Rapeseed Meal as an Alternative Protein Source in Fish Feed and Its Impact on Growth Parameters, Digestive Tract, and Gut Microbiota
Simple Summary
Abstract
1. Introduction
2. Rapeseed Meal as an Alternative Source of Protein in Fish Feed
3. The Influence of the Use of Rapeseed Meal in Fish Diets on Growth Parameters
4. The Condition of the Digestive Tract After Supplementation with Rapeseed Meal
5. Diversity of Gut Microbiota After Supplementation with Rapeseed Meal
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, Z.H.; Liu, J.; Jin, X.; Zhu, D.; Han, S.; Xie, S. Towards a low-carbon footprint: Current status and prospects for aquaculture. Water Biol. Sec. 2024, 3, 100290. [Google Scholar] [CrossRef]
- Iqbal, M.; Yaqub, A.; Ayub, M. Partial and full substitution of fish meal and soybean meal by canola meal in diets for genetically improved farmed tilapia (O. niloticus): Growth performance, carcass composition, serum biochemistry, immune response, and intestine histology. J. Appl. Aquac. 2022, 34, 829–854. [Google Scholar] [CrossRef]
- Ghosh, A.; Misra, S.; Bhattacharyya, R.; Sarkar, A.; Singh, A.K.; Tyagi, V.C.; Kumar, R.V.; Meena, V.S. Agriculture, dairy and fishery farming practices and greenhouse gas emission footprint: A strategic appraisal for mitigation. Environ. Sci. Pollut. Res. Int. 2020, 27, 10160–10184. [Google Scholar] [CrossRef] [PubMed]
- Miles, R.D.; Chapman, F.A. The benefits of fish meal in aquaculture diets: FA122/FA122, 5/2006. EDIS 2006, 2006, 1–7. [Google Scholar] [CrossRef]
- Jannathulla, R.; Rajaram, V.; Kalanjiam, R.; Ambasankar, K.; Muralidhar, M.; Dayal, J.S. Fishmeal availability in the scenarios of climate change: Inevitability of fishmeal replacement in aquafeeds and approaches for the utilization of plant protein sources. Aquac. Res. 2019, 50, 3493–3506. [Google Scholar] [CrossRef]
- Thiele, C.J.; Hudson, M.D.; Russell, A.E.; Saluveer, M.; Sidaoui-Haddad, G. Microplastics in fish and fishmeal: An emerging environmental challenge? Sci. Rep. 2021, 11, 2045. [Google Scholar] [CrossRef] [PubMed]
- Oliva-Teles, A.; Enes, P.; Peres, H. Replacing Fishmeal and Fish Oil in Industrial Aquafeeds for Carnivorous Fish. In Feed and Feeding Practices in Aquaculture; Davis, D.A., Ed.; Elsevier/Woodhead Publishing: Amsterdam, The Netherlands, 2015; pp. 203–233. [Google Scholar] [CrossRef]
- Olsen, R.L.; Hasan, M.R. A limited supply of fishmeal: Impact on future increases in global aquaculture production. Trends Food Sci. Technol. 2012, 27, 120–128. [Google Scholar] [CrossRef]
- Rombenso, A.; Crouse, C.; Trushenski, J. Comparison of traditional and fermented soybean meals as alternatives to fish meal in hybrid striped bass feeds. N. Am. J. Aquacult. 2013, 75, 197–204. [Google Scholar] [CrossRef]
- Zhang, C.; Rahimnejad, S.; Wang, Y.; Lu, K.; Song, K.; Wang, L.; Mai, K. Substituting fish meal with soybean meal in diets for Japanese seabass (Lateolabrax japonicus): Effects on growth, digestive enzymes activity, gut histology, and expression of gut inflammatory and transporter genes. Aquaculture 2018, 483, 173–182. [Google Scholar] [CrossRef]
- Kader, M.A.; Bulbul, M.; Koshio, S.; Ishikawa, M.; Yokoyama, S.; Nguyen, B.T.; Komilus, C.F. Effect of complete replacement of fishmeal by dehulled soybean meal with crude attractants supplementation in diets for red sea bream, Pagrus major. Aquaculture 2012, 350–353, 109–116. [Google Scholar] [CrossRef]
- El-Saidy, D.M.S.D.; Gaber, M.M.A. Complete replacement of fish meal by soybean meal with dietary L-Lysine supplementation for Nile tilapia Oreochromis niloticus (L.) fingerlings. J. World Aquacult. Soc. 2002, 33, 297–306. [Google Scholar] [CrossRef]
- Colburn, H.R.; Walker, A.B.; Breton, T.S.; Stilwell, J.M.; Sidor, I.F.; Gannam, A.L.; Berlinsky, D.L. Partial replacement of fishmeal with soybean meal and soy protein concentrate in diets of Atlantic cod. N. Am. J. Aquacult. 2012, 74, 330–337. [Google Scholar] [CrossRef]
- Li, C.; Zhang, B.; Liu, C.; Zhou, H.; Wang, X.; Mai, K.; He, G. Effects of dietary raw or Enterococcus faecium fermented soybean meal on growth, antioxidant status, intestinal microbiota, morphology, and inflammatory responses in turbot (Scophthalmus maximus L.). Fish Shellfish Immunol. 2020, 100, 261–271. [Google Scholar] [CrossRef] [PubMed]
- Hartman, G.L.; West, E.D.; Herman, T.K. Crops that feed the world 2. Soybean—Worldwide production, use and constraints caused by pathogens and pests. Food Sec. 2011, 3, 5–17. [Google Scholar] [CrossRef]
- Siamabele, B.; Manda, S. Soybean expansion and smallholder livelihoods in rural Zambia: Dynamics, experiences and implications. Cogent Food Agric. 2024, 10, 2413402. [Google Scholar] [CrossRef]
- Khojely, D.M.; Ibrahim, S.E.; Sapey, E.; Han, T. History, current status, and prospects of soybean production and research in sub-Saharan Africa. Crop J. 2018, 6, 226–235. [Google Scholar] [CrossRef]
- Abraham, E.M.; Ganopoulos, I.; Madesis, P.; Mavromatis, A.; Mylona, P.; Nianiou-Obeidat, I.; Parissi, Z.; Polidoros, A.; Tani, E.; Vlachostergios, D. The use of lupin as a source of protein in animal feeding: Genomic tools and breeding approaches. Int. J. Mol. Sci. 2019, 20, 851. [Google Scholar] [CrossRef]
- Nair, R.M.; Boddepalli, V.N.; Yan, M.-R.; Kumar, V.; Gill, B.; Pan, R.S.; Wang, C.; Hartman, G.L.; Silva e Souza, R.; Somta, P. Global status of vegetable soybean. Plants 2023, 12, 609. [Google Scholar] [CrossRef]
- EIT Food Protein Diversification Think Tank, Accelerating Protein Diversification for Europe (An EIT Food Protein Diversification Think Tank Policy Brief, 2023). Available online: https://www.eitfood.eu/files/EIT-Food-PDTT-Policy-Brief-Accelerating-Protein-Diversification-for-Europe.pdf (accessed on 22 February 2025).
- Ene, C. Some Considerations about Resilient Food Systems as a Pillar for Food Security and Sustainability. In The USV Annals of Economics and Public Administration; Faculty of Economics and Public Administration, Stefan cel Mare University of Suceava: Suchawa, Romania, 2023; Volume 23, pp. 29–41. [Google Scholar]
- Stańko, S.; Mikuła, A. Tendencje na rynku soi i rzepaku na świecie i w Polsce w latach 2001–2020. Probl. World Agric./Probl. Rol. Swiat. 2022, 22, 30–56. [Google Scholar] [CrossRef]
- Kapusta, F. Ewolucja miejsca i roli rzepaku w rolnictwie oraz gospodarce Polski. Probl. World Agric. 2015, 15, 85–95. [Google Scholar] [CrossRef]
- Kramer, J.K.G.; Saver, F.D.; Pigden, W.J. High & Low Erucic Acid Rapeseed Oils. Production, Usage, Chemistry and Toxicological Evaluation; Elsevier Science: St. Louis, Mo, USA, 2012. [Google Scholar]
- Food and Agriculture Organization of the United Nations. Available online: https://www.fao.org/home/en/ (accessed on 7 February 2025).
- Eurostat. Available online: https://ec.europa.eu/eurostat/en/ (accessed on 10 February 2025).
- Jafarian Asl, P.; Niazmand, R. Bioactive Phytochemicals from Rapeseed (Brassica napus) Oil Processing By-products. In Bioactive Phytochemicals from Vegetable Oil and Oilseed Processing By-Products; Springer International Publishing: Cham, Switzerland, 2023; pp. 1–22. [Google Scholar] [CrossRef]
- Nega, T.; Woldes, Y. Review on Nutritional Limitations and Opportunities of using Rapeseed Meal and other Rapeseed By-products in Animal Feeding. J. Nutr. Health Food Eng. 2018, 8, 43–48. [Google Scholar] [CrossRef]
- Wongsirchot, P.; Gonzalez-Miquel, M.; Winterburn, J. Recent advances in rapeseed meal as alternative feedstock for industrial biotechnology. Biochem. Eng. J. 2022, 180, 108373. [Google Scholar] [CrossRef]
- Adewole, D.I.; Rogiewicz, A.; Dyck, B.; Slominski, B.A. Chemical and nutritive characteristics of canola meal from Canadian processing facilities. Anim. Feed Sci. Technol. 2016, 222, 17–30. [Google Scholar] [CrossRef]
- Di Lena, G.; Sanchez del Pulgar, J.; Lucarini, M.; Durazzo, A.; Ondrejíčková, P.; Oancea, F.; Frincu, R.M.; Aguzzi, A.; Ferrari Nicoli, S.; Casini, I. Valorization Potentials of Rapeseed Meal in a Biorefinery Perspective: Focus on Nutritional and Bioactive Components. Molecules 2021, 26, 6787. [Google Scholar] [CrossRef] [PubMed]
- Mazur, M.; Sieradzki, Z.; Król, B.; Kwiatek, K. Analysis of feed in terms of the presence of genetically modified oilseed rape. Med. Weter. 2022, 78, 95–97. [Google Scholar] [CrossRef]
- Niwińska, B.; Szymczyk, B.; Szczurek, W. Perspektywy krajowej produkcji pasz dla zwierząt gospodarskich oraz żywności pochodzenia zwierzęcego bez GMO. Wiadomości Zootech. 2019, 57, 107–120. [Google Scholar]
- Bell, J.M. Nutrients and toxicants in rapeseed meal: A review. J. Anim. Sci. 1984, 58, 996–1010. [Google Scholar] [CrossRef]
- Młodecki, J.; Kowalski, Z.; Karpowicz, A.; Wójcik, P.; Łozicki, A.; Górka, P. i wsp. Żywienie Bydła Mlecznego Produktami Pochodzenia Rzepakowego: Copyright Polskie Stowarzyszenie Producentów Oleju; Polskie Stowarzyszenie Producentów Oleju: Warsaw, Poland, 2021. [Google Scholar]
- Schwarz, T.; Boros, D.; Czech, A.; Kiczorowska, B.; Świątkiewicz, M.; Zaworska-Zakrzewska, A. i wsp. Żywienie Świń Produktami Pochodzenia Rzepakowego—Podsumowanie Dekady: Copyright Polskie Stowarzyszenie Producentów Oleju; Polskie Stowarzyszenie Producentów Oleju: Warsaw, Poland, 2020. [Google Scholar]
- Kaiser, F.; Harloff, H.; Tressel, R.; Kock, T.; Schulz, C. Effects of highly purified rapeseed protein isolate as fishmeal alternative on nutrient digestibility and growth performance in diets fed to rainbow trout (Oncorhynchus mykiss). Aquac. Nutr. 2021, 27, 1352–1362. [Google Scholar] [CrossRef]
- Feng, D.; Zuo, J. Nutritional and anti-nutritional composition of rapeseed meal and its utilization as a feed ingredient for animals. In Proceedings of the 12th International Rapeseed Conference, Wuhan, China, 26–30 March 2007; pp. 265–270. [Google Scholar]
- Rong, H.; Ju, X.R.; Yuan, J.; Wang, L.F.; Abraham, T.G.; Rotimi, E.A. Antioxidant activities of rapeseed peptides produced by solid state fermentation. Food Res. Int. 2012, 49, 432–438. [Google Scholar] [CrossRef]
- Shi, C.Y.; He, J.; Wang, J.P.; Yu, J.; Yu, B.; Mao, X.B.; Zheng, P.; Huang, Z.; Chen, D. Effects of Aspergillus niger fermented rapeseed meal on nutrient digestibility, growth performance, and serum parameters in growing pigs. Anim. Sci. J. 2016, 87, 557–563. [Google Scholar] [CrossRef]
- Gołębiewska, K.; Fraś, A.; Gołębiewski, D. Rapeseed meal as a feed component in monogastric animal nutrition—A review. Ann. Anim. Sci. 2022, 22, 1163–1183. [Google Scholar] [CrossRef]
- Domingues, A.R.; Silva, L.D.F.; Ribeiro, E.L.A.; Castro, V.S.; Barbosa, M.A.A.F.; Mori, R.M.; Vieira, M.T.L.; Sliva, J.A.O. Intake, ruminal parameters and plasmatic urea concentration in beef cattle fed diets with different levels of sunflower cake in substitution to the cotton meal. Ciências Agrárias Londrina 2010, 31, 1059–1070. [Google Scholar] [CrossRef]
- Li, P.; Wang, F.; Wu, F.; Wang, J.; Liu, L.; Lai, C. Chemical composition, energy and amino acid digestibility in double-low rapeseed meal fed to growing pigs. J. Anim. Sci. Biotechnol. 2015, 6, 37. [Google Scholar] [CrossRef]
- Borys, B. Substancje antyżywieniowe w paszach roślinnych dla kóz. Wiadomości Zootech. 2007, 1–2, 55–65. [Google Scholar]
- Knutsen, H.K.; Alexander, J.; Barregård, L.; Bignami, M.; Brüschweiler, B.; Ceccatelli, S.; Dinovi, M.; Edler, L.; Grasl-Kraupp, B.; Hogstrand, C.; et al. Erucic acid in feed and food. EFS2 2016, 14, e04593. [Google Scholar] [CrossRef]
- Tripathi, M.K.; Mishra, A.S. Glucosinolates in animal nutrition: A review. Anim. Feed Sci. Technol. 2007, 132, 1–27. [Google Scholar] [CrossRef]
- Ton, L.B.; Neik, T.X.; Batley, J. The Use of Genetic and Gene Technologies in Shaping Modern Rapeseed Cultivars (Brassica napus L.). Genes 2020, 11, 1161. [Google Scholar] [CrossRef]
- Friedt, W.; Snowdon, R. Oilseed rape, 91–126. In Oil Crops, Handbook of Plant Breeding 4; Vollmann, J., Rajcan, I., Eds.; Springer: Dordrecht, The Netherlands; Berlin/Heidelberg, Germany; London, UK; New York, NY, USA, 2009. [Google Scholar] [CrossRef]
- Zadbashkhanshir, K.; Fadaei, V.; Fahimdanesh, M. Canola meal phenolic compounds electrosprayed into capsules to increase the oxidative stability of canola oil. Chem. Biol. Technol. Agric. 2023, 10, 4. [Google Scholar] [CrossRef]
- Pavlopoulos, D.T.; Myrtsi, E.D.; Tryfinopoulou, P.; Iliopoulos, V.; Koulocheri, S.D.; Haroutounian, S.A. Phytoestrogens as Biomarkers of Plant Raw Materials Used for Fish Feed Production. Molecules 2023, 28, 3623. [Google Scholar] [CrossRef]
- Wickramasuriya, S.S.; Yi, Y.; Yoo, J.; Kang, N.K.; Heo, J.M. A review of canola meal as an alternative feed ingredient for ducks. J. Anim. Sci. Technol. 2015, 57, 29. [Google Scholar] [CrossRef]
- Mejicanos, G.; Sanjayan, N.; Kim, I.H.; Nyachoti, C.M. Recent advances in canola meal utilization in swine nutrition. J. Anim. Sci. Technol. 2016, 58, 7. [Google Scholar] [CrossRef] [PubMed]
- Czerwiński, J.; Smulikowska, S.; Mieczkowska, A.; Konieczka, P.; Piotrowska, A.; Bartkowiak-Broda, I. The nutritive value and phosphorus availability of yellow- and dark-seeded rapeseed cakes and the effects of phytase supplementation in broilers. J. Anim. Feed Sci. 2012, 21, 677–695. [Google Scholar] [CrossRef]
- Maison, T.; Liu, Y.; Stein, H.H. Apparent and standardized total tract digestibility by growing pigs of phosphorus in canola meal from North America and 00-rapeseed meal and 00-rapeseed expellers from Europe without and with microbial phytase. J. Anim. Sci. 2015, 93, 3494–3502. [Google Scholar] [CrossRef] [PubMed]
- Forster, I.; Higgs, D.A.; Dosanjh, B.S.; Rowshandeli, M.; Parr, J. Potential for dietary phytase to improve the nutritive value of canola protein concentrate and decrease phosphorus output in rainbow trout (Oncorhynchus mykiss) held in 11 °C fresh water. Aquaculture 1999, 179, 109–125. [Google Scholar] [CrossRef]
- Kowalski, E.; Aluwé, M.; Vossen, E.; Millet, S.; Ampe, B.; De Smet, S. Quality characteristics of fresh loin and cooked ham muscles as affected by genetic background of commercial pigs. Meat Sci. 2021, 172, 108352. [Google Scholar] [CrossRef]
- Di Lena, G.; Schwarze, A.K.; Lucarini, M.; Gabrielli, P.; Aguzzi, A.; Caproni, R.; Casini, I.; Ferrari Nicoli, S.; Genuttis, D.; Ondrejíčková, P. Application of Rapeseed Meal Protein Isolate as a Supplement to Texture-Modified Food for the Elderly. Foods 2023, 12, 1326. [Google Scholar] [CrossRef]
- Aider, M.; Barbana, C. Canola proteins: Composition, extraction, functional properties, bioactivity, applications as a food ingredient and allergenicity—A practical and critical review. Trends Food Sci. Technol. 2011, 22, 21–39. [Google Scholar] [CrossRef]
- Brzóska, F.; Hanczakowska, E.; Koreleski, J.; Strzetelski, J.; Świątkiewicz, S. Teraz Rzepak, Teraz Olej. Pasze Rzepakowe w Żywieniu Zwierząt; Polskie Stowarzyszenie Producentów Oleju: Warszawa, Poland, 2010; pp. 7–17. [Google Scholar]
- Masagounder, K.; Ramos, S.; Reimann, I.; Channarayapatna, G. Optimizing nutritional quality of aquafeeds. In Aquafeed Formulation; Academic Press: Cambridge, MA, USA, 2016; pp. 239–264. [Google Scholar] [CrossRef]
- Wnęk-Auguścik, K.; Witeska, M.; Niemiec, T.; Piotrowska, I.; Fajkowska, M.; Gomułka, P.; Kondera, E.; Łozicki, A.; Zglińska, K.; Rzepkowska, M. The effects of diets containing rapeseed meal on Siberian sturgeon (Acipenser baerii) growth, muscle composition, and physiological performance. Aquac. Rep. 2024, 34, 101891. [Google Scholar] [CrossRef]
- Sallam, E.; Matter, F.; Mohammed, L.; Azam, E.; Shehab, A.; Soliman, M.; Matter, A.; Azam, A. Replacing fish meal with rapeseed meal: Potential impact on the growth performance, profitability measures, serum biomarkers, antioxidant status, intestinal morphometric analysis, and water quality of Oreochromis niloticus and Sarotherodon galilaeus fingerlings. Vet. Res. Commun. 2021, 45, 223–241. [Google Scholar] [CrossRef]
- Nagel, F.A.; von Danwitz, K.; Tusche, S.; Kroeckel, C.G.; van Bussel, M.; Schlachter, H.; Adem, R.-P.; Tressel, C.; Schulz, C. Nutritional evaluation of rapeseed protein isolate as fish meal substitute for juvenile turbot (Psetta maxima L.)—Impact on growth performance, body composition, nutrient digestibility and blood physiology. Aquaculture 2012, 356, 357–364. [Google Scholar] [CrossRef]
- Slawski, H.; Nagel, F.; Wysujack, K.; Balke, D.; Franz, P.; Schulz, C. Total fish meal replacement with canola protein isolate in diets fed to rainbow trout (Oncorhynchus mykiss W.). Aquac. Nutr. 2013, 19, 535–542. [Google Scholar] [CrossRef]
- Slawski, H. Rapeseed Protein Products as Fish Meal Replacement in Fish Nutrition; Selbstverl. des Inst. für Tierzucht und Tierhaltung; Christian-Albrechts-Universität zu Kiel: Kiel, Germany, 2012. [Google Scholar]
- Slawski, H.; Adem, H.; Tressel-Peter, R.; Wysujack, K.; Koops, U.; Schulz, C. Replacement of fishmeal by rapeseed protein concentrate in diets for common carp (Cyprinus carpio L.). Isr. J. Aquac.—Bamidgeh 2011, 63, 6. [Google Scholar] [CrossRef]
- Mohseni, M.; Malekpour, M. Replacement of fish meal with canola meal and its effects on growth performance, digestion, hematological indices, and thyroid hormones level of Siberian sturgeon (Acipenser Baerii). Iran. Sci. Fish. J. 2019, 27, 135–148. [Google Scholar] [CrossRef]
- Molla, A.E.; Amirkolaie, A.K. Growth performance of Persian sturgeon fry, Acipenser persicus, fed diet containing different protein and energy levels. J. Appl. Ichthyol. 2011, 27, 766–770. [Google Scholar] [CrossRef]
- Zhou, X.-Q.; Zhao, C.-R.; Lin, Y. Compare the effect of diet supplementation with uncoated or coated lysine on juvenile Jian carp (Cyprinus carpio Var. Jian). Aquac. Nutr. 2007, 13, 457–461. [Google Scholar] [CrossRef]
- Collins, S.A.; Øverland, M.; Skrede, A.; Drew, M.D. Effect of plant protein sources on growth rate in salmonids: Meta-analysis of dietary inclusion of soybean, pea, and canola/rapeseed meals and protein concentrates. Aquaculture 2013, 400–401, 85–100. [Google Scholar] [CrossRef]
- Kaushik, S.J.; Coves, D.; Dutto, G.; Blanc, D. Almost total replacement of fish meal by plant protein sources in the diet of a marine teleost, Dicentrarchus labrax. Aquaculture 2004, 230, 391–404. [Google Scholar] [CrossRef]
- Jiang, H.B.; Chen, L.Q.; Qin, J.G. Fishmeal replacement by soybean, rapeseed and cottonseed meals in hybrid sturgeon Acipenser baerii ♀ × Acipenser schrenckii ♀. Aquac. Nutr. 2018, 24, 1369–1377. [Google Scholar] [CrossRef]
- Malekpour, M.; Allaf Nvyryan, H.; Sajjadi, M.M.; Mohseni, M. Effect of replacing fish meal with canola meal on growth performance, survival and body composition of Siberian sturgeon (Acipenser baerii Brandt). J. Mar. Sci. Technol. 2016, 15, 77–88. [Google Scholar] [CrossRef]
- Dossou, S.; Koshio, S.; Ishikawa, M.; Yokoyama, S.; Basuini, M.; Zaineldin, A.; Mzengereza, K.; Moss, A.; Dawood, M. Effects of replacing fishmeal with fermented and non-fermented rapeseed meal on the growth, immune and antioxidant responses of red sea bream (Pagrus major). Aquac. Nutr. 2019, 490, 2280235. [Google Scholar] [CrossRef]
- Cai, C.; Song, L.; Wang, Y.; Wu, P.; Ye, Y.; Zhang, Z.; Yang, C. Assessment of the feasibility of including high levels of rapeseed meal and peanut meal in diets of juvenile crucian carp (Carassius auratus gibelio♀×Cyprinus carpio♂): Growth, immunity, intestinal morphology, and microflora. Aquaculture 2013, 410–411, 203–215. [Google Scholar] [CrossRef]
- Zhou, Q.C.; Yue, Y.R. Effect of replacing soybean meal with canola meal on growth, feed utilization, and haematological indices of juvenile hybrid tilapia Oreochromis niloticus × Oreochromis aureus. Aquacult. Res. 2010, 41, 982–990. [Google Scholar] [CrossRef]
- Han, Y.-K.; Xu, Y.-C.; Luo, Z.; Zhao, T.; Zheng, H.; Tan, X.-Y. Fish meal replacement by mixed plant protein in the diets for juvenile yellow catfish Pelteobagrus fulvidraco: Effects on growth performance and health status. Aquac. Nutr. 2022, 2022, 2677885. [Google Scholar] [CrossRef] [PubMed]
- Fanizza, C.; Trocino, A.; Stejskal, V.; Prokesova, M.; Zare, M.; Tran, H.; Brambilla, F.; Xiccato, G.; Bordignon, F. Practical low-fishmeal diets for rainbow trout (Oncorhynchus mykiss) reared in RAS: Effects of protein meals on fish growth, nutrient digestibility, feed physical quality, and faecal particle size. Aquac. Rep. 2023, 28, 101435. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, H.; Zhang, J.; Lin, B.; Chen, L.; Wang, Q.; Li, G.; Deng, J. Assessment of rapeseed meal as fish meal alternative in diets for juvenile Asian red-tailed catfish (Hemibagrus wyckioides). Aquac. Rep. 2020, 18, 100497. [Google Scholar] [CrossRef]
- Wei, Z.; Luo, K.; Shao, X.; Gao, W.; Wu, C.; Zhao, C. Effects of rapeseed meal replacing fish meal on growth, antioxidant capacity, and intestinal health of black carp (Mylopharyngodon piceus). Chin. J. Anim. Nutr. 2024, 36, 3876–3891. [Google Scholar] [CrossRef]
- Tan, Q.; Liu, Q.; Chen, X.; Wang, M.; Wu, Z. Growth performance, biochemical indices, and hepatopancreatic function of grass carp (Ctenopharyngodon idellus) would be impaired by dietary rapeseed meal. Aquaculture 2013, 414–415, 119–126. [Google Scholar] [CrossRef]
- Cheng, Z.; Ai, Q.; Mai, K.; Xu, W.; Ma, H.; Li, Y.; Zhang, J. Effects of dietary canola meal on growth performance, digestion, and metabolism of Japanese seabass, Lateolabrax japonicus. Aquaculture 2010, 305, 102–108. [Google Scholar] [CrossRef]
- Rombenso, A.; Araujo, B.; Li, E. Recent Advances in Fish Nutrition: Insights on the Nutritional Implications of Modern Formulations. Animals 2022, 12, 1705. [Google Scholar] [CrossRef]
- Rombout, J.H.; Abelli, L.; Picchietti, S.; Scapigliati, G.; Kiron, V. Teleost Intestinal Immunology. Fish Shellfish Immunol. 2011, 31, 616–626. [Google Scholar] [CrossRef]
- Montalto, M.; D’Onofrio, F.; Gallo, A.; Cazzato, A.; Gasbarrini, A. Intestinal Microbiota and Its Functions. Dig. Liver Dis. Suppl. 2009, 3, 30–34. [Google Scholar] [CrossRef]
- Raskovic, B.; Stankovic, M.; Markovic, Z.; Poleksic, V. Histological Methods in the Assessment of Different Feed Effects on Liver and Intestine of Fish. J. Agric. Sci. 2011, 56, 87–100. [Google Scholar] [CrossRef]
- Wang, S.; Liu, S.; Wang, C.; Ye, B.; Lv, L.; Ye, Q.; Xie, S.; Hu, G.; Zou, J. Dietary Antimicrobial Peptides Improve Intestinal Function, Microbial Composition and Oxidative Stress Induced by Aeromonas hydrophila in Pengze Crucian Carp (Carassius auratus var. Pengze). Antioxidants 2022, 11, 1756. [Google Scholar] [CrossRef] [PubMed]
- Sohrabnezhad, M.; Sudagar, M.; Mazandarani, M. Effect of dietary soybean meal and multienzyme on intestine histology of beluga sturgeon (Huso huso). Int. Aquat. Res. 2017, 9, 271–280. [Google Scholar] [CrossRef]
- Wei, Y.; Wang, J.; Zhang, X.; Duan, M.; Jia, L.; Xu, H.; Liang, M.; Liu, J. Fish protein hydrolysate supplementation in plant protein-based diets for tiger puffer (Takifugu rubripes) is an effective strategy of fish meal sparing. Aquac. Rep. 2021, 20, 100720. [Google Scholar] [CrossRef]
- Sørensen, S.L.; Ghirmay, A.; Gong, Y.; Dahle, D.; Vasanth, G.; Sørensen, M.; Kiron, V. Growth, chemical composition, histology, and antioxidant genes of Atlantic salmon (Salmo salar) fed whole or pre-processed Nannochloropsis oceanica and Tetraselmis sp. Fishes 2021, 6, 23. [Google Scholar] [CrossRef]
- Bakke-McKellep, A.M.; Koppang, E.O.; Gunnes, G.; Sanden, M.; Hemre, G.-I.; Landsverk, T.; Krogdahl, A. Histological, digestive, metabolic, hormonal, and some immune factor responses in Atlantic salmon, Salmo salar L., fed genetically modified soybeans. J. Fish Dis. 2007, 30, 65–79. [Google Scholar] [CrossRef]
- Heikkinen, J.; Vielma, J.; Kemiläinen, O.; Tiirola, M.; Eskelinen, P.; Kiuru, T.; Navia-Paldanius, D.; Wright, A. Effects of soybean meal-based diet on growth performance, gut histopathology, and intestinal microbiota of juvenile rainbow trout (Oncorhynchus mykiss). Aquaculture 2006, 261, 259–268. [Google Scholar] [CrossRef]
- Krogdahl, A.; Bakke-McKellep, A.M.; Beaverfjord, G. Effects of graded levels of standard soybean meal on intestinal structure, mucosal enzyme activities, and pancreatic response in Atlantic salmon (Salmo salar L.). Aquac. Nutr. 2003, 9, 361–371. [Google Scholar] [CrossRef]
- Meng, Y.Q.; Miao, X.; Sun, R.J.; Ma, R.; Shentu, J.K.; Zhang, W.B.; Mai, K.S. Potential risks of high level replacement of dietary fish meal by canola meal on large yellow croaker Larimichthys crocea (Richardson, 1846): Growth, health and nutritional values as a food fish. J. Hydrobiol. 2017, 41, 127–138. [Google Scholar] [CrossRef]
- Ngo, D.T.; Wade, N.M.; Pirozzi, I.; Glencross, B.D. Effects of canola meal on growth, feed utilisation, plasma biochemistry, histology of digestive organs and hepatic gene expression of barramundi (Asian seabass; Lates calcarifer). Aquaculture 2016, 464, 95–105. [Google Scholar] [CrossRef]
- Omnes, M.H.; Silva, F.C.P.; Moriceau, J.; Aguirre, P.; Kaushik, S.; Gatesoupe, F.J. Influence of lupin and rapeseed meals on the integrity of digestive tract and organs in gilthead seabream (Sparus aurata L.) and goldfish (Carassius auratus L.) juveniles. Aquac. Nutr. 2015, 21, 223–233. [Google Scholar] [CrossRef]
- Jiao, F.; Zhang, L.; Limbu, S.M. A comparison of digestive strategies for fishes with different feeding habits: Digestive enzyme activities, intestinal morphology, and gut microbiota. Ecol. Evol. 2023, 13, e10499. [Google Scholar] [CrossRef] [PubMed]
- Limbu, S.M.; Zhou, L.; Sun, S.-X.; Zhang, M.-L.; Du, Z.-Y. Chronic exposure to low environmental concentrations and legal aquaculture doses of antibiotics cause systemic adverse effects in Nile tilapia and provoke differential human health risk. Environ. Int. 2018, 115, 205–219. [Google Scholar] [CrossRef]
- Walk, C.L.; Cowieson, A.J.; Remus, J.C.; Novak, C.L.; McElroy, A.P. Effects of dietary enzymes on performance and intestinal goblet cell number of broilers exposed to a live coccidia oocyst vaccine. Poult. Sci. 2011, 90, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Mawson, R.; Heaney, R.K.; Zdunczyk, Z.; Kozlowska, H. Rapeseed meal glucosinolates and their antinutritional effects. Part 3. Animal growth and performance. Die Nahr. 1994, 38, 167–177. [Google Scholar] [CrossRef]
- Lin, D.; Mao, Y.; Cai, F. Nutritional lipid liver disease of grass carp Ctenopharyngodon idellus (C. et V.). Chin. J. Oceanol. Limnol. 1990, 8, 363–373. [Google Scholar] [CrossRef]
- Cao, J.; Lin, D.; Xue, H.; Liu, Y.; Guang, G.; Tian, L.; Mao, Y. Substitutional effects of four lipotropic agents on lipid accumulation in grass carp liver. Acta Hydrobiol. Sin. 1999, 23, 102–111. [Google Scholar] [CrossRef]
- Chen, S.; Dai, J.; Chen, Y.; Chen, Q.; Dong, F.; Wang, C.; Sun, Y.; Wang, J.; Han, T. Effects of Bacillus subtilis-fermented soybean meal replacing fish meal on antioxidant activity, immunity, endoplasmic reticulum stress and hepatopancreas histology in Pacific white shrimp (Litopenaeus Vannamei). Front. Mar. Sci. 2024, 11, 1449066. [Google Scholar] [CrossRef]
- Dawood, M.A. Nutritional immunity of fish intestines: Important insights for sustainable aquaculture. Rev. Aquac. 2021, 13, 642–663. [Google Scholar] [CrossRef]
- Desai, A.R.; Links, M.G.; Collins, S.A.; Mansfield, G.S.; Drew, M.D.; Van Kessel, A.G.; Hill, J.E. Effects of plant-based diets on the distal gut microbiome of rainbow trout (Oncorhynchus mykiss). Aquaculture 2012, 350–353, 134–142. [Google Scholar] [CrossRef]
- Ringø, E.; Sperstad, S.; Myklebust, R.; Refstie, S.; Krogdahl, Å. Characterisation of the microbiota associated with intestine of Atlantic cod (Gadus morhua L.). The effect of fish meal, standard soybean meal and bioprocessed soybean meal. Aquaculture 2006, 261, 829–841. [Google Scholar] [CrossRef]
- Yang, G.; Jian, S.Q.; Cao, H.; Wen, C.; Hu, B.; Peng, M.; Peng, L.; Yuan, J.; Liang, L. Changes in microbiota along the intestine of grass carp (Ctenopharyngodon idella): Community, interspecific interactions, and functions. Aquaculture 2019, 498, 151–161. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, S.; Wang, S.; Wang, H.; Ge, K.; Yang, Y.; Lu, S.; Han, S.; Jiang, H.; Wang, C.; et al. Comprehensive Assessment of Rapeseed Meal as a Fish Meal Substitute in Hybrid Sturgeon (Acipenser schrenckii ♀ × Acipenser baerii ♂) Diets: Impacts on Growth Performance, Body Composition, Immunological Responses, Intestinal Histology, and Inflammatory Response. Aquac. Nutr. 2025, 18, 6415465. [Google Scholar] [CrossRef]
- Medina-Félix, D.; Medina-Félix, E.; Garibay-Valdez, F.; Vargas-Albores, M.; Martínez-Porchas, M. Fish disease and intestinal microbiota: A close and indivisible relationship. Rev. Aquac. 2023, 15, 820–839. [Google Scholar] [CrossRef]
- Adeoye, A.A.; Adeoye, R.; Yomla, A.; Jaramillo-Torres, A.; Rodiles, D.L.; Merri, S.J.; Davies, J. Combined effects of exogenous enzymes and probiotic on Nile tilapia (Oreochromis niloticus) growth, intestinal morphology and microbiome. Aquaculture 2016, 463, 61–70. [Google Scholar] [CrossRef]
- Standen, B.T.; Rodiles, A.; Peggs, D.L.; Davies, S.J.; Santos, G.A.; Merrifield, D.L. Modulation of the intestinal microbiota and morphology of tilapia, Oreochromis niloticus, following the application of a multi-species probiotic. Appl. Microbiol. Biotechnol. 2015, 99, 8403–8417. [Google Scholar] [CrossRef]
- Sinha, A.K.; Kumar, V.; Makkar, H.P.S.; de Boeck, G.; Becker, K. Non-starch polysaccharides and their role in fish nutrition—A review. Food Chem. 2011, 127, 1409–1426. [Google Scholar] [CrossRef]
- Choct, M. Feed Non-Starch Polysaccharides: Chemical Structures and Nutritional Significance. Feed. Milling Int. 1997, 191, 13–16. [Google Scholar]
- Gatesoupe, F.J. Live yeasts in the gut: Natural occurrence, dietary introduction, and their effects on fish health and development. Aquaculture 2007, 267, 20–30. [Google Scholar] [CrossRef]
- Kim, D.H.; Austin, B. Innate immune responses in rainbow trout (Oncorhynchus mykiss, Walbaum) induced by probiotics. Fish Shellfish Immunol. 2006, 21, 513–524. [Google Scholar] [CrossRef] [PubMed]
- Doan, H.; Hoseinifar, S.H.; Khanongnuch, C.; Kanpiengjai, A.; Unban, K.; Van Kim, V.; Srichaiyo, S. Host-associated probiotics boosted mucosal and serum immunity, disease resistance and growth performance of Nile tilapia (Oreochromis Niloticus). Aquaculture 2018, 491, 94–100. [Google Scholar] [CrossRef]
- Fečkaninová, A.; Fečkaninová, J.; Koscova, D.; Mudronova, P.; Popelka, J.; Toropilová, J. The use of probiotic bacteria against Aeromonas infections in salmonid aquaculture. Aquaculture 2016, 469, 1–8. [Google Scholar] [CrossRef]
- Ren, H.T.; An, H.Y.; Du, M.X.; Zhou, J. Effects of zinc adaptation on histological morphology, antioxidant responses, and expression of immune-related genes of grass carp (Ctenopharyngodon Idella). Biol. Trace Elem. Res. 2022, 200, 5251–5259. [Google Scholar] [CrossRef]
- Chapagain, P.; Arivett, B.; Cleveland, B.M.; Walker, D.M.; Salem, M. Analysis of the fecal microbiota of fast- and slow-growing rainbow trout (Oncorhynchus Mykiss). BMC Genom. 2019, 20, 788. [Google Scholar] [CrossRef]
- Shakour, Z.T.; Shehab, N.G.; Gomaa, A.S.; Wessjohann, L.A.; Farag, M.A. Metabolic and biotransformation effects on dietary glucosinolates, their bioavailability, catabolism and biological effects in different organisms. Biotechnol. Adv. 2022, 54, 107784. [Google Scholar] [CrossRef]
- Sikorska-Zimny, K.; Beneduce, L. The metabolism of glucosinolates by gut microbiota. Nutrients 2021, 13, 2750. [Google Scholar] [CrossRef]
- Do Vale Pereira, G.; Teixeira, C.; Couto, J.; Dias, J.; Rema, P.; Gonçalves, A.T. Dietary protein quality affects the interplay between gut microbiota and host performance in Nile tilapia. Animals 2024, 14, 714. [Google Scholar] [CrossRef]
- Leenhouwers, J.I.; ter Veld, M.; Verreth, J.A.J.; Schrama, J.W. Digesta characteristics and performance of African catfish (Clarias gariepinus) fed cereal grains that differ in viscosity. Aquaculture 2007, 264, 330–341. [Google Scholar] [CrossRef]
- Amirkolaie, A.K.; Verreth, J.A.J.; Schrama, J.W. Effect of gelatinization degree and inclusion level of dietary starch on the characteristics of digesta and faeces in Nile tilapia (Oreochromis Niloticus (L.)). Aquaculture 2006, 260, 194–205. [Google Scholar] [CrossRef]
- Leenhouwers, J.I.; Adjei-Boateng, D.; Verreth, J.A.J.; Schrama, J.W. Digesta viscosity, nutrient digestibility and organ weights in African catfish (Clarias gariepinus) fed diets supplemented with different levels of a soluble non-starch polysaccharide. Aquac. Nutr. 2006, 12, 111–116. [Google Scholar] [CrossRef]
- Hofstad, T.; Olsen, I.; Eribe, E.R.; Falsen, E.; Collins, M.D.; Lawson, P.A. Dysgonomonas gen. nov. to accommodate Dysgonomonas gadei sp. nov., an organism isolated from a human gall bladder, and Dysgonomonas capnocytophagoides (formerly CDC group DF-3). Int. J. Syst. Evol. Microbiol. 2000, 50, 2189–2195. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Latif, H.M.R.; Abdel-Tawwab, M.; Dawood, M.A.O.; Menanteau-Ledouble, S.; El-Matbouli, M. Benefits of dietary butyric acid, sodium butyrate, and their protected forms in aquafeeds: A review. Rev. Fish. Sci. Aquac. 2020, 28, 421–448. [Google Scholar] [CrossRef]
- Abdel-Tawwab, M. Feed Supplementation to Freshwater Fish: Experimental Approaches; LAP Lambert Academic Publishing: Riga, Latvia, 2016. [Google Scholar]
- Hoseinifar, S.H.; Sun, Y.Z.; Caipang, C.M. Short-chain fatty acids as feed supplements for sustainable aquaculture: An updated view. Aquac. Res. 2017, 48, 1380–1391. [Google Scholar] [CrossRef]
- Khajepour, F.; Hosseini, S.A. Citric acid improves growth performance and phosphorus digestibility in Beluga (Huso huso) fed diets where soybean meal partly replaced fish meal. Anim. Feed Sci. Technol. 2012, 171, 68–73. [Google Scholar] [CrossRef]
- Hoseinifar, S.H.; Safari, R.; Dadar, M. Dietary sodium propionate affects mucosal immune parameters, growth and appetite related genes expression: Insights from zebrafish model. Gen. Comp. Endocrinol. 2017, 243, 78–83. [Google Scholar] [CrossRef]
- Safari, R.; Hoseinifar, S.H.; Kavandi, M. Modulation of antioxidant defense and immune response in zebra fish (Danio rerio) using dietary sodium propionate. Fish Physiol. Biochem. 2016, 42, 1733–1739. [Google Scholar] [CrossRef]
- Hassaan, M.; Soltan, M.; Jarmołowicz, S.; Abdo, H. Combined effects of dietary malic acid and Bacillus subtilis on growth, gut microbiota and blood parameters of Nile tilapia (Oreochromis niloticus). Aquacult. Nutr. 2018, 24, 83–93. [Google Scholar] [CrossRef]
- Yao, J.; Chen, P.; Ringø, E.; Zhang, G.; Huang, Z.; Hua, X. Effect of diet supplemented with rapeseed meal or hydrolysable tannins on the growth, nutrition, and intestinal microbiota in grass carp (Ctenopharyngodon idellus). Front. Nutr. 2019, 6, 154. [Google Scholar] [CrossRef]
- Schroeder, B.O. Fight them or feed them: How the intestinal mucus layer manages the gut microbiota. Gastroenterol. Rep. 2019, 7, 3–12. [Google Scholar] [CrossRef]
- Dharmani, P.; Srivastava, V.; Kissoon-Singh, V.; Chadee, K. Role of intestinal mucins in innate host defense mechanisms against pathogens. J. Innate Immun. 2009, 1, 123–135. [Google Scholar] [CrossRef]
Chemical Composition [%] | Meal | |
---|---|---|
Rapeseed | Soybean | |
Dry matter | 88.0 | 88.0 |
Total protein | 35.1 | 44.0 |
Crude fat | 2.8 | 1.7 |
Crude fiber | 12.6 | 6.4 |
Crude ash | 6.6 | 6.4 |
Total carbohydrates | 9.3 | 9.4 |
Essential amino acids [g/100 g protein] | ||
Lysine | 5.8 | 6.4 |
Methionine | 1.9 | 1.3 |
Phenylalanine | 3.7 | 5.1 |
Histidine | 2.7 | 2.6 |
Isoleucine | 3.8 | 4.0 |
Leucine | 6.6 | 7.8 |
Threonine | 4.5 | 4.0 |
Tryptophan | 1.3 | 1.4 |
Valine | 5.2 | 4.9 |
Total | 35.5 | 37.5 |
Non-essential amino acids [g/100 g protein] | ||
Tyrosine | 2.5 | 3.2 |
Arginine | 5.8 | 7.2 |
Alanine | 4.3 | 4.3 |
Cysteine | 2.4 | 1.6 |
Glycine | 4.8 | 4.2 |
Aspartic acid | 7.1 | 11.3 |
Glutamic acid | 17.3 | 18.7 |
Proline | 6.0 | 5.1 |
Serine | 4.1 | 4.9 |
Total | 54.3 | 60.5 |
Overall amino acids [g/100 g protein] | 89.8 | 98.0 |
Minerals [%] | ||
Sodium | 0.08 | 0.1 |
Potassium | 1.17 | 2.0 |
Magnesium | 0.6 | 0.3 |
Phosphorus | 1.0 | 0.7 |
Calcium | 0.7 | 0.3 |
Sulfur | 0.7 | 0.4 |
Vitamins [mg/kg] | ||
Niacin | 169.5 | 29.0 |
Riboflavin | 3.7 | 2.9 |
Folic acid | 2.3 | 1.3 |
Biotin | 1.0 | 0.3 |
Thiamine | 5.2 | 4.5 |
Panthotenic acid | 9.5 | 16.0 |
Species Studied | Initial Weight of Fish [g] | Experiment Duration [Weeks] | Supplementation Level of Rapeseed Meal | Significant Effect of Supplementation | References |
---|---|---|---|---|---|
European sea bass (Dicentrarchus labrax) | 190 | 12 | 100 g/kg | No adverse effect on the growth rate, feed efficiency, or nitrogen utilization. | [71] |
Hybrid sturgeon (Acipenser baerii × Acipenser schrenckii) | 8.63 | 12 | 60–240 g/kg | Weight gain, specific growth rate, feed conversion ratio, and survival in fish fed the 240 g/kg rapeseed meal in diet were significantly lower than those in fish fed the control diet. Protein efficiency ratio in fish fed the 180 g/kg and 240 g/kg rapeseed meal in diet were significantly lower than those in fish fed the control diet. | [72] |
Siberian sturgeon (Acipenser baerii) | 22.80 | 10 | 10–40% substitution of fish meal | The lowest growth performance was observed in 40% substitution of fish meal. The results of the study showed that 30% fish meal can be replaced by rapeseed meal without negative effect on growth performance. | [67,73] |
Siberian sturgeons (Acipenser baerii) | 216.2 | 8 | 100–300 g/kg | No differences in all analyzed biometric and growth parameters were seen. | [61] |
Red sea bream (Pagrus major) | 4.5 | 8 | 285 g/kg | The final body weight, weight gain, specific growth rate, feed efficiency ratio, and protein efficiency were reduced; no effect on feed intake and survival. | [74] |
Crucian carp (Carassius auratus gibelio × Cyprinus carpio) | 21.9 | 8 | 500 g/kg without compensate for other nutrients | Reduction in the final body weight, growth rate, and protein efficiency ratio. Increased in feed conversion ratio. | [75] |
Crucian carp (Carassius auratus gibelio × Cyprinus carpio) | 21.9 | 8 | 500 g/kg with compensate for other nutrients | Reduced in protein efficiency ratio and increased in feed conversion ratio. | [75] |
Nile tilapia (Oreochromis niloticus) | 4.67 | 16 | 50–75% substitution of fish meal and soybean post-extraction meal | Reduced growth parameters at 75% substitution fish and soybean meal; no effect at 50% (the study results even suggested an improvement in growth performance). | [2] |
Tilapia hybrids (Oreochromis niloticus × Oreochromis aureus) | 6.8 | 8 | 30% substitution of soybean meal protein | Without significantly negatively affecting growth and body mass. | [76] |
Yellow-headed catfish (Pelteobagrus fulvidraco) | 2.38 | 10 | Replacing 10% of fish meal with a mixture of plant meals (rapeseed and cottonseed meal in a 3:2 ratio) | Significant improvement in fish growth without negatively impacting their health. | [77] |
Rainbow trout (Oncorhynchus mykiss) | 17.2 | 12 | 32% crude protein | Diet did not affect the fish’s final live weight, daily weight gain, specific growth rate, feed conversion ratio, feed intake, and fish survival. | [78] |
Rainbow trout (Oncorhynchus mykiss) | 79.9 | 8 | Up to 66% of fish meal replaced with rapeseed meal | Without a significant impact on growth parameters or the health status; all treatments at least tripled their weight. | [37] |
Asian redtail catfish (Hemibagrus wyckioides) | 3.24 | 8 | 11.20–44.80% share of feed | Rapeseed meal had no effect on fish survival. Feed intake decreased with increasing inclusion levels of rapeseed meal up to 11.2%, and then increased with further addition. Final body weight and weight gain declined with higher dietary levels of rapeseed meal. The protein efficiency ratio decreased, while the feed conversion ratio increased with rising levels of rapeseed meal in the diet. | [79] |
Black carp (Mylopharyngodon piceus) | 6.73 | 8 | 10–50% substitution of fish meal | Significantly reduced specific growth rate and weight gain above 20% replacement of fish meal with rapeseed. | [80] |
Grass carp (Ctenopharyngodon idellus) | 1.9 | 10 | 16–64% share of feed | Reduced feeding rate and specific growth rate at 64% share of rapeseed meal in feed; no effect at 16% share. | [81] |
Nile tilapia (Oreochromis niloticus) and Mango tilapia (Sarotherodon galilaeus) | 10.02 | 12 | 10–30% substitution of fish meal | Replacement of fish meal at a level of 20% resulted in increase in weight gain, length gain, weight gain rate, and specific growth rate; no effect of rapeseed on feed intake. | [62] |
Japanese sea bass (Lateolabrax japonicus) | 8.3 | 10 | 8.6–43.1% substitution of fish meal | Survival of fish significantly decreased with 40% dietary canola/rapeseed meal levels. Specific growth rate significantly decreased with 20% increasing dietary rapeseed levels. | [82] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karolina, W.-A.; Justyna, N. Rapeseed Meal as an Alternative Protein Source in Fish Feed and Its Impact on Growth Parameters, Digestive Tract, and Gut Microbiota. Animals 2025, 15, 1264. https://doi.org/10.3390/ani15091264
Karolina W-A, Justyna N. Rapeseed Meal as an Alternative Protein Source in Fish Feed and Its Impact on Growth Parameters, Digestive Tract, and Gut Microbiota. Animals. 2025; 15(9):1264. https://doi.org/10.3390/ani15091264
Chicago/Turabian StyleKarolina, Wnęk-Auguścik, and Nasiłowska Justyna. 2025. "Rapeseed Meal as an Alternative Protein Source in Fish Feed and Its Impact on Growth Parameters, Digestive Tract, and Gut Microbiota" Animals 15, no. 9: 1264. https://doi.org/10.3390/ani15091264
APA StyleKarolina, W.-A., & Justyna, N. (2025). Rapeseed Meal as an Alternative Protein Source in Fish Feed and Its Impact on Growth Parameters, Digestive Tract, and Gut Microbiota. Animals, 15(9), 1264. https://doi.org/10.3390/ani15091264