh, R.-H.; Chen, K.-H.; Chen, K.-L. Bacillus amyloliquefaciens CU33 Fermented Feather Meal-Soybean Meal Product Improves the Intestinal Morphology to Promote the Growth Performance of Broilers. Poult. Sci. 2022, 101, 102027. [Google Scholar] [CrossRef]
- Sun, P.; Wang, J.Q.; Zhang, H.T. Effects of Bacillus subtilis natto on Performance and Immune Function of Preweaning Calves. J. Dairy Sci. 2010, 93, 5851–5855. [Google Scholar] [CrossRef] [PubMed]
- Du, R.; Jiao, S.; Dai, Y.; An, J.; Lv, J.; Yan, X.; Wang, J.; Han, B. Probiotic Bacillus amyloliquefaciens C-1 Improves Growth Performance, Stimulates GH/IGF-1, and Regulates the Gut Microbiota of Growth-Retarded Beef Calves. Front. Microbiol. 2018, 9, 2006. [Google Scholar] [CrossRef] [PubMed]
- Hamdon, H.A.; Kholif, A.E.; Mahmoud, G.B.; Khalifa, A.M.A.; Ati, M.N.M.A. Enhancing the Utilization of Palm Leaf Hay Using Bacillus subtilis and Phanerochaete chrysosporium in the Diet of Lambs Under Desert Conditions. Ann. Anim. Sci. 2020, 20, 1395–1409. [Google Scholar] [CrossRef]
- Zhang, W.; Xin, H.; Jiang, N.; Lv, Z.; Shu, J.; Shi, H. Bacillus amyloliquefaciens-9 as an Alternative Approach to Cure Diarrhea in Saanen Kids. Animals 2021, 11, 592. [Google Scholar] [CrossRef]
- Stanbury, P.F.; Whitaker, A.; Hall, S.J. Principles of Fermentation Technology, 2nd ed.; Butterworth-Heinemann: Oxford, UK, 1995. [Google Scholar]
- Huang, H.-J.; Weng, B.-C.; Hsuuw, Y.-D.; Lee, Y.-S.; Chen, K.-L. Dietary supplementation of two-stage fermented feather-soybean meal product on growth performance and immunity in finishing pigs. Animals 2021, 11, 1527. [Google Scholar] [CrossRef]
- Lee, Y.-S.; Ku, K.-L.; Chen, P.-Y.; Chen, K.-L. The Fermented Product of High-Yield Surfactin Strain Bacillus subtilis LYS1 Improves the Growth Performance and Intestinal Villi Morphology in Broilers. Poult. Sci. 2023, 102, 102839. [Google Scholar] [CrossRef]
- Lee, T.-Y.; Lee, Y.-S.; Wu, C.-P.; Chan, K.-W.; Chen, K.-L. Bacillus amyloliquefaciens CU33 Fermented Feather–Soybean Meal Product Improves the Crude Protein Digestibility, Diarrhea Status, and Growth Performance of Goat Kids. Animals 2024, 14, 2809. [Google Scholar] [CrossRef]
- Zanotto, A.W.; Valério, A.; de Andrade, C.J.; Pastore, G.M. New Sustainable Alternatives to Reduce the Production Costs for Surfactin 50 Years after the Discovery. Appl. Microbiol. Biotechnol. 2019, 103, 8647–8656. [Google Scholar] [CrossRef] [PubMed]
- Goto, A.; Kunioka, M. Biosynthesis and Hydrolysis of Poly(γ-Glutamic Acid) from Bacillus subtilis IF03335. Biosci. Biotechnol. Biochem. 1992, 56, 1031–1035. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis; AOAC Int.: Gaithersburg, MD, USA, 1990. [Google Scholar]
- Secades, P.; Guijarro, J.A. Purification and Characterization of an Extracellular Protease from the Fish Pathogen Yersinia ruckeri and Effect of Culture Conditions on Production. Appl. Environ. Microbiol. 1999, 65, 3969–3975. [Google Scholar] [CrossRef]
- Oguntoyinbo, F.A.; Sanni, A.I.; Franz, C.M.A.P.; Holzapfel, W.H. In Vitro Fermentation Studies for Selection and Evaluation of Bacillus Strains as Starter Cultures for the Production of Okpehe, a Traditional African Fermented Condiment. Int. J. Food Microbiol. 2007, 113, 208–218. [Google Scholar] [CrossRef]
- Lee, Y.-S.; Ku, K.-L.; Chu, C.-S.; Chen, K.-L. The Optimal Supplementation of Fermented Product Produced by Bacillus subtilis Strain LYS1 with High Surfactin Yield for Improving Growth Performance, Intestinal Villi Morphology, and Tibial Bone Strength in Broilers. Animals 2024, 14, 2079. [Google Scholar] [CrossRef] [PubMed]
- Timmerman, H.M.; Mulder, L.; Everts, H.; van Espen, D.C.; van der Wal, E.; Klaassen, G.; Rouwers, S.M.G.; Hartemink, R.; Rombouts, F.M.; Beynen, A.C. Health and Growth of Veal Calves Fed Milk Replacers With or Without Probiotics. J. Dairy Sci. 2005, 88, 2154–2165. [Google Scholar] [CrossRef]
- Meyer, P.M.; Pires, A.V.; Bagaldo, A.R.; de Simas, J.M.C.; Susin, I. Adição de Probiótico Ao Leite Integral Ou Sucedâneo e Desempenho de Bezerros Da Raça Holandesa. Sci. Agric. 2001, 58, 215–221. [Google Scholar] [CrossRef]
- Ciapetti, G.; Granchi, D.; Verri, E.; Savarino, L.; Cenni, E.; Savioli, F.; Pizzoferrato, A. Fluorescent Microplate Assay for Respiratory Burst of PMNs Challenged in Vitro with Orthopedic Metals. J. Biomed. Mater. Res. 1998, 41, 455–460. [Google Scholar] [CrossRef]
- SAS. SAS/STAT User’s Guide: Statistics, 1st ed.; SAS Institute Inc.: Cary, NC, USA, 2004. [Google Scholar]
- Elliott, A.C.; Hynan, L.S. A SAS® Macro Implementation of a Multiple Comparison Post Hoc Test for a Kruskal–Wallis Analysis. Comput. Methods Programs Biomed. 2011, 102, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Damon, R.A., Jr.; Harvey, W.R. Experimental Design, ANOVA and Regression; Harper and Row: New York, NY, USA, 1987; pp. 77–81. [Google Scholar]
- Sun, Y.; Zhang, Y.; Liu, M.; Li, J.; Lai, W.; Geng, S.; Yuan, T.; Liu, Y.; Di, Y.; Zhang, W.; et al. Effects of Dietary Bacillus amyloliquefaciens CECT 5940 Supplementation on Growth Performance, Antioxidant Status, Immunity, and Digestive Enzyme Activity of Broilers Fed Corn-Wheat-Soybean Meal Diets. Poult. Sci. 2022, 101, 101585. [Google Scholar] [CrossRef] [PubMed]
- EFSA. Safety and efficacy of Ecobiol® (Bacillus amyloliquefaciens) as feed additive for chickens for fattening—Scientific Opinion of the Panel on Additives and Products or Substances used in Animal Feed. EFSA J. 2008, 6, 773. [Google Scholar] [CrossRef]
- Gracia, M.; Aranibar, M.; Lazaro, R.; Medel, P.; Mateos, G. Alpha-Amylase Supplementation of Broiler Diets Based on Corn. Poult. Sci. 2003, 82, 436–442. [Google Scholar] [CrossRef]
- Deb, P.; Talukdar, S.A.; Mohsina, K.; Sarker, P.K.; Sayem, S.A. Production and Partial Characterization of Extracellular Amylase Enzyme from Bacillus amyloliquefaciens P-001. SpringerPlus 2013, 2, 154. [Google Scholar] [CrossRef]
- Banat, I.M.; Rienzo, M.A.D.D.; Quinn, G.A. Microbial Biofilms: Biosurfactants as Antibiofilm Agents. Appl. Microbiol. Biotechnol. 2014, 98, 9915–9929. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhang, N.; Han, J.; Chang, C.; Hsiao, F.S.; Yu, Y. Optimization of Surfactin Production from Bacillus subtilis in Fermentation and Its Effects on Clostridium perfringens-induced Necrotic Enteritis and Growth Performance in Broilers. J. Anim. Physiol. Anim. Nutr. 2018, 102, 1232–1244. [Google Scholar] [CrossRef] [PubMed]
- Hyatt, D.; Chen, G.-L.; LoCascio, P.F.; Land, M.L.; Larimer, F.W.; Hauser, L.J. Prodigal: Prokaryotic Gene Recognition and Translation Initiation Site Identification. BMC Bioinform. 2010, 11, 119. [Google Scholar] [CrossRef] [PubMed]
- Lagesen, K.; Hallin, P.; Rødland, E.A.; Stærfeldt, H.-H.; Rognes, T.; Ussery, D.W. RNAmmer: Consistent and Rapid Annotation of Ribosomal RNA Genes. Nucleic Acids Res. 2007, 35, 3100–3108. [Google Scholar] [CrossRef] [PubMed]
- Cai, D.; He, P.; Lu, X.; Zhu, C.; Zhu, J.; Zhan, Y.; Wang, Q.; Wen, Z.; Chen, S. A Novel Approach to Improve Poly-γ-Glutamic Acid Production by NADPH Regeneration in Bacillus licheniformis WX-02. Sci. Rep. 2017, 7, 43404. [Google Scholar] [CrossRef]
- Li, L.; Liu, Y.; Jiang, L.; Ding, S.; Chen, G.; Liang, Z.; Zeng, W. Effects of Cell Physiological Structure on the Fermentation Broth Viscosity during Poly-γ-Glutamic Acid Production by Bacillus subtilis GXA-28. Appl. Biochem. Biotechnol. 2021, 193, 271–280. [Google Scholar] [CrossRef]
- Xie, F.; Feng, F.; Liu, D.; Quan, S.; Liu, L.; Zhang, X.; Chen, G. Bacillus amyloliquefaciens 35 M Can Exclusively Produce and Secrete Proteases When Cultured in Soybean-Meal-Based Medium. Colloids Surf. B Biointerfaces 2022, 209, 112188. [Google Scholar] [CrossRef]
- Zhi, Y.; Wu, Q.; Xu, Y. Production of Surfactin from Waste Distillers’ Grains by Co-Culture Fermentation of Two Bacillus Amyloliquefaciens Strains. Bioresour. Technol. 2017, 235, 96–103. [Google Scholar] [CrossRef]
- Khan, M.A.; Lee, H.J.; Lee, W.S.; Kim, H.S.; Ki, K.S.; Hur, T.Y.; Suh, G.H.; Kang, S.J.; Choi, Y.J. Structural Growth, Rumen Development, and Metabolic and Immune Responses of Holstein Male Calves Fed Milk Through Step-Down and Conventional Methods. J. Dairy Sci. 2007, 90, 3376–3387. [Google Scholar] [CrossRef]
- Wang, L.; Xu, Q.; Kong, F.; Yang, Y.; Wu, D.; Mishra, S.; Li, Y. Exploring the Goat Rumen Microbiome from Seven Days to Two Years. PLoS ONE 2016, 11, e0154354. [Google Scholar] [CrossRef]
- Haldar, L.; Gandhi, D.N. Effect of Oral Administration of Bacillus coagulans B37 and Bacillus pumilus B9 Strains on Fecal Coliforms, Lactobacillus and Bacillus spp. in Rat Animal Model. Vet. World 2016, 9, 766–772. [Google Scholar] [CrossRef] [PubMed]
- Lane, M.A.; Baldwin, R.L.; Jesse, B.W. Sheep Rumen Metabolic Development in Response to Age and Dietary Treatments. J. Anim. Sci. 2000, 78, 1990–1996. [Google Scholar] [CrossRef] [PubMed]
- Peh, H.C.; Huang, S.Y.; Lin, R.S. Livestock Clinical Blood Biochemistry, 1st ed.; Liyu Publishing House: Taichung, Taiwan, 1996. [Google Scholar]
- Du, W.; Huang, Q.; Fu, A.K.; Yu, D.Y.; Li, W.F. Effects of Bacillus amyloliquefaciens SC06 on systemic immune system in cyclophosphamide induced Immunosuppressive BALB/c mice. Chin. J. Anim. Sci. 2015, 51, 60–64. [Google Scholar]
- Thy, H.T.T.; Tri, N.N.; Quy, O.M.; Fotedar, R.; Kannika, K.; Unajak, S.; Areechon, N. Effects of the Dietary Supplementation of Mixed Probiotic Spores of Bacillus amyloliquefaciens 54A, and Bacillus pumilus 47B on Growth, Innate Immunity and Stress Responses of Striped Catfish (Pangasianodon hypophthalmus). Fish Shellfish Immunol. 2017, 60, 391–399. [Google Scholar] [CrossRef]
- Xiaolong, G.; Caihuan, K.; Mo, Z.; Xian, L.; Fucun, W.; Ying, L. Effects of the Probiotic Bacillus amyloliquefaciens on the Growth, Immunity, and Disease Resistance of Haliotis Discus Hannai. Fish Shellfish Immunol. 2019, 94, 617–627. [Google Scholar] [CrossRef]
- Tiantong, A.; Piamya, P.; Chen, S.-E.; Liu, W.-B.; Chang, F.-Y.; Lin, P.-C.; Nagahata, H.; Chang, C.-J. Systemic and Local Bactericidal Potentiality in Late Lactation Holstein-Friesian Cows Following a Combined Antibiotics and Enterococcus faecium SF68 Dry-Cow Treatment. Jpn. J. Vet. Res. 2015, 63, 139–150. [Google Scholar] [PubMed]
- Cha, J.-H.; Rahimnejad, S.; Yang, S.-Y.; Kim, K.-W.; Lee, K.-J. Evaluations of Bacillus Spp. as Dietary Additives on Growth Performance, Innate Immunity and Disease Resistance of Olive Flounder (Paralichthys olivaceus) against Streptococcus iniae and as Water Additives. Aquaculture 2013, 402, 50–57. [Google Scholar] [CrossRef]
- Tiantong, A.; Piamya, P.; Chang, C.J.; Chen, S.E. 2020. Effects of Enterococcus faecium (SF68) supplementation on the innate innate immune defenses and blood biochemical changes in pre-weaning goat kids. J. Anim. Plant Sci. 2020, 30, 1106–1114. [Google Scholar] [CrossRef]
- Schrank, C.S.; Cook, M.E.; Hansen, W.R. Immune response of mallard ducks treated with immunosuppressive agents: Antibody response to erythrocytes and in vivo response to phytohemagglutinin-P. J. Wildlife Dis. 1990, 26, 307–315. [Google Scholar] [CrossRef]
- Grasman, K.A. Immunotoxicity Testing, Methods and Protocols. Methods Mol. Biol. 2009, 598, 387–398. [Google Scholar] [CrossRef]
Ingredients, % | 0% | 0.1% | 0.3% | 0.5% |
---|---|---|---|---|
Alfafa meal | 15 | 15 | 15 | 15 |
Yellow corn, grain | 55.1 | 55.1 | 55.1 | 55.1 |
Soybean meal, CP 43% | 21.5 | 21.4 | 21.2 | 21.0 |
Fish meal, CP 65% | 2.0 | 2.0 | 2.0 | 2.0 |
CU33FP, CP 44% | 0 | 0.1 | 0.3 | 0.5 |
Sugar cane molasses | 3.0 | 3.0 | 3.0 | 3.0 |
Dicalcium phosphate | 1.2 | 1.2 | 1.2 | 1.2 |
Limestone, pulverized | 1.2 | 1.2 | 1.2 | 1.2 |
Salts | 0.7 | 0.7 | 0.7 | 0.7 |
Vitamin Premix 1 | 0.2 | 0.2 | 0.2 | 0.2 |
Mineral Premix 2 | 0.1 | 0.1 | 0.1 | 0.1 |
Total | 100 | 100 | 100 | 100 |
Calculated value | ||||
CP, % | 17.14 | 17.14 | 17.14 | 17.14 |
ME, Mcal/kg | 2932 | 2932 | 2932 | 2932 |
Ca, % | 1.07 | 1.07 | 1.07 | 1.07 |
P, % | 0.61 | 0.61 | 0.61 | 0.61 |
Analyzed value, % | ||||
Crude protein | 17.70 | 17.81 | 17.90 | 17.89 |
Calcium | 1.04 | 1.07 | 1.06 | 1.05 |
Total phosphorus | 0.66 | 0.65 | 0.62 | 0.64 |
Items | Fermentation Time | SEM | p-Value | |||
---|---|---|---|---|---|---|
0 h | 24 h | 48 h | Dry | |||
Moisture | 70.4 a | 60.8 b | 50.5 c | 10.3 d | 0.29 | <0.001 |
pH | 6.39 b | 7.51 a | 7.71 a | 6.58 b | 0.10 | <0.001 |
Bacillus-like, log CFU/g feed | 7.40 d | 9.22 a | 9.03 b | 8.52 c | 0.04 | <0.001 |
Neutral protease activity, U/g | 25.3 d | 377 c | 542 b | 670 a | 5.4 | <0.001 |
Alkaline protease activity, U/g | 32.7 c | 361 b | 568 a | 566 a | 5.4 | <0.001 |
Surfactin, mg/g | - | 3.71 c | 4.25 b | 5.49 a | 0.05 | <0.001 |
γ-PGA, % | - | 2.13 c | 3.81 b | 5.33 a | 0.03 | <0.001 |
Viscosity, score | - | 1.64 c | 2.13 b | 2.65 a | - | <0.001 |
Odor, score | - | 3.11 b | 3.42 a | 2.40 c | - | <0.001 |
Items | 0% | 0.1% | 0.3% | 0.5% | SEM | p-Value | Orthogonal Contrast 1 |
---|---|---|---|---|---|---|---|
Body weight, kg | |||||||
Initial, 0 week | 5.86 | 5.65 | 5.73 | 5.69 | 0.12 | 0.63 | - |
Weaning, 4 week | 10.5 | 11.5 | 11.1 | 11.3 | 0.30 | 0.11 | - |
Final, 8 week | 15.2 b | 17.8 a | 17.7 a | 17.5 a | 0.31 | <0.01 | L, Q |
Preweaning period (0–4 weeks) | |||||||
Total feed intake, kg/kid | 11.5 | 12.2 | 11.5 | 11.7 | 0.35 | 0.39 | - |
Starter intake, kg/kid | 9.92 | 10.6 | 9.85 | 10.06 | 0.35 | 0.37 | - |
Weight gain, kg/kid | 4.64 b | 5.85 a | 5.37 ab | 5.61 ab | 0.25 | 0.01 | L |
Feed conversion rate (feed intake/weight gain) | 2.47 a | 2.08 b | 2.14 b | 2.09 b | 0.08 | 0.04 | L, Q |
Postweaning period (4–8 weeks) | |||||||
Starter intake, kg, kg/kid | 18.4 | 19.4 | 18.8 | 18.6 | 0.45 | 0.43 | - |
Weight gain, kg/kid | 4.71 b | 6.30 a | 6.61a | 6.20 a | 0.23 | 0.001 | L, Q |
Feed conversion rate (starter intake/weight gain) | 3.91 a | 3.08 b | 2.84 b | 3.02 b | 0.14 | 0.001 | L, Q |
0–8 weeks experimental period | |||||||
Total feed intake, kg/kid | 29.9 | 31.6 | 30.3 | 30.2 | 0.65 | 0.26 | - |
Starter intake, kg/kid | 28.3 | 30.0 | 28.7 | 28.6 | 0.65 | 0.26 | - |
Weight gain, kg/kid | 9.34 b | 12.2 a | 12.0 a | 11.8 a | 0.31 | 0.001 | L, Q |
Feed conversion rate (feed intake/weight gain) | 3.20 a | 2.60 b | 2.53 b | 2.56 b | 0.07 | 0.001 | L, Q |
Period | 0% | 0.1% | 0.3% | 0.5% | SEM | p-Value | Orthogonal Contrast 1 |
---|---|---|---|---|---|---|---|
General health score (n = 10) | |||||||
Preweaning period (0–4 weeks) | 17.7 | 23.5 | 23.8 | 22.5 | 2.71 | 0.36 | - |
Postweaning period (4–8 weeks) | 19.5 | 25 | 26.3 | 25.3 | 1.99 | 0.085 | - |
Experimental period (0–8 weeks) | 37.2 | 48.5 | 50.1 | 47.8 | 3.79 | 0.083 | - |
Fecal consistency index, % (n = 10) | |||||||
Preweaning period (0–4 weeks) | 39.5 a | 35.0 ab | 32.8 ab | 32.2 b | 1.90 | 0.04 | L |
Postweaning period (4–8 weeks) | 35.4 a | 30.1 ab | 29.4 ab | 28.0 b | 1.70 | 0.02 | L |
Fecal bacteria *, log CFM/g | |||||||
Exp. 4 weeks | |||||||
Coliforms | 5.94 a | 3.86 b | 4.17 ab | 3.84 b | 0.45 | 0.011 | L |
Bacillus-likes | 3.13 b | 3.82 ab | 4.71 a | 4.77 a | 0.34 | 0.007 | L |
Exp. 8 weeks | |||||||
Coliforms | 4.14 | 4.83 | 4.67 | 3.96 | 0.39 | 0.21 | - |
Bacillus-likes | 1.2 b | 2.49 a | 2.51 a | 2.41 a | 0.26 | 0.004 | L, Q |
Items | 0% | 0.1% | 0.3% | 0.5% | SEM |
---|---|---|---|---|---|
WBC, /uL | 11,545 | 11,531 | 11,533 | 10,417 | 869 |
RBC, M/uL | 3.32 | 3.53 | 3.25 | 3.26 | 0.12 |
Hgb, gm/L | 11.2 | 11.7 | 10.8 | 10.5 | 0.4 |
Hct, % | 35.7 | 35.3 | 33.9 | 32.9 | 1.8 |
MCV, fL | 103.6 | 97.6 | 104.6 | 101.4 | 3.5 |
MCH, pg | 32.7 | 32.0 | 33.4 | 32.1 | 1.0 |
MCHC, % | 31.7 | 32.4 | 32.1 | 31.4 | 1.4 |
PLT, ×103/uL | 729 | 747 | 713 | 713 | 28 |
WBC classification | |||||
Net-s, % | 17.9 | 21.5 | 20.9 | 20.7 | 1.4 |
Lym-L, % | 75.1 | 71.8 | 71.5 | 72.6 | 1.6 |
Mono, % | 5.04 | 5.11 | 5.85 | 5.36 | 0.41 |
Eos, % | 1.38 | 1.44 | 1.24 | 0.94 | 0.17 |
Baso, % | 0.44 | 0.44 | 0.50 | 0.41 | 0.10 |
Items | 0% | 0.1% | 0.3% | 0.5% | SEM | p-Value | Orthogonal Contrast 1 |
---|---|---|---|---|---|---|---|
AST, U/L | 396 | 435 | 409 | 337 | 29.2 | 0.13 | - |
ALT, U/L | 43.4 | 34.5 | 34.0 | 37.5 | 2.84 | 0.09 | - |
γ-GT, U/L | 25.5 | 28.4 | 27.0 | 29.4 | 1.9 | 0.5 | - |
LDH, U/L | 3205 | 3090 | 2552 | 2982 | 194 | 0.12 | - |
CK, U/L | 10,960 | 9036 | 11,777 | 10,876 | 1283 | 0.5 | - |
ALP, U/L | 1426 | 2034 | 1841 | 2588 | 317 | 0.1 | - |
ACP, U/L | 0.29 | 0.14 | 0.24 | 0.25 | 0.08 | 0.61 | - |
Ca, mg/dL | 9.87 | 9.63 | 10.30 | 9.76 | 0.42 | 0.71 | - |
P, mg/dL | 7.73 b | 7.91 ab | 8.29 ab | 8.80 a | 0.24 | 0.02 | L |
Glucose, mg/dL | 63.1 | 77.6 | 76.5 | 71.1 | 4.1 | 0.07 | - |
Cholesterol, mg/dL | 74.3 | 66.4 | 64.6 | 64.1 | 3.4 | 0.15 | - |
TG, mg/dL | 24.4 | 23.6 | 22.0 | 21.1 | 1.5 | 0.43 | - |
Total protein, g/dL | 6.71 b | 6.98 ab | 7.74 a | 7.85 a | 0.24 | 0.004 | L |
ALB, g/dL | 2.86 | 2.41 | 2.90 | 2.90 | 0.28 | 0.52 | - |
GLO, g/dL | 3.85 | 4.56 | 4.84 | 4.95 | 0.38 | 0.19 | - |
A/G | 0.84 | 0.58 | 0.69 | 0.65 | 0.14 | 0.6 | - |
BUN, mg/dL | 13.5 b | 17.4 ab | 17.1 ab | 21.1 a | 1.2 | 0.002 | L |
Creatinine, mg/dL | 1.00 | 1.01 | 1.01 | 1.13 | 0.08 | 0.74 | - |
Items | 0% | 0.1% | 0.3% | 0.5% | SEM | p-Value | Orthogonal Contrast 1 |
---|---|---|---|---|---|---|---|
4 weeks | |||||||
Mean fluorescence intensity | |||||||
Phagocytosis | 1.87 | 2.52 | 2.30 | 3.05 | 0.37 | 0.19 | - |
Oxygen burst | 888 b | 867 b | 1091 ab | 1158 a | 67 | 0.01 | L |
Lymphoblastogenesis, specific fluorescence | |||||||
PHA | 14,015 | 11,975 | 9714 | 9399 | 1326 | 0.07 | - |
LPS | 8183 | 7276 | 5686 | 5028 | 978 | 0.12 | - |
PMA/ION 2 | 8742 | 7532 | 6309 | 5100 | 1037 | 0.11 | - |
Swelling degree, mm | |||||||
Swelling | 0.61 b | 3.26 a | 2.55 ab | 1.88 ab | 0.53 | 0.01 | Q |
Immunoglobulin, mg/dL | |||||||
IgA | 0.69 | 0.71 | 0.56 | 0.66 | 0.05 | 0.16 | - |
IgG | 4.18 | 4.23 | 3.89 | 4.63 | 0.22 | 0.88 | - |
IgM | 0.43 | 0.44 | 0.40 | 0.43 | 0.06 | 0.15 | - |
8 weeks | |||||||
IgA | 0.70 | 0.67 | 0.66 | 0.70 | 0.04 | 0.64 | - |
IgG | 2.79 | 2.36 | 2.13 | 2.71 | 0.32 | 0.95 | - |
IgM | 0.21 | 0.36 | 0.28 | 0.22 | 0.05 | 0.16 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, T.-Y.; Lee, Y.-S.; Wu, C.-P.; Weng, B.-C.; Chen, K.-L. Bacillus amyloliquefaciens CU33 Fermented Product Improves Growth Performance, Diarrhea, and Immunity of Goat Kids. Animals 2025, 15, 1324. https://doi.org/10.3390/ani15091324
Lee T-Y, Lee Y-S, Wu C-P, Weng B-C, Chen K-L. Bacillus amyloliquefaciens CU33 Fermented Product Improves Growth Performance, Diarrhea, and Immunity of Goat Kids. Animals. 2025; 15(9):1324. https://doi.org/10.3390/ani15091324
Chicago/Turabian StyleLee, Tsung-Yu, Yueh-Sheng Lee, Chean-Ping Wu, Bor-Chun Weng, and Kuo-Lung Chen. 2025. "Bacillus amyloliquefaciens CU33 Fermented Product Improves Growth Performance, Diarrhea, and Immunity of Goat Kids" Animals 15, no. 9: 1324. https://doi.org/10.3390/ani15091324
APA StyleLee, T.-Y., Lee, Y.-S., Wu, C.-P., Weng, B.-C., & Chen, K.-L. (2025). Bacillus amyloliquefaciens CU33 Fermented Product Improves Growth Performance, Diarrhea, and Immunity of Goat Kids. Animals, 15(9), 1324. https://doi.org/10.3390/ani15091324