Preliminary Evaluation of an Automated Blood Cell Analyzer for Its Use with Blood Samples from Rainbow Trout Oncorhynchus mykiss
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Instruments and Reference Methods
2.2.1. Automated Hematology Analyzer
2.2.2. Manual Count of Rainbow Trout Blood Samples
2.3. Sysmex XN-1000V Validation for Rainbow Trout Blood Samples
2.3.1. Precision
2.3.2. Linearity
2.3.3. Carry-Over
2.3.4. Stability Test
2.4. Agreement Between Manual and Automated Methods
2.5. Reference Intervals
2.6. Statistical Analysis
3. Results
3.1. Precision
3.2. Linearity
3.3. Carry-Over
3.4. Stability
3.5. Agreement Between Automated Blood Cell Analyzer and Manual Methods
3.6. Effect of the Anticoagulant
3.7. Reference Intervals (RIs)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Blaxhall, P.C.; Daisley, K.W. Routine hematological methods for use with fish blood. J. Fish Biol. 1973, 5, 771–781. [Google Scholar] [CrossRef]
- Ivanc, A.; Hasković, E.; Jeremić, S.; Dekić, R. Hematological evaluation of welfare and health of fish. Praxis Vet. 2005, 53, 191–202. [Google Scholar]
- Clauss, T.M.; Dove, A.D.M.; Arnold, J.E. Hematologic disorders of fish. Vet. Clin. N. Am. Exot. Anim. Pract. 2008, 11, 445–462. [Google Scholar] [CrossRef] [PubMed]
- Grant, K.R. Fish hematology and associated disorders. Vet. Clin. N. Am. Exot. Anim. Pract. 2015, 18, 83–103. [Google Scholar] [CrossRef]
- Docan, A.; Grecu, I.; Dediu, L. Use of hematological parameters as assessment tools in fish health status. J. Agroaliment. Proces Technol. 2018, 24, 317–324. [Google Scholar]
- Jan, K.; Ahmed, I.; Dar, N.A. The role of sex, season and reproduction status on blood parameters in snow trout (Schizothorax labiatus) from River Jhelum, Kashmir, India. Environ. Monit. Assess. 2022, 194, 674. [Google Scholar] [CrossRef]
- Witeska, M.; Kondera, E.; Ługowska, K.; Bojarski, B. Hematological methods in fish: Not only for beginners. Aquaculture 2022, 547, 737498. [Google Scholar] [CrossRef]
- Fazio, F.; Saoca, C.; Costa, G.; Zumbo, A.; Piccione, G.; Parrino, V. Flow cytometry and automatic blood cell analysis in striped bass Morone saxatilis (Walbaum, 1792): A new hematological approach. Aquaculture 2019, 513, 734398. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (FAO). The State of World Fisheries and Aquaculture 2024: Blue Transformation in Action; FAO: Rome, Italy, 2024. [Google Scholar]
- Shahjahan, M.; Islam, M.J.; Hossain, M.T.; Mishu, M.A.; Hasan, J.; Brown, C. Blood biomarkers as diagnostic tools: An overview of climate-driven stress responses in fish. Sci. Total Environ. 2022, 843, 156910. [Google Scholar] [CrossRef]
- Fazio, F.; Marafioti, S.; Arfuso, F.; Piccione, G.; Faggio, C. Influence of different salinity on hematological and biochemical parameters of the widely cultured mullet, Mugil cephalus. Mar. Freshw. Behav. Physiol. 2013, 46, 211–218. [Google Scholar] [CrossRef]
- Fazio, F.; Marafioti, S.; Torre, A.; Sanfilippo, M.; Panzera, M.; Faggio, C. Hematological and serum protein profiles of Mugil cephalus: Effect of two different habitats. Ichthyol. Res. 2013, 60, 36–42. [Google Scholar] [CrossRef]
- Avsever, M.L.; Tanrıkul, T.T.; Güroy, D.; Metin, S.; Hasan, A.H.; Tunalıgil, S. Investigation of certain blood parameters in rainbow trout (Oncorhynchus mykiss Walbaum, 1792) naturally infected with Lactococcus garvieae. J. Fish. Sci. 2014, 8, 114–120. [Google Scholar] [CrossRef]
- Yılmaz, S.; Ergün, S. Trans-cinnamic acid application for rainbow trout (Oncorhynchus mykiss): I. Effects on hematological, serum biochemical, non-specific immune and head kidney gene expression responses. Fish Shellfish Immunol. 2018, 78, 140–157. [Google Scholar] [CrossRef]
- Fazio, F.; Filiciotto, F.; Marafioti, S.; Di Stefano, V.; Assenza, A.; Placenti, F.; Buscaino, G.; Piccione, G.; Mazzola, S. Automatic analysis to assess hematological parameters in farmed gilthead sea bream (Sparus aurata). Aquaculture 2012, 364–365, 252–257. [Google Scholar]
- Walencik, J.; Witeska, M. The effects of anticoagulants on hematological indices and blood cell morphology of common carp (Cyprinus carpio L.). Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2007, 146, 331–335. [Google Scholar] [CrossRef]
- Parrino, V.; Cappello, T.; Costa, G.; Cannavà, C.; Sanfilippo, M.; Fazio, F.; Fasulo, S. Comparative study of haematology of two teleost fish (Mugil cephalus and Carassius auratus) from different environments and feeding habits. Eur. Zool. J. 2018, 85, 193–199. [Google Scholar] [CrossRef]
- Witeska, M.; Biardzka, J.; Kniaz, J. The effects of heparin concentration, storage time and temperature on the values of hematological parameters in Cyprinus carpio. Turk. J. Vet. Anim. Sci. 2017, 41, 351–356. [Google Scholar] [CrossRef]
- Faggio, C.; Arfsuso, F.; Piccione, G.; Zumbo, A.; Fazio, F. Effect of three different anticoagulants and storage time on hematological parameters of Mugil cephalus (Linnaeus, 1758). Turk. J. Fish. Aqua. Sci. 2014, 14, 615–621. [Google Scholar]
- Lugowska, K.; Kondera, E.; Witeska, M. Leukocyte count in fish: Possible sources of discrepancy. Bull. Eur. Assoc. Fish Pathol. 2017, 37, 94–99. [Google Scholar]
- Bojarski, B.; Kondera, E.; Witeska, M.; Lugowska, K. Differences in hematological values of common carp between cardiac and venous blood. Bull. Eur. Assoc. Fish Pathol. 2018, 38, 234–239. [Google Scholar]
- Carbajal, A.; Soler, P.; Tallo-Parra, O.; Isasa, M.; Echevarria, C.; Lopez-Bejar, M.; Vinyoles, D. Towards non-invasive methods in measuring fish welfare: The measurement of cortisol concentrations in fish skin mucus as a biomarker of habitat quality. Animals 2019, 9, 939. [Google Scholar] [CrossRef] [PubMed]
- Jan, K.; Ahmed, I.; Sheikh, Z.A.; Fazio, F. Impact of three anticoagulants and their storage time on hematological parameters of snow trout, Schizothorax labiatus, habiting in river Sindh of Indian Himalayan region. Comp. Clin. Pathol. 2022, 31, 747–755. [Google Scholar] [CrossRef]
- Fazio, F.; Faggio, C.; Marafioti, S.; Torre, A.; Sanfilippo, M.; Piccione, G. Comparative study of hematological profile on Gobius niger in two different habitat sites: Faro Lake and Tyrrhenian Sea. Cah. Biol. Mar. 2012, 53, 213–219. [Google Scholar]
- Fazio, F. Fish hematology analysis as an important tool of aquaculture: A review. Aquaculture 2019, 500, 237–242. [Google Scholar] [CrossRef]
- Chen, H.; Luo, D. Application of hematology parameters for health management in fish farms. Rev. Aquac. 2023, 15, 704–737. [Google Scholar] [CrossRef]
- Miller, W.R., III; Hendricks, A.C.; Cairns, Jr. Normal ranges for diagnostically important hematological and blood chemistry characteristics of rainbow trout (Salmo gairdneri). Can. J. Fish. Aquat. Sci. 1983, 40, 420–425. [Google Scholar] [CrossRef]
- Wedemeyer, G.A.; Yasutake, W.T. Clinical methods for the assessment of the effects of environmental stress on fish health. In Technical Paper; U.S. Fish and Wildlife Service: Albuquerque, NM, USA, 1977; p. 89. [Google Scholar]
- Hrubec, T.C.; Smith, S.A. Hematology of fishes. In Schalm’s Veterinary Hematology; Weiss, D.J., Wardrop, K.J., Eds.; Wiley-Blackwell: Iowa City, IA, USA, 2010; pp. 298–312. [Google Scholar]
- Knowles, S.; Hrubec, T.C.; Smith, S.A.; Bakal, R.S. Hematology and plasma chemistry reference intervals for cultured shortnose sturgeon (Acipenser brevirostrum). Vet. Clin. Pathol. 2006, 35, 434–440. [Google Scholar] [CrossRef]
- Nabi, N.; Ahmed, I.; Wani, G.B. Hematological and serum biochemical reference intervals of rainbow trout (Oncorhynchus mykiss) cultured in Himalayan aquaculture: Morphology, morphometrics and quantification of peripheral blood cells. Saudi J. Biol. Sci. 2022, 29, 2942–2957. [Google Scholar] [CrossRef]
- Friedrichs, K.R.; Harr, K.E.; Freeman, K.P.; Szladovits, B.; Walton, R.M.; Barnhart, K.F.; Blanco-Chavez, J. ASVCP reference interval guidelines: Determination of de novo reference intervals in veterinary species and other related topics. Vet. Clin. Pathol. 2012, 41, 441–453. [Google Scholar] [CrossRef]
- Arnold, J.E.; Camus, M.S.; Freeman, K.P.; Giori, L.; Hooijberg, E.H.; Jeffery, U.; Korchia, J.; Meindel, M.J.; Moore, A.R.; Sisson, S.C.; et al. ASVCP guidelines: Principles of quality assurance and standards for veterinary clinical pathology (version 3.0). Vet. Clin. Pathol. 2019, 48, 542–618. [Google Scholar] [CrossRef]
- Wagner, G.N.; Singer, T.D.; McKinley, R.S. The ability of clove oil and MS-222 to minimize handling stress in rainbow trout (Oncorhynchus mykiss Walbaum). Aquac. Res. 2003, 34, 1139–1146. [Google Scholar] [CrossRef]
- Tavares-Dias, M.; Sandrim, E.F.S. Influence of anticoagulants and blood storage on hematological values in tambaqui, Colossoma macropomum. Acta Sci. 1998, 20, 151–155. [Google Scholar] [CrossRef]
- Meazzi, S.; Martini, V.; Moretti, A.; Lubian, E.; Paltrinieri, S.; Giordano, A. Automated hematological cell count using Sysmex XN-1000V in Testudo hermanni: Agreement with manual count. Res. Vet. Sci. 2024, 169, 105164. [Google Scholar] [CrossRef]
- International Council for Standardization in Haematology, Writing Group; Briggs, C.; Culp, N.; Davis, B.; d’Onofrio, G.; Zini, G.; Machin, S.J. ICSH guidelines for the evaluation of blood cell analyzers including those used for differential leucocyte and reticulocyte counting. Int. J. Lab. Hematol. 2014, 36, 613–627. [Google Scholar]
- Ellis, A.E. The leucocytes of fish: A review. J. Fish Biol. 1977, 11, 453–491. [Google Scholar] [CrossRef]
- Guder, W.G. Preanalytical factors and their influence on analytical quality specifications. Scand. J. Clin. Lab. Invest. 1999, 59, 545–549. [Google Scholar] [CrossRef]
- Bourner, G.; Dhaliwal, J.; Sumner, J. Performance evaluation of the latest fully automated hematology analyzers in a large, commercial laboratory setting: A 4-way, side-by-side study. Lab. Hematol. 2005, 11, 285–297. [Google Scholar] [CrossRef]
- Imeri, F.; Herklotz, R.; Risch, L.; Arbetsleitner, C.; Zerlauth, M.; Risch, G.M.; Huber, A.R. Stability of hematological analytes depends on the hematology analyzer used: A stability study with Bayer Advia 120, Beckman Coulter LH 750 and Sysmex XE 2100. Clin. Chim. Acta 2008, 397, 68–71. [Google Scholar] [CrossRef]
- Buttarello, M. Quality specification in haematology: The automated blood cell count. Clin. Chim. Acta 2004, 346, 45–54. [Google Scholar] [CrossRef]
- Clark, P.; Mogg, T.D.; Tvedten, H.W.; Korcal, D. Artifactual changes in equine blood following storage, detected using the Advia 120 hematology analyzer. Vet. Clin. Pathol. 2002, 31, 90–94. [Google Scholar] [CrossRef]
- Lippi, G.; Salvagno, G.L.; Solero, G.P.; Franchini, M.; Guidi, G.C. Stability of blood cell counts, hematologic parameters and reticulocyte indexes on the Advia 120 hematology analyzer. J. Lab. Clin. Med. 2005, 146, 333–340. [Google Scholar] [CrossRef] [PubMed]
- Maqbool, A.; Ahmed, I.; Sheikh, Z.A. Effects of two commonly used anticoagulants on hematology and erythrocyte morphology of rainbow trout (Oncorhynchus mykiss). Int. J. Fish. Aqua. Stud. 2014, 2, 239–243. [Google Scholar]
- Fazio, F.; Ferrantelli, V.; Saoca, C.; Giangrosso, G.; Piccione, G. Stability of hematological parameters in stored blood samples of rainbow trout Oncorhynchus mykiss (Walbaum, 1792). Veter. Med. 2017, 62, 401–405. [Google Scholar] [CrossRef]
- Korcock, D.E.; Houston, A.H.; Gray, J.D. Effects of sampling conditions on selected blood variables of rainbow trout, Salmo gairdneri Richardson. J. Fish Biol. 1988, 33, 319–330. [Google Scholar] [CrossRef]
- Harr, K.E.; Raskin, R.E.; Heard, D.J. Temporal effects of 3 commonly used anticoagulants on hematologic and biochemical variables in blood samples from macaws and Burmese pythons. Vet. Clin. Pathol. 2005, 34, 383–388. [Google Scholar] [CrossRef]
- Vap, L.M.; Harr, K.E.; Arnold, J.E.; Freeman, K.P.; Getzy, K.; Lester, S.; Friedrichs, K.R. ASVCP quality assurance guidelines: Control of preanalytical factors for hematology for mammalian and nonmammalian species, hemostasis and crossmatching in veterinary laboratories. Vet. Clin. Pathol. 2012, 41, 8–17. [Google Scholar] [CrossRef]
- Fánge, R. Fish blood cells. In Fish Physiology; Hoar, W.S., Randall, D.J., Farrell, A.P., Eds.; Academic Press: Cambridge, MA, USA, 1992; Volume 12, pp. 1–54. [Google Scholar]
- Ueda, I.K.; Egami, M.I.; Sassp, W.d.S.; Matushima, E.R. Estudos hematológicos em Oreochromis niloticus (Linnaeus, 1758) (Cichlidae, Teleostei)—Parte I. Braz. J. Vet. Res. Anim. Sci. 1997, 34, 270–275. [Google Scholar] [CrossRef]
- Ciepliński, M.; Kasprzak, M.; Grandtke, M.; Steliga, A.; Kamiński, P.; Jerzak, L. The effect of dipotassium EDTA and lithium heparin on hematologic values of farmed brown trout Salmo trutta (L.) spawners. Aquac. Int. 2019, 27, 79–87. [Google Scholar] [CrossRef]
- Lulijwa, R.; Alfaro, A.C.; Young, T.; Venter, L.; Decker, P.; Merien, F.; Meyer, J. Effect of anticoagulants on farmed giant kokopu, Galaxias argenteus (Gmelin, 1789) hematological parameters and erythrocyte fragility. J. Fish Biol. 2021, 99, 684–689. [Google Scholar] [CrossRef]
- Faggio, C.; Casella, S.; Arfuso, F.; Marafioti, S.; Piccione, G.; Fazio, F. Effect of storage time on hematological parameters in mullet, Mugil cephalus. Cell Biochem. Funct. 2013, 31, 412–416. [Google Scholar] [CrossRef]
- Gonzales-Flores, A.P.; Perez, F.I.M.; Quinteros, K.A.H.; Callejas, I.Y.S.; Rojas, J.L.V.; Fernandez-Mendez, C. Effect of heparin and EDTA as anticoagulants on hematological values in farmed juvenile of Arapaima gigas. Aquac. Int. 2022, 30, 345–353. [Google Scholar] [CrossRef]
- Hattingh, J. Heparin and ethylenediamine tetra-acetate as anticoagulants for fish blood. Pflügers Arch. 1975, 355, 347–352. [Google Scholar] [CrossRef] [PubMed]
- Witeska, M.; Wargocka, W. Disodium EDTA used as anticoagulant causes hemolysis in common carp blood. Turk. J. Vet. Anim. Sci. 2011, 35, 99–104. [Google Scholar] [CrossRef]
- Rozas-Serri, M.; Correa, R.; Walker-Vergara, R.; Coñuecar, D.; Barrientos, S.; Leiva, C.; Ildefonso, R.; Senn, C.; Peña, A. Reference intervals for blood biomarkers in farmed Atlantic salmon, Coho salmon and rainbow trout in Chile: Promoting a preventive approach in aquamedicine. Biology 2022, 11, 1066. [Google Scholar] [CrossRef] [PubMed]
- Hrubec, T.C.; Cardinale, J.L.; Smith, S.A. Hematology and plasma chemistry reference intervals for cultured tilapia (Oreochromis hybrid). Vet. Clin. Pathol. 2000, 29, 7–12. [Google Scholar] [CrossRef]
- Tavares-Dias, M.; Moraes, F.R. Hematological and biochemical reference intervals for farmed channel catfish. J. Fish Biol. 2007, 71, 383–388. [Google Scholar] [CrossRef]
- Ahmed, I.; Reshi, Q.M.; Fazio, F. The influence of the endogenous and exogenous factors on hematological parameters in different fish species: A review. Aquac. Int. 2020, 28, 869–899. [Google Scholar] [CrossRef]
Low–Normal | High | |||
---|---|---|---|---|
Parameter (Unit) | Mean | CV (%) | Mean | CV (%) |
RBC (×106/µL) | 0.64 | 2.71 | 1.21 | 0.83 |
Hb (g/dL) | 4.03 | 1.43 | 5.87 | 3.94 |
Hct (%) | 26.87 | 1.07 | 58.57 | 1.78 |
MCV (fL) | 361.5 | 1.39 | ND | ND |
Non-RBC (×103/µL) | 29.34 | 4.51 | 52.06 | 4.22 |
Mononuclear (%) | 87.07 | 2.24 | ND | ND |
Heterophils (%) | 12.93 | 15.08 | ND | ND |
Observer 1 | Observer 2 | Observer 1 + 2 | |||
---|---|---|---|---|---|
Parameter (Unit) | Median | CV (%) | Median | CV (%) | CV (%) |
RBCs (×106/µL) | 1.28 | 5.63 | 1.77 | 15.68 | 21.27 |
Non-RBCs (×103/µL) | 19.20 | 12.01 | 17.10 | 23.94 | 17.57 |
Correlation | Limit of Agreement 95% (Bias) | ||||||
---|---|---|---|---|---|---|---|
Parameter (Method) | N | Rs Spearman | Slope (IC 95%) | Intercept (IC 95%) | Mean | Low Limit | Upper Limit |
RBCs (×106/µL) (Sysmex XN-Manual) | 97 | 0.74 | 0.6 (0.5–0.71) | 0.24 (0.11–0.37) | −0.27 | −0.73 | 0.19 |
Hct/PCV (%) (Sysmex XN-PCV) | 91 | 0.84 | 1.01 (0.9–1.12) | −0.24 (−3.5–4.09) | −0.29 | −9.67 | 9.1 |
Non-RBCs (×103/µL) (Sysmex XN-Manual) | 97 | 0.67 | 0.96 (0.76–1.11) | 3862 (892.8–8262) | 2939.97 | −15,374.5 | 21,254.4 |
Non-RBCs (×103/µL) (Sysmex XN-Smear estimation) | 99 | 0.76 | 1.09 (0.93–1.27) | −521.87 (−3817.81–2958) | 2368.38 | −12,125.3 | 16,862.1 |
Non-RBCs (×103/µL) (Manual-Smear estimation) | 95 | 0.765 | 0.94 (0.31–0.81) | 2727.71 (−284.11–6055.16) | 398.49 | −18,810.5 | 19,607.5 |
Mononuclear (%) (SysmexXN-Smear estimation) | 98 | 0.49 | 2.22 (1.77–3.34) | −124.36 (−234.5–80.61) | −8.17 | −28.2 | 11.9 |
Heterophils (%) (Sysmex XN-Smear estimation) | 98 | 0.49 | 2.22 (1.7–3.34) | 2.36 (0–3.38) | 8.17 | −11.9 | 28.2 |
Parameter | Unit | Dist. (Method) | Mean ± SD | Median Range (Min–Max) | Reference Interval (95%CI) | Out of RI (n/lot (%)) |
---|---|---|---|---|---|---|
Automated Method (Sysmex XN-1000V) | ||||||
RBC | ×106/µL | G (SUD) | 1.03 ± 0.18 | 1.04 (0.65–1.55) | 0.761–1.33 | 3/63 (4.8) |
Hb | g/dL | G (SUD) | 6.07 ± 1.01 | 6 (3.9–8.8) | 4.33–7.69 | 2/63 (3.2) |
Hct | % | G (SUD) | 46.3 ± 8.92 | 46.3 (23.6–68.6) | 31.84–60.27 | 2/63 (3.2) |
MCV | fL | G (SUD) | 412.57 ± 49.74 | 410.1 (308–540) | 331.02–488.02 | 3/63 (4.8) |
MCH | pg | G (SUD) | 54.39 ± 6.05 | 53.8 (38.9–73.8) | 45.68–66.71 | 5/63 (7.9) |
MCHC | g/dL | G (SUD) | 13.34 ± 1.93 | 13.2 (8.8–18.2) | 11.2–16.58 | 5/63 (7.9) |
RDW-SD | fL | G (SUD) | 38.79 ± 12.36 | 37.5 (18.4–73.2) | 20.35–58.52 | 1/63 (1.6) |
Non-RBC | ×103/µL | G (SUD) | 25.98 ± 11.54 | 25.31 (17.08–47.74) | 13.35–44.63 | 3/63 (4.8) |
RDW-CV | % | G (SUD) | 13.04 ± 3.29 | 13 (7.1–20.2) | 7.99–18.3 | 2/63 (3.2) |
Heterophils | % | NG (RUD) | 7.05 ± 10.84 | 3 (0–52) | 4.31–9.78 | 3/63 (4.8) |
Heterophils | ×103/µL | NG (RUD) | 10.80 ± 7.22 | 9.86 (0–25) | 4.9–23.82 | 13/63 (20.6) |
Mononuclear | % | NG (RUD) | 84.62 ± 15 | 88.9 (30.8–100) | 79.05–100 | 3/63 (4.8) |
Mononuclear | ×103/µL | NG (RUD) | 22.53 ± 11.79 | 21.86 (3.30–53.32) | 13.35–44.63 | 13/63 (20.6) |
Manual Method (Hemocytometer) | ||||||
RBC | ×106/µL | G (SUD) | 1.34 ± 0.34 | 1.32 (0.57–2.22) | 0.791–1.94 | 3/63 (4.8) |
PCV | % | G (SUD) | 36.68 ± 7.41 | 36.5 (21–50.5) | 24.1–48.4 | 1/63 (1.6) |
Non-RBC | ×103/µL | NG (RUD) | 22.99 ± 14.22 | 21.80 (2.8–70.40) | 5.84–51.26 | 8/63 (12.7) |
TP | g/dL | G (SUD) | 3.96 ± 0.86 | 4 (1.7–5.3) | 2.65–5 | 2/63 (3.2) |
Manual Method (Smear Estimation) | ||||||
Non-RBC | ×103/µL | NG (RUD) | 21.65 ± 11.54 | 19.04 (2.88–72.16) | 13.6–37.69 | 19/63 (30.1) |
Mononuclear | % | NG (RUD) | 92.95 ± 10.84 | 97 (48–100) | 68.1–100 | 4/63 (6.3) |
Mononuclear | ×103/µL | NG (RUD) | 20.17 ± 11.19 | 18 (2.4–68.55) | 11.91–36.60 | 19/63 (30.1) |
Heterophils | % | NG (RUD) | 7.05 ± 10.84 | 3 (0–52) | 1–31.90 | 11/63 (17.4) |
Heterophils | ×103/µL | NG (RUD) | 1.49 ± 2.55 | 0.56 (0–12.52) | 0.21–8.28 | 19/63 (30.1) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mesalles, M.; Uroz, M.; Brandts, I.; Serrano, E.; Cuenca, R.; Pastor, J.; Teles, M. Preliminary Evaluation of an Automated Blood Cell Analyzer for Its Use with Blood Samples from Rainbow Trout Oncorhynchus mykiss. Animals 2025, 15, 1265. https://doi.org/10.3390/ani15091265
Mesalles M, Uroz M, Brandts I, Serrano E, Cuenca R, Pastor J, Teles M. Preliminary Evaluation of an Automated Blood Cell Analyzer for Its Use with Blood Samples from Rainbow Trout Oncorhynchus mykiss. Animals. 2025; 15(9):1265. https://doi.org/10.3390/ani15091265
Chicago/Turabian StyleMesalles, Montse, Meritxell Uroz, Irene Brandts, Emmanuel Serrano, Rafaela Cuenca, Josep Pastor, and Mariana Teles. 2025. "Preliminary Evaluation of an Automated Blood Cell Analyzer for Its Use with Blood Samples from Rainbow Trout Oncorhynchus mykiss" Animals 15, no. 9: 1265. https://doi.org/10.3390/ani15091265
APA StyleMesalles, M., Uroz, M., Brandts, I., Serrano, E., Cuenca, R., Pastor, J., & Teles, M. (2025). Preliminary Evaluation of an Automated Blood Cell Analyzer for Its Use with Blood Samples from Rainbow Trout Oncorhynchus mykiss. Animals, 15(9), 1265. https://doi.org/10.3390/ani15091265