Assessment of Oxidative Stress and Associated Biomarkers in Wild Avian Species
Simple Summary
Abstract
1. Introduction
2. Free Radicals and Oxidative Stress
Free Radicals and Oxidative Stress
3. The Influence of Environmental Stressors on Oxidative Stress in Wild Birds
3.1. The Relationship Between Hormones, Glucose and Oxidative Damage in Wild Birds
3.2. Effects of Reproduction and Immune Response on Oxidative Stress in Wild Birds
3.3. Effects of Virus-Induced Oxidative Stress
4. Biomarkers of Oxidative Stress in Wild Birds
4.1. Biomarkers of Oxidative Damage in Wild Birds
4.2. Criteria for Biomarkers in Wild Birds
- A biomarker should indicate most of the oxidative damage to the target molecule in vivo;
- The selected biomarker should be stable and not be lost or artifactually formed in stored samples;
- The biomarker must use a validated measurement technique. Validation criteria include intrinsic qualities such as specificity and sensitivity;
- Sample collection should only minimally interfere with the normal life activities of the organism under investigation;
- The biomarker must not be influenced by diet. This problem has already been noted with some of the strongest markers of oxidative damage, i.e., plasma MDA and HNE concentrations [182]. Another popular measure, total antioxidant capacity (TAC) of plasma, correlates very strongly with plasma uric acid concentrations, which may be an indicative of incidental amino acid deficiency rather than regulated antioxidant protection.
5. Antioxidative Defence
5.1. Enzymatic Antioxidants
5.1.1. Superoxide Dismutase
5.1.2. Catalase
5.1.3. Glutathione Peroxidase
5.2. Non-Enzymatic Antioxidants
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bickman, J.W.; Smolen, M.J. Somatic and heritable effects of environmental genotoxins and the emergence of evolutionary toxicology. Environ. Health Perspect. 1994, 102, 25–28. [Google Scholar]
- Sessions, A.L.; Doughty, D.M.; Welander, P.V.; Summons, R.E.; Newman, D.K. The continuing puzzle of the great oxidation event. Curr. Biol. 2009, 19, 567–574. [Google Scholar] [CrossRef]
- Halliwell, B.; Gutteridge, J.M.C. Cellular responses to oxidative stress: Adaptation, damage, repair, senescence and death. In Free Radicals in Biology and Medicine, 4th ed.; Oxford University Press: New York, NY, USA, 2007; pp. 187–267. [Google Scholar]
- Dröge, W. Free radicals in the physiological control of cell function. Physiol. Rev. 2002, 82, 47–95. [Google Scholar] [CrossRef] [PubMed]
- Santo, A.; Zhu, H.; Li, Y.R. Free radicals: From health to disease. React. Oxyg. Species 2016, 2, 245–263. [Google Scholar] [CrossRef]
- Benzie, I.F. Evolution of antioxidant defence mechanisms. Eur. J. Nutr. 2000, 39, 53–61. [Google Scholar] [CrossRef]
- Gutteridge, J.M.C.; Halliwell, B. Antioxidants: Molecules, medicines, and myths. Biochem. Biophys. Res. Commun. 2010, 393, 561–564. [Google Scholar] [CrossRef] [PubMed]
- Nappi, A.J.; Ottaviani, E. Cytotoxicity and cytotoxic molecules in invertebrates. Bioessays 2000, 22, 469–480. [Google Scholar] [CrossRef]
- Finkel, T.; Holbrook, N.J. Oxidants, oxidative stress and the biology of ageing. Nature 2000, 408, 239–247. [Google Scholar] [CrossRef]
- Milinković-Tur, S.; Stojević, Z.; Piršljin, J.; Zdelar-Tuk, M.; Poljičak-Milas, N.; Beer-Ljubić, B.; Gradinski-Vrbanac, B. Effects of fasting and refeeding on the antioxidant system in cockerels and pullets. Acta Vet. Hung. 2007, 55, 181–189. [Google Scholar] [CrossRef]
- Sies, H.; Jones, D.P. Oxidative stress. In Encyclopedia of Stress; Fink, G., Ed.; Elsevier: San Diego, CA, USA, 2007; pp. 45–48. [Google Scholar]
- Milinković-Tur, S.; Aladrović, J.; Beer Ljubić, B.; Poljičak-Milas, N. Age-related antioxidant enzyme activities and lipid peroxidation in heart muscles of broiler chickens fed with supplementary organic selenium. Vet. Arh. 2009, 79, 481–489. [Google Scholar]
- Beer-Ljubić, B.; Aladrović, J.; Milinković-Tur, S.; Lazarus, M.; Pušić, I. Effects of fasting on lipid metabolism and oxidative stability in fattening chicken fed a diet supplemented with organic selenium. Arch. Tierz. 2012, 55, 485–495. [Google Scholar] [CrossRef]
- Žura Žaja, I.; Sluganović, A.; Samardžija, A.; Milinković-Tur, S.; Dobranić, T.; Strelec, S.; Đuričić, D.; Valpotić, H.; Vince, S. Učinci oksidacijskog stresa na muški spolni sustav i mehanizmi antioksidacijske zaštite (The effects of oxidative stress on the male reproductive system and mechanisms of antioxidant protection). Vet. Stanica 2019, 50, 43–54. [Google Scholar]
- Costantini, D. Understanding diversity in oxidative status and oxidative stress: The opportunities and challenges ahead. J. Exp. Biol. 2019, 222, jeb194688. [Google Scholar] [CrossRef] [PubMed]
- Lushchak, V.I. Classification of oxidative stress based on its intensity. EXCLI J. 2014, 13, 922–937. [Google Scholar]
- Costantini, D.; Rowe, M.; Butler, M.W.; McGraw, K.J. From molecules to living systems: Historical and contemporary issues in oxidative stress and antioxidant ecology. Funct. Ecol. 2010, 24, 950–959. [Google Scholar] [CrossRef]
- Harshman, L.G.; Zera, A.J. The cost of reproduction: The devil in the details. Trends Ecol. Evol. 2007, 22, 80–86. [Google Scholar] [CrossRef]
- Isaksson, C. Pollution and its impact on wild animals: A meta-analysis on oxidative stress. Ecohealth 2010, 7, 342–350. [Google Scholar] [CrossRef]
- Holmes, D.J.; Ottinger, M.A. Birds as long-lived animal models for the study of aging. Exp. Gerontol. 2003, 38, 1365–1375. [Google Scholar] [CrossRef]
- Ogburn, C.E.; Carlberg, K.; Ottinger, M.A.; Holmes, D.J.; Martin, G.M.; Austad, S.N. Exceptional cellular resistance to oxidative damage in long-lived birds requires active gene expression. J. Gerontol. A Biol. Sci. Med. Sci. 2001, 56, B468–B474. [Google Scholar] [CrossRef]
- McGraw, K.J. Avian antioxidants and oxidative stress: Highlights from studies of food, physiology, and feathers. In Studies on Veterinary Medicine: Oxidative Stress in Applied Basic Research and Clinical Practice; Mandelker, L., Vajdovich, P., Eds.; Humana Press: Totowa, NJ, USA, 2011. [Google Scholar] [CrossRef]
- Polekoff, S.E.; Deviche, P.; Chen, D.-G. Evidence for Oxidative Stress in Urban Birds: A Systematic Review and Meta-Analysis. Available online: https://ssrn.com/abstract=4999308 (accessed on 13 March 2025).
- Curtin, J.F.; Donovan, M.; Cotter, T.G. Regulation and measurement of oxidative stress in apoptosis. J. Immunol. Methods 2002, 265, 49–72. [Google Scholar] [CrossRef]
- Pinkus, R.; Weiner, L.M.; Daniel, V. Role of oxidants and antioxidants in the induction of AP-1, NF-kB, and glutathione S-transferase gene expression. J. Biol. Chem. 1996, 271, 13422–13429. [Google Scholar] [CrossRef]
- Žura Žaja, I.; Vilić, M.; Tomulić, I.; Shek Vugrovečki, A.; Malarić, K.; Tucak, P.; Tlak Gajger, I. Učinak radiofrekvencijskog zračenja na ljude i životinje, s posebnim osvrtom na zajednice medonosne pčele (Apis mellifera). Vet. Stanica 2021, 52, 347–357. [Google Scholar] [CrossRef]
- Žura Žaja, I.; Martinec, P.; Butković, I.; Vilić, M.; Milinković-Tur, S.; Vince, S.; Žura, N.; Sluganović, A.; Samardžija, M.; Pejaković Hlede, J.; et al. Učinci radiofrekvencijskog elektromagnetskog zračenja na mušku plodnost. Vet. Stanica 2023, 54, 541–555. [Google Scholar] [CrossRef]
- Maher, P.; Schubert, D. Signaling by reactive oxygen species in the nervous system. Cell Mol. Life Sci. 2000, 57, 1287–1305. [Google Scholar] [CrossRef] [PubMed]
- Fleury, C.; Mignotte, B.; Vayssiere, J.L. Mitochondrial reactive oxygen species in cell death signaling. Biochimie 2002, 84, 131–141. [Google Scholar] [CrossRef]
- Stanković, M.; Radovanović, D. Oxidative stress in physical activity. SportLogia 2012, 8, 1–11. [Google Scholar] [CrossRef]
- Poljsak, B.; Šuput, D.; Milisav, I. Achieving the balance between ROS and antioxidants: When to use synthetic antioxidants. Oxid. Med. Cell Longev. 2013, 2013, 956792. [Google Scholar] [CrossRef]
- Genestra, M. Oxyl radicals, redox-sensitive signaling cascades and antioxidants. Cell Signal. 2007, 19, 1807–1819. [Google Scholar] [CrossRef]
- Kohen, R.; Nyska, A. Invited review: Oxidation of biological systems: Oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicol. Pathol. 2002, 30, 620–650. [Google Scholar] [CrossRef]
- Žura Žaja, I.; Samardžija, M.; Vince, S.; Ljubičić, I.; Radin, L.; Pejaković Hlede, J.; Đuričić, D.; Valpotić, H.; Rošić, N.; Milinković-Tur, S. Pozitivni i negativni učinci reaktivnih kisikovih spojeva na oplodnu sposobnost spermija. Vet. Stanica 2016, 47, 161–173. [Google Scholar]
- Turk, R. Antioksidacijska Uloga Paraoksonaze (PON) i Acetilhidrolaze čimbenika Aktivacije Trombocita (PAF-AH) u Plodnosti Mliječnih Krava. Ph.D. Thesis, Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia, 2005. [Google Scholar]
- Von Zglinicki, T. Oxidative stress shortens telomeres. Trends Biochem. Sci. 2002, 28, 339–344. [Google Scholar] [CrossRef] [PubMed]
- Speakman, J.R.; Garratt, M. Oxidative stress as a cost of reproduction: Beyond the simplistic trade-off model. BioEssays 2013, 36, 93–106. [Google Scholar] [CrossRef] [PubMed]
- Metcalfe, N.B.; Alonso-Alvarez, C. Oxidative stress as a life-history constraint: The role of reactive oxygen species in shaping phenotypes from conception to death. Funct. Ecol. 2010, 24, 984–996. [Google Scholar] [CrossRef]
- Hulbert, A.J.; Pamplona, R.; Buffenstein, R.; Buttemer, W.A. Life and death: Metabolic rate, membrane composition, and life span of animals. Physiol. Rev. 2007, 87, 1175–1213. [Google Scholar] [CrossRef]
- Jaeschke, H. Mechanisms of oxidative stress-induced acute tissue injury. Proc. Soc. Exp. Biol. Med. 1995, 209, 104–111. [Google Scholar] [CrossRef]
- Dominoni, D.; Quetting, M.; Partecke, J. Artificial light at night advances avian reproductive physiology. Proc. R. Soc. B 2013, 280, 20123017. [Google Scholar] [CrossRef]
- Watson, H.; Videvall, E.; Andersson, M.N.; Isaksson, C. Transcriptome analysis of a wild bird reveals physiological responses to the urban environment. Sci. Rep. 2017, 7, 44180. [Google Scholar] [CrossRef]
- Shultz, S.; Bradbury, R.B.; Evans, K.L.; Gregory, R.D.; Blackburn, T.M. Brain size and resource specialization predict long-term population trends in British birds. Proc. Biol. Sci. 2005, 272, 2305–2311. [Google Scholar] [CrossRef] [PubMed]
- Sol, D. The cognitive-buffer hypothesis for the evolution of large brains. In Cognitive Ecology II; Dukas, R., Ratcliffe, J.M., Eds.; University of Chicago Press: Chicago, IL, USA, 2009; pp. 111–134. [Google Scholar]
- Maklakov, A.A.; Immler, S.; Gonzalez-Voyer, A.; Rönn, J.; Kolm, N. Brains and the city: Big-brained passerine birds succeed in urban environments. Biol. Lett. 2011, 7, 730–732. [Google Scholar] [CrossRef]
- Benson-Amram, S.; Dantzer, B.; Stricker, G.; Swanson, E.M.; Holekamp, K.E. Brain size predicts problem-solving ability in mammalian carnivores. Proc. Natl. Acad. Sci. USA 2016, 113, 2532–2537. [Google Scholar] [CrossRef]
- Surai, P.F. Antioxidant systems in the animal body. In Natural Antioxidants in Avian Nutrition and Reproduction; Surai, P.F., Ed.; Nottingham University Press: Nottingham, UK, 2003; pp. 1–18. [Google Scholar]
- Stofberg, M.; Cunningham, S.; Sumasgutner, P.; Amar, A. Juggling a “junk-food” diet: Responses of an urban bird to fluctuating anthropogenic food availability. Urban Ecosyst. 2019, 22, 1019–1026. [Google Scholar] [CrossRef]
- Tryjanowski, P.; Skórka, P.; Sparks, T.H.; Biaduń, W.; Brauze, T.; Hetmański, T.; Martyka, R.; Indykiewicz, P.; Myczko, Ł.; Kunysz, P.; et al. Urban and rural habitats differ in number and type of bird feeders and in bird species consuming supplementary food. Environ. Sci. Pollut. Res. 2015, 22, 15097–15103. [Google Scholar] [CrossRef] [PubMed]
- Isaksson, C. Urbanization, oxidative stress and inflammation: A question of evolving, acclimatizing or coping with urban environmental stress. Funct. Ecol. 2015, 29, 913–923. [Google Scholar] [CrossRef]
- Støstad, H.N.; Rowe, M.; Johnsen, A.; Tomášek, O.; Albrecht, T.; Lifjeld, J.T. Sperm head abnormalities are associated with excessive omega-6 fatty acids in two finch species feeding on sunflower seeds. J. Avian Biol. 2019, 50, e02056. [Google Scholar] [CrossRef]
- Sohal, R.S.; Weindruch, R. Oxidative stress, caloric restriction, and aging. Science 1996, 273, 59–63. [Google Scholar] [CrossRef]
- Masoro, E.J. Caloric Restriction: A Key to Understanding and Modulating Aging; Elsevier: Amsterdam, The Netherlands, 2002. [Google Scholar]
- Porter, N.A.; Caldwell, S.E.; Mills, K.A. Mechanisms of free radical oxidation of unsaturated lipids. Lipids 1995, 30, 277–290. [Google Scholar] [CrossRef] [PubMed]
- McWilliams, S.R.; Guglielmo, C.; Pierce, B.; Klaassen, M. Flying, fasting, and feeding in birds during migration: A nutritional and physiological ecology perspective. J. Avian Biol. 2004, 35, 377–393. [Google Scholar] [CrossRef]
- Isaksson, C.; Andersson, M.N.; Nord, A.; von Post, M.; Wang, H.L. Species-Dependent Effects of the urban environment on fatty acid composition and oxidative stress in birds. Front. Ecol. Evol. 2017, 5, 1–13. [Google Scholar] [CrossRef]
- Boni, R. Heat stress, a serious threat to reproductive function in animals and humans. Mol. Reprod. Dev. 2019, 86, 1307–1323. [Google Scholar] [CrossRef]
- Parisi, C.; Guerriero, G. Antioxidative Defense and Fertility Rate in the Assessment of Reprotoxicity Risk Posed by Global Warming. Antioxidants 2019, 8, 622. [Google Scholar] [CrossRef]
- Ahmad Para, I.; Ahmad Dar, P.; Ahmad Malla, B.; Punetha, M.; Rautela, A.; Maqbool, I.; Mohd, A.; Shah, M.A.; War, Z.A.; Ishaaq, R.; et al. Impact of heat stress on the reproduction of farm animals and strategies to ameliorate it. Biol. Rhythm Res. 2020, 51, 616–632. [Google Scholar] [CrossRef]
- Kirk, D.A.; Gosler, A.G. Body condition varies with migration and competition in migrant and resident South American vultures. Auk 1994, 111, 933–944. [Google Scholar] [CrossRef]
- Piersma, T.; Everaarts, J.M.; Jukema, J. Build-up of red blood cells in refuelling bar-tailed godwits in relation to individual migratory quality. Condor 1996, 98, 363–370. [Google Scholar] [CrossRef]
- Costantini, D. Oxidative stress in ecology and evolution: Lessons from avian studies. Ecol. Lett. 2008, 11, 1238–1251. [Google Scholar] [CrossRef] [PubMed]
- Powers, S.K.; Jackson, M.J. Exercise-induced oxidative stress: Cellular mechanisms and impact on muscle force production. Physiol. Rev. 2008, 88, 1243–1276. [Google Scholar] [CrossRef]
- Caro, T. Antipredator Defences in Birds and Mammals; University of Chicago Press: Chicago, IL, USA, 2005. [Google Scholar]
- Salo, P.; Banks, P.B.; Dickman, C.R.; Korpimäki, E. Predator manipulation experiments: Impacts on populations of terrestrial vertebrate prey. Ecol. Monogr. 2010, 80, 531–546. [Google Scholar] [CrossRef]
- Zanette, L.Y.; White, A.F.; Allen, M.C.; Clinchy, M. Perceived predation risk reduces the number of offspring songbirds produce per year. Science 2011, 334, 1398–1401. [Google Scholar] [CrossRef]
- Hawlena, D.; Schmitz, O.J. Physiological stress as a fundamental mechanism linking predation to ecosystem functioning. Am. Nat. 2010, 176, 537–556. [Google Scholar] [CrossRef]
- Zanette, L.Y.; Clinchy, M.; Suraci, J.P. Diagnosing predation risk effects on demography: Can measuring physiology provide the means? Oecologia 2014, 176, 637–651. [Google Scholar] [CrossRef]
- Viegas-Crespo, A.M.; Lopes, P.A.; Pinheiro, M.T.; Santos, M.C.; Rodrigues, P.D.; Nunes, A.C.; Marques, C.; Mathias, M.L. Hepatic elemental contents and antioxidant enzyme activities in Algerian mice (Mus spretus) inhabiting a mine area in central Portugal. Sci. Total Environ. 2003, 311, 101–109. [Google Scholar] [CrossRef]
- Kelly, F.J. Oxidative stress: Its role in air pollution and adverse health effects. Occup. Environ. Med. 2003, 60, 612–616. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Omaye, S.T. Air pollutants, oxidative stress and human health. Mutat. Res. 2009, 31, 45–54. [Google Scholar] [CrossRef]
- Brown, A.R.; Hosken, D.J.; Balloux, F.; Bickley, L.K.; LePage, G.; Owen, S.F.; Hetheridge, M.J.; Tyler, C.R. Genetic variation, inbreeding and chemical exposure—Combined effects in wildlife and critical considerations for ecotoxicology. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2009, 364, 3377–3390. [Google Scholar] [CrossRef]
- Doherty, R.M.; Heal, M.R.; Wilkinson, P.; Pattenden, S.; Vieno, M.; Armstrong, B.; Atkinson, R.; Chalabi, Z.; Kovats, S.; Milojevic, A.; et al. Current and future climate- and air pollution-mediated impacts on human health. Environ. Health 2009, 8, S1–S8. [Google Scholar] [CrossRef]
- Chamberlain, D.E.; Cannon, A.R.; Toms, M.P.; Leech, D.I.; Hatchwell, B.J.; Gaston, K.J. Avian productivity in urban landscapes: A review and meta-analysis. Ibis 2009, 151, 1–18. [Google Scholar] [CrossRef]
- Furness, R.W. Birds as Monitors of Environmental Change; Furness, R.W., Greenwood, J.J.D., Eds.; Chapman and Hall: London, UK, 1993; pp. 86–143. [Google Scholar]
- Jaspers, V.L.B.; Voorspoels, S.; Covaci, A.; Lepoint, G.; Eens, M. Evaluation of the usefulness of bird feathers as a non-destructive biomonitoring tool for organic pollutants: A comparative and meta-analytical approach. Environ. Int. 2007, 33, 328–337. [Google Scholar] [CrossRef]
- Connell, D.W.; Fung, C.N.; Minh, T.B.; Tanabe, S.; Lam, P.K.S.; Wong, B.S.F.; Lam, M.H.W.; Wong, L.C.; Wu, R.S.S.; Richardson, B.J. Risk to breeding success of fish-eating Ardeids due to persistent organic contaminants in Hong Kong: Evidence from organochlorine compounds in eggs. Water Res. 2003, 37, 459–467. [Google Scholar] [CrossRef] [PubMed]
- Sletten, S.; Bourgeon, S.; Bårdsen, B.; Herzke, D.; Criscuolo, F.; Massemin, S.; Zahn, S.; Johnsen, T.V.; Bustnes, J.O. Organohalogenated contaminants in white-tailed eagle (Haliaeetus albicilla) nestlings: An assessment of relationships to immunoglobulin levels, telomeres and oxidative stress. Sci. Total Environ. 2016, 539, 337–349. [Google Scholar] [CrossRef]
- Kocagoz, R.; Onmus, O.; Onat, I.; Cagdas, B.; Siki, M.; Orhan, H. Environmental and biological monitoring of persistent organic pollutants in waterbirds by non-invasive versus invasive sampling. Toxicol. Lett. 2014, 230, 208–217. [Google Scholar] [CrossRef]
- Cid, F.D.; Fernández, N.C.; Pérez-Chaca, M.V.; Pardo, R.; Caviedes-Vidal, E.; Chediack, J.G. House sparrow biomarkers as lead pollution bioindicators: Evaluation of dose and exposition length on hematological and oxidative stress parameters. Ecotoxicol. Environ. Saf. 2018, 154, 154–161. [Google Scholar] [CrossRef]
- North, M.A.; Kinniburgh, D.W.; Smits, J.E.G. European Starlings (Sturnus vulgaris) as sentinels of urban air pollution: A comprehensive approach from noninvasive to post-mortem investigation. Environ. Sci. Technol. 2017, 51, 8746–8756. [Google Scholar] [CrossRef] [PubMed]
- Espín, S.; Martínez-López, E.; Jiménez, P.; María-Mojica, P.; García-Fernández, A.J. Effects of heavy metals on biomarkers for oxidative stress in griffon vulture (Gyps fulvus). Environ. Res. 2014, 129, 59–68. [Google Scholar] [CrossRef]
- Koivula, M.J.; Eeva, T. Metal-related oxidative stress in birds. Environ. Pollut. 2010, 158, 2359–2370. [Google Scholar] [CrossRef] [PubMed]
- Massányi, P.; Massányi, M.; Madeddu, R.; Stawarz, R.; Lukáč, N. Effects of cadmium, lead, and mercury on the structure and function of reproductive organs. Toxics 2020, 8, 94. [Google Scholar] [CrossRef] [PubMed]
- Williams, R.J.; Holladay, S.D.; Williams, S.M.; Gogal, R.M., Jr. Environmental lead and wild birds: A review. Rev. Environ. Contam. Toxicol. 2018, 245, 157–180. [Google Scholar]
- Brown, R.E.; Brain, J.D.; Wang, N. The avian respiratory system: A unique model for studies of respiratory toxicosis and for monitoring air quality. Environ. Health Perspect. 1997, 105, 13. [Google Scholar] [CrossRef]
- Abbasi, N.A.; Eulaers, I.; Jaspers, V.L.B.; Chaudhry, M.J.I.; Frantz, A.; Ambus, P.L.; Covaci, A.; Malik, R.N. Use of feathers to assess polychlorinated biphenyl and organochlorine pesticide exposure in top predatory bird species of Pakistan. Sci. Total Environ. 2016, 569–570, 1408–1417. [Google Scholar] [CrossRef]
- Voorspoels, S.; Covaci, A.; Lepom, P.; Jaspers, V.L.B.; Schepens, P. Levels and distribution of polybrominated diphenyl ethers in various tissues of birds of prey. Environ. Pollut. 2006, 144, 218–227. [Google Scholar] [CrossRef]
- Injaian, A.S.; Gonzalez-Gomez, P.L.; Taff, C.C.; Bird, A.K.; Ziur, A.D.; Patricelli, G.L.; Haussmann, M.F.; Wingfield, J.C. Traffic noise exposure alters nestling physiology and telomere attrition through direct, but not maternal, effects in a free-living bird. Gen. Comp. Endocrinol. 2019, 276, 14–21. [Google Scholar] [CrossRef]
- Injaian, A.S.; Taff, C.C.; Patricelli, G.L. Experimental anthropogenic noise impacts avian parental behaviour, nestling growth and nestling oxidative stress. Anim. Behav. 2018, 136, 31–39. [Google Scholar] [CrossRef]
- Casasole, G.; Raap, T.; Costantini, D.; AbdElgawad, H.; Asard, H.; Pinxten, R.; Eens, M. Neither artificial light at night, anthropogenic noise nor distance from roads are associated with oxidative status of nestlings in an urban population of songbirds. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2017, 210, 14–21. [Google Scholar] [CrossRef]
- Fulk, T.P. Maternal Personality May Mitigate the Negative Impacts of Anthropogenic Noise on a Free-Living Bird. Master’s Thesis, Appalachian State University, Boone, NC, USA, 2020. [Google Scholar]
- Carpenter, D.O.; Arcaro, K.; Spink, D.C. Understanding the human health effects of chemical mixtures. Environ. Health Perspect. 2002, 110, 25–42. [Google Scholar] [CrossRef] [PubMed]
- Beelen, R.; Hoek, G.; van den Brandt, P.A.; Goldbohm, R.A.; Fischer, P.; Schouten, L.J.; Jerrett, M.; Hughes, E.; Armstrong, B.; Brunekreef, B. Long-term effects of traffic-related air pollution on mortality in a Dutch cohort (NLCS-AIR study). Environ. Health Perspect. 2008, 116, 196–202. [Google Scholar] [CrossRef] [PubMed]
- Seed, J.; Brown, R.P.; Olin, S.S.; Foran, J.A. Chemical mixtures: Current risk assessment methodologies and future directions. Reg. Toxicol. Pharmacol. 1995, 22, 76–94. [Google Scholar] [CrossRef] [PubMed]
- Fritsch, C.; Cosson, R.P.; Coeurdassier, M.; Raoul, F.; Giraudoux, P.; Crini, N.; de Vaufleury, A.; Scheifler, R. Responses of wild small mammals to a pollution gradient: Host factors influence metal and metallothionein levels. Environm. Poll. 2010, 158, 827–840. [Google Scholar] [CrossRef]
- Giraudeau, M.; Mousel, M.; Earl, S.; McGraw, K. Parasites in the city: Degree of urbanization predicts poxvirus and coccidian infections in House Finches (Haemorhous mexicanus). PLoS ONE 2014, 9, e86747. [Google Scholar] [CrossRef]
- Sepp, T.; McGraw, K.J.; Kaasik, A.; Giraudeau, M. A review of urban impacts on avian life-history evolution: Does city living lead to a slower pace of life? Glob. Change Biol. 2018, 24, 1452–1469. [Google Scholar] [CrossRef]
- Baruchel, S.; Wainberg, M.A. The role of oxidative stress in disease progression in individuals infected by the human immunodeficiency virus. J. Leukoc. Biol. 1992, 52, 111–114. [Google Scholar] [CrossRef]
- Li, X.; Feng, J.; Sun, R. Oxidative stress induces reactivation of Kaposi’s sarcoma-associated herpesvirus and death of primary effusion lymphoma cells. J. Virol. 2011, 85, 715–724. [Google Scholar] [CrossRef]
- Legrand-Poels, S.; Vaira, D.; Pincemail, J.; van de Vorst, A.; Piette, J. Activation of human immunodeficiency virus type 1 by oxidative stress. AIDS Res. Hum. Retroviruses 1990, 6, 1389–1397. [Google Scholar] [CrossRef]
- Docherty, J.J.; Fu, M.M.; Stiffler, B.S.; Limperos, R.J.; Pokabla, C.M.; DeLucia, A.L. Resveratrol inhibition of herpes simplex virus replication. Antivir. Res. 1999, 43, 145–155. [Google Scholar] [CrossRef]
- Palamara, A.T.; Brandi, G.; Rossi, L.; Millo, E.; Benatti, U.; Nencioni, L.; Iuvara, A.; Garaci, E.; Magnani, M. New synthetic glutathione derivatives with increased antiviral activities. Antivir. Chem. Chemother. 2004, 15, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Sebastiano, M.; Chastel, O.; de Thoisy, B.; Eens, M.; Costantini, D. Oxidative stress favours herpes virus infection in vertebrates: A meta-analysis. Curr. Zool. 2016, 62, 325–332. [Google Scholar] [CrossRef]
- Manisha, W.H.; Rajak, R.; Jat, D. Oxidative stress and antioxidants: An overview. IJARR 2017, 9, 110–119. [Google Scholar]
- Cohen, A.A.; Martin, L.B.; Wingfield, J.C.; McWilliams, S.R.; Dunne, J.A. Physiological regulatory networks: Ecological roles and evolutionary constraints. Trends Ecol. Evol. 2012, 27, 428–435. [Google Scholar] [CrossRef]
- Dantzer, B.; Swanson, E.M. Mediation of vertebrate life histories via insulin-like growth factor-1. Biol. Rev. 2012, 87, 414–429. [Google Scholar] [CrossRef]
- Hau, M.; Casagrande, S.; Ouyang, J.Q.; Baugh, A.T. Glucocorticoid-mediated phenotypes in vertebrates: Multilevel variation and evolution. Adv. Study Behav. 2016, 48, 41–115. [Google Scholar]
- Landys, M.M.; Ramenofsky, M.; Wingfield, J.C. Actions of glucocorticoids at a seasonal baseline as compared to stress-related levels in the regulation of periodic life processes. Gen. Comp. Endocrinol. 2006, 148, 132–149. [Google Scholar] [CrossRef]
- Vágási, C.I.; Vincze, O.; Pătraș, L.; Osváth, G.; Pénzes, J.; Haussmann, M.F.; Barta, Z.; Pap, P.L. Longevity and life history coevolve with oxidative stress in birds. Funct. Ecol. 2019, 33, 152–161. [Google Scholar] [CrossRef]
- Costantini, D.; Marasco, V.; Møller, A.P. A meta-analysis of glucocorticoids as modulators of oxidative stress in vertebrates. J. Comp. Physiol. B 2011, 181, 447–456. [Google Scholar] [CrossRef]
- Spiers, J.G.; Chen, H.-J.C.; Sernia, C.; Lavidis, N.A. Activation of the hypothalamic-pituitary-adrenal stress axis induces cellular oxidative stress. Neuroendocr. Sci. 2015, 8, 456. [Google Scholar] [CrossRef] [PubMed]
- Marasco, V.; Stier, A.; Boner, W.; Griffiths, K.; Heidinger, B.; Monaghan, P. Environmental conditions can modulate the links among oxidative stress, age, and longevity. Mech. Ageing Dev. 2017, 164, 100–107. [Google Scholar] [CrossRef]
- Costantini, D.; Casasole, G.; Eens, M. Does reproduction protect against oxidative stress? J. Exp. Biol. 2014, 217, 4237–4243. [Google Scholar] [CrossRef]
- Partecke, J.; Schwabl, I.; Gwinner, E. Stress and the city: Urbanization and its effects on the stress physiology in European blackbirds. Ecology 2006, 87, 1945–1952. [Google Scholar] [CrossRef]
- Jenni, L.; Jenni-Eiermann, S.J.; Spina, F.; Schwabl, H. Regulation of protein breakdown and adrenocortical response to stress in birds during migratory flight. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2000, 278, 1182–1189. [Google Scholar] [CrossRef]
- Braun, E.J.; Sweazea, K.L. Glucose regulation in birds. Comp. Biochem. Physiol. B 2008, 151, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Vágási, C.I.; Tóth, Z.; Pénzes, J.; Pap, P.L.; Ouyang, J.Q.; Lendvai, Á.Z. The Relationship between Hormones, Glucose, and Oxidative Damage Is Condition and Stress Dependent in a Free-Living Passerine Bird. Physiol. Biochem. Zool. 2020, 93, 466–476. [Google Scholar] [CrossRef] [PubMed]
- Alonso-Alvarez, C.; Bertrand, S.; Devevey, G.; Prost, J.; Faivre, B.; Sorci, G. Increased susceptibility to oxidative stress as a proximate cost of reproduction. Ecol. Lett. 2004, 7, 363–368. [Google Scholar] [CrossRef]
- Wiersma, P.; Selman, C.; Speakman, J.R.; Verhulst, S. Birds sacrifice oxidative protection for reproduction. Proc. R. Soc. Lond. B 2004, 271, S360–S363. [Google Scholar] [CrossRef]
- Metcalfe, N.B.; Monaghan, P. Does reproduction cause oxidative stress? An open question. Trends Ecol. Evol. 2013, 28, 347–350. [Google Scholar] [CrossRef]
- Van de Crommenacker, J.; Komdeur, J.; Burke, T.; Richardson, D.S. Spatio-temporal variation in territory quality and oxidative status: A natural experiment in the Seychelles warbler (Acrocephalus sechellensis). J. Anim. Ecol. 2011, 80, 668–680. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, Q.E.; Selman, C.; Boutin, S.; McAdam, A.G.; Woods, S.B.; Seo, A.Y.; Leeuwenburgh, C.; Speakman, J.R.; Humphries, M.M. Oxidative damage increases with reproductive energy expenditure and is reduced by food supplementation. Evolution 2013, 67, 1527–1536. [Google Scholar] [CrossRef] [PubMed]
- Jelena, A.; Mirjana, M.; Desanka, B.; Svetlana, I.M.; Aleksandra, U.; Goran, P.; Ilijana, G. Haptoglobin and the inflammatory and oxidative status in experimental diabetic rats: Antioxidant role of haptoglobin. J. Physiol. Biochem. 2013, 69, 45–58. [Google Scholar] [CrossRef] [PubMed]
- Garratt, M.; Vasilaki, A.; Stockley, P.; McArdle, F.; Jackson, M.; Hurst, J.L. Is oxidative stress a physiological cost of reproduction? An experimental test in house mice. Proc. Biol. Sci. 2011, 278, 1098–1106. [Google Scholar] [CrossRef]
- Salomons, H.M. Fighting for Fitness: Telomeres, Oxidative Stress and Life History Trade-Offs in a Colonial Corvid. Ph.D. Thesis, University of Groningen, Groningen, The Netherlands, 2009. [Google Scholar]
- Pintus, E.; Ros-Santaella, J.L. Impact of oxidative stress on male reproduction in domestic and wild animals. Antioxidants 2021, 10, 1154. [Google Scholar] [CrossRef]
- Blount, J.D.; Vitikainen, E.I.; Stott, I.; Cant, M.A. Oxidative shielding and the cost of reproduction. Biol. Rev. Camb. Philos. Soc. 2016, 91, 483–497. [Google Scholar] [CrossRef]
- Costantini, D.; Casasole, G.; AbdElgawad, H.; Asard, H.; Eens, M. Experimental evidence that oxidative stress influences reproductive decisions. Funct. Ecol. 2016, 30, 1169–1174. [Google Scholar] [CrossRef]
- Ninni, P.; de Lope, F.; Saino, N.; Haussy, C.; Møller, A.P. Antioxidants and condition-dependence of arrival date in a migratory passerine. Oikos 2004, 105, 55–64. [Google Scholar] [CrossRef]
- Møller, A.P. Sexual Selection and the Barn Swallow; Oxford University Press: Oxford, UK, 1994. [Google Scholar]
- Pap, P.L.; Vincze, O.; Fülöp, A.; Székely-Béres, O.; Pătraș, L.; Pénzes, J.; Vágási, C.I. Oxidative physiology of reproduction in a passerine bird: A field experiment. Behav. Ecol. Sociobiol. 2018, 72, 18. [Google Scholar] [CrossRef]
- Cohen, A.A.; de Magalhães, J.P.; Gohil, K. Ecological, biomedical and epidemiological approaches to understanding oxidative balance and ageing: What they can teach each other. Funct. Ecol. 2010, 24, 997–1006. [Google Scholar] [CrossRef]
- Monaghan, P.; Metcalfe, N.B.; Torres, R. Oxidative stress as a mediator of life history trade-offs: Mechanisms, measurements and interpretation. Ecol. Lett. 2009, 12, 75–92. [Google Scholar] [CrossRef] [PubMed]
- Selman, C.; Blount, J.D.; Nussey, D.H.; Speakman, J.R. Oxidative damage, ageing, and life-history evolution: Where now? Trends Ecol. Evol. 2012, 27, 570–577. [Google Scholar] [CrossRef] [PubMed]
- Calhoon, E.A.; Jimenez, A.G.; Harper, J.M.; Jurkowitz, M.S.; Williams, J.B. Linkages between mitochondrial lipids and life history in temperate and tropical birds. Physiol. Biochem. Zool. 2014, 87, 265–275. [Google Scholar] [CrossRef]
- Costantini, D.; Møller, A.P. Does immune response cause oxidative stress in birds? A meta-analysis. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2009, 153, 339–344. [Google Scholar] [CrossRef]
- Dowling, D.K.; Simmons, L.W. Reactive oxygen species as universal constraints in life-history evolution. Proc. Biol. Sci. 2009, 276, 1737–1745. [Google Scholar] [CrossRef]
- Sorci, G.; Faivre, B. Inflammation and oxidative stress in vertebrate host-parasite systems. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2009, 364, 71–83. [Google Scholar] [CrossRef]
- Medzhitov, R.; Schneider, D.S.; Soares, M.P. Disease tolerance as a defense strategy. Science 2012, 335, 936–941. [Google Scholar] [CrossRef] [PubMed]
- Costantini, D. A meta-analysis of impacts of immune response and infection on oxidative status in vertebrates. Conserv. Physiol. 2022, 10, coac018. [Google Scholar] [CrossRef]
- Von Schantz, T.; Bensch, S.; Grahn, M.; Hasselquist, D.; Wittzell, H. Good genes, oxidative stress and condition-dependent sexual signals. Proc. Biol. Sci. 1999, 266, 1–12. [Google Scholar] [CrossRef]
- Simons, M.J.P.; Cohen, A.A.; Verhulst, S. What does carotenoid-dependent coloration tell? Plasma carotenoid level signals immunocompetence and oxidative stress state in birds—A meta-analysis. PLoS ONE 2012, 7, e43088. [Google Scholar] [CrossRef]
- Henschen, A.E.; Whittingham, L.A.; Dunn, P.O. Oxidative stress is related to both melanin- and carotenoid-based ornaments in the common yellowthroat. Funct. Ecol. 2015, 30, 749–758. [Google Scholar] [CrossRef]
- Fukui, K.; Omoi, N.O.; Hayasaka, T.; Shinnkai, T.; Suzuki, S.; Abe, K.; Urano, S. Cognitive impairment of rats caused by oxidative stress and aging, and its prevention by vitamin E. Ann. N. Y. Acad. Sci. 2002, 959, 275–284. [Google Scholar] [CrossRef] [PubMed]
- Costantini, D.; Casagrande, S.; Casasole, G.; Abdelgawad, H.; Asard, H.; Pixten, R.; Eens, M. Immunization reduces vocal communication but does not increase oxidative stress in a songbird species. Behav. Ecol. Sociobiol. 2015, 69, 829–839. [Google Scholar] [CrossRef]
- Bertrand, S.; Alonso-Alvarez, C.; Devevey, G.; Faivre, B.; Prost, J.; Sorci, G. Carotenoids modulate the trade-off between egg production and resistance to oxidative stress in zebra finches. Oecologia 2006, 147, 576–584. [Google Scholar] [CrossRef]
- Romero-Haro, A.A.; Sorci, G.; Alonso-Alvarez, C. The oxidative cost of reproduction depends on early development oxidative stress and sex in a bird species. Proc. Biol. Sci. 2016, 283, 20160842. [Google Scholar] [CrossRef] [PubMed]
- Sharick, J.T.; Vazquez-Medina, J.P.; Ortiz, R.M.; Crocker, D.E. Oxidative stress is a potential cost of breeding in male and female northern elephant seals. Funct. Ecol. 2015, 29, 367–376. [Google Scholar] [CrossRef]
- Rehman, Z.U.; Meng, C.; Sun, Y.; Safdar, A.; Pasha, R.H.; Munir, M.; Ding, C. Oxidative Stress in Poultry: Lessons from the Viral Infections. Oxid. Med. Cell. Longev. 2018, 2018, 5123147. [Google Scholar] [CrossRef]
- Marrocco, I.; Altieri, F.; Peluso, I. Measurement and clinical significance of biomarkers of oxidative stress in humans. Oxid. Med. Cell. Longev. 2017, 2017, 6501046. [Google Scholar] [CrossRef]
- Gradinski-Vrbanac, B.; Stojević, Z.; Milinković-Tur, S.; Balenović, T.; Piršljin, J.; Zdelar-Tuk, M. In vitro susceptibility of duck, chicken, and pig erythrocyte lipids to peroxidation. Vet. Med. Czech 2002, 47, 303–308. [Google Scholar] [CrossRef]
- Aladrović, J.; Beer Ljubić, B.; Milinković-Tur, S.; Plužarić, S. The influence of organic selenium feed supplement and fasting on oxidative damage in different tissues of broiler chickens. Vet. Arhiv 2013, 83, 47–56. [Google Scholar]
- Kehrer, J.P. The Haber-Weiss reaction and mechanisms of toxicity. Toxicology 2000, 149, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Horton, J.W. Free radicals and lipid peroxidation mediated injury in burn trauma: The role of antioxidant therapy. Toxicology 2003, 189, 75–88. [Google Scholar] [CrossRef] [PubMed]
- Poljsak, B.; Pócsi, I.; Raspor, P.; Pesti, M. Interference of chromium with biological systems in yeasts and fungi: A review. J. Basic Microbiol. 2010, 50, 21–36. [Google Scholar] [CrossRef]
- Hõrak, P.; Cohen, A. How to measure oxidative stress in an ecological context: Methodological and statistical issues. Funct. Ecol. 2010, 24, 960–970. [Google Scholar] [CrossRef]
- Williams, J.B.; Miller, R.A.; Harper, J.M.; Wiersma, P. Functional Linkages for the Pace of Life, Life-history, and Environment in Birds. Integr. Comp. Biol. 2010, 50, 855–868. [Google Scholar] [CrossRef]
- Halliwell, B.; Whiteman, M. Measuring reactive species and oxidative damage in vivo and in cell culture: How should you do it and what do the results mean? Br. J. Pharmacol. 2004, 142, 231–255. [Google Scholar] [CrossRef]
- Costantini, D.; Verhulst, S. Does high antioxidant capacity indicate low oxidative stress? Funct. Ecol. 2009, 23, 506–509. [Google Scholar] [CrossRef]
- Romero-Haro, A.A.; Alonso-Alvarez, C. Covariation in oxidative stress markers in the blood of nestling and adult birds. Physiol. Biochem. Zool. 2014, 87, 353–362. [Google Scholar] [CrossRef]
- Pedersen, A.B.; Babayan, S.A. Wild immunology. Mol. Ecol. 2011, 20, 872–880. [Google Scholar] [CrossRef]
- Rikans, L.E.; Hornbrook, K.R. Lipid peroxidation, antioxidant protection and aging. Biochim. Biophys. Acta Mol. Basis Dis. 1997, 1362, 116–127. [Google Scholar] [CrossRef]
- Birben, E.; Murat Sahiner, U.; Sackesen, C.; Erzurum, S.; Kalayci, O. Oxidative stress and antioxidant defense. WAO J. 2012, 5, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Bodey, T.W.; Cleasby, I.R.; Blount, J.D.; Vigfusdottir, F.; Mackie, K.; Bearhop, S. Measures of oxidative state are primarily driven by extrinsic factors in a long-distance migrant. Biol. Lett. 2019, 15, 20180750. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Zhang, J.; Xu, S.; Peng, X.; Yan, X.; Li, X.; Wang, H.; Chang, H.; Gao, Y. Controllable oxidative stress and tissue specificity in major tissues during the torpor-arousal cycle in hibernating Daurian ground squirrels. Open Biol. 2018, 8, 180111. [Google Scholar] [CrossRef]
- Eikenaar, C.; Kallstig, E.; Andersson, M.N.; Herrera-Dueñas, Á.; Isaksson, C. Oxidative challenges of avian migration: A comparative field study on a partial migrant. Physiol. Biochem. Zool. 2017, 90, 223–229. [Google Scholar] [CrossRef]
- Mambo, E. Electrophile and oxidant damage of mitochondrial DNA leading to rapid evolution of homoplasmic mutations. Proc. Natl. Acad. Sci. USA 2003, 100, 1838–1843. [Google Scholar] [CrossRef] [PubMed]
- Yakes, F.M.; VanHouten, B. Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. Proc. Natl. Acad. Sci. USA 1997, 94, 514–519. [Google Scholar] [CrossRef]
- Balaban, R.S.; Nemoto, S.; Finkel, T. Mitochondria, oxidants, and aging. Cell 2005, 120, 483–495. [Google Scholar] [CrossRef]
- Alonso-Alvarez, C.; Bertrand, S.; Faivre, B.; Sorci, G. Increased susceptibility to oxidative damage as a cost of accelerated somatic growth in zebra finches. Funct. Ecol. 2007, 21, 873–879. [Google Scholar] [CrossRef]
- Kim, S.-Y.; Noguera, J.C.; Morales, J.; Velando, A. Quantitative genetic evidence for trade-off between growth and resistance to oxidative stress in a wild bird. Evol. Ecol. 2011, 25, 461–472. [Google Scholar] [CrossRef]
- Stier, A. Elevation impacts the balance between growth and oxidative stress in coal tits. Oecologia 2014, 175, 791–800. [Google Scholar] [CrossRef]
- Davies, M.J.; Fu, S.; Wang, H.; Dean, R.T. Stable markers of oxidant damage to proteins and their application in the study of human disease. Free Radic. Biol. Med. 1999, 27, 1151–1163. [Google Scholar] [CrossRef] [PubMed]
- Shacter, E. Quantification and significance of protein oxidation in biological samples. Drug Metab. Rev. 2000, 32, 307–326. [Google Scholar] [CrossRef]
- Halliwell, B.; Gutteridge, J.M.C. Free Radicals in Biology and Medicine, 3rd ed.; Oxford University Press: Oxford, UK, 2015. [Google Scholar]
- Bottje, W. Mitochondrial Physiology. In Sturkie’s Avian Physiology; Elsevier: Amsterdam, The Netherlands, 2015; pp. 39–51. [Google Scholar] [CrossRef]
- Costantini, D.; Cardinale, M.; Carere, C. Oxidative damage and antioxidant capacity in two migratory bird species at a stop-over site. Comp. Biochem. Physiol. C 2007, 144, 363–371. [Google Scholar]
- Harrison, X.A.; Hodgson, D.J.; Inger, R.; Colhoun, K.; Gudmundsson, G.A.; McElwaine, G.; Tregenza, T.; Bearhop, S. Environmental conditions during breeding modify the strength of mass-dependent carry-over effects in a migratory bird. PLoS ONE 2013, 8, e77783. [Google Scholar] [CrossRef]
- Jenni-Eiermann, S.; Jenni, L.; Smith, S.; Costantini, D. Oxidative stress in endurance flight: An unconsidered factor in bird migration. PLoS ONE 2014, 9, e97650. [Google Scholar] [CrossRef]
- Dalle-Donne, I.; Rossi, R.; Giustarini, D.; Milzani, A.; Colombo, R. Protein carbonyl groups as biomarkers of oxidative stress. Clin. Chim. Acta 2003, 329, 23–38. [Google Scholar] [CrossRef]
- Dalle-Donne, I.; Rossi, R.; Colombo, R.; Giustarini, D.; Milzani, A. Biomarkers of oxidative damage in human disease. Clin. Chem. 2006, 52, 601–623. [Google Scholar] [CrossRef] [PubMed]
- Hermans, N.; Cos, P.; Maes, L.; De Bruyne, T.; Vanden Berghe, D.; Vlietinck, A.J.; Pieters, L. Challenges and pitfalls in antioxidant research. Curr. Med. Chem. 2007, 14, 417–430. [Google Scholar] [CrossRef] [PubMed]
- Yearsley, J.M.; Kyriazakis, A.; Gordon, J.L.; Johnston, S.L.; Speakman, J.R.; Tolkamp, B.J.; Illius, A.W. A life history model of somatic damage associated with resource acquisition: Damage protection or prevention. J. Theor. Biol. 2005, 235, 305–317. [Google Scholar] [CrossRef]
- Sies, H. Strategies of antioxidant defense. Eur. J. Biochem. 1993, 215, 213–219. [Google Scholar] [CrossRef]
- Bradamante, V. Djelotvornost antioksidansa u kontroliranim kliničkim pokusima. In Oksidativni Stres i Djelotvornost Antioksidansa; Bradamante, V., Lacković, Z., Eds.; Medicinska Naklada: Zagreb, Croatia, 2002; pp. 106–120. [Google Scholar]
- Miller, N.J.; Rice-Evans, C.; Davies, M.J.; Gopinathan, V.; Milner, A. A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clin. Sci. 1993, 84, 407–412. [Google Scholar] [CrossRef] [PubMed]
- Abeyrathne, E.D.N.S.; Nam, K.; Huang, X.; Ahn, D.U. Plant- and animal-based antioxidants’ structure, efficacy, mechanisms, and applications: A review. Antioxidants 2022, 11, 1025. [Google Scholar] [CrossRef]
- Hewitt, O.H.; Degnan, S.M. Antioxidant enzymes that target hydrogen peroxide are conserved across the animal kingdom, from sponges to mammals. Sci. Rep. 2023, 13, 2510. [Google Scholar] [CrossRef] [PubMed]
- Das, J.; Ghosh, J.; Roy, A.; Sil, P.C. Mangiferin exerts hepatoprotective activity against D-galactosamine-induced acute toxicity and oxidative/nitrosative stress via Nrf2–NF-κB pathways. Toxicol. Appl. Pharmacol. 2012, 260, 35–47. [Google Scholar] [CrossRef]
- Sies, H.; Berndt, C.; Jones, D.P. Oxidative stress. Annu. Rev. Biochem. 2017, 86, 715–748. [Google Scholar] [CrossRef] [PubMed]
- Oropesa, A.L.; Gravato, C.; Guilhermino, L.; Soler, F. Antioxidant defences and lipid peroxidation in wild White Storks, Ciconia ciconia, from Spain. J. Ornithol. 2013, 154, 971–976. [Google Scholar] [CrossRef]
- Fransen, M.; Nordgren, M.; Wang, B.; Apanasets, O. Role of peroxisomes in ROS/RNS metabolism: Implications for human disease. Biochim. Biophys. Acta Mol. Basis Dis. 2012, 1822, 1363–1373. [Google Scholar] [CrossRef]
- Sharma, P.; Sharma, A.; Jasuja, N.D.; Joshi, S.C. Organophosphorous compounds and oxidative stress: A review. Toxicol. Environ. Chem. 2014, 96, 681–698. [Google Scholar] [CrossRef]
- Berglund, A.M.M.; Sturve, J.; Förlin, L.; Nyholm, N.E.I. Oxidative stress in pied flycatcher (Ficedula hypoleuca) nestlings from metal-contaminated environments in northern Sweden. Environ. Res. 2007, 105, 330–339. [Google Scholar] [CrossRef]
- Johansson, L.; Gafvelin, G.; Arnér, E.S.J. Selenocysteine in proteins—Properties and biotechnological use. Biochim. Biophys. Acta Gen. Subj. 2005, 1726, 1–13. [Google Scholar] [CrossRef]
- Gibson, L.A.; Lavoie, R.A.; Bissegger, S.; Campbell, L.M.; Langlois, V.S. A positive correlation between mercury and oxidative stress-related gene expression (GPX3 and GSTM3) is measured in female double-crested cormorant blood. Ecotoxicology 2014, 23, 1004–1014. [Google Scholar] [CrossRef] [PubMed]
- Kong, B.-W.; Kim, H.; Foster, D.N. Cloning and expression analysis of chicken phospholipid-hydroperoxide glutathione peroxidase. Anim. Biotechnol. 2003, 14, 19–29. [Google Scholar] [CrossRef]
- Isaksson, C.; Ornborg, J.; Stephensen, E.; Andersson, S. Plasma glutathione and carotenoid coloration as potential biomarkers of environmental stress in great tits. EcoHealth 2005, 2, 138–146. [Google Scholar] [CrossRef]
- Kamiński, P.; Kurhalyuk, N.; Jerzak, L.; Kasprzak, M.; Tkachenko, H.; Klawe, J.J.; Szady-Grad, M.; Koim, B.; Wiśniewska, E. Ecophysiological determinations of antioxidant enzymes and lipoperoxidation in the blood of White Stork (Ciconia ciconia) from Poland. Environ. Res. 2009, 109, 29–39. [Google Scholar] [CrossRef]
- Cohen, A.; Klasing, K.; Ricklefs, R. Measuring circulating antioxidants in wild birds. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2007, 147, 110–121. [Google Scholar] [CrossRef]
- Cohen, A.A.; McGraw, K.J.; Wiersma, P.; Williams, J.B.; Robinson, W.D.; Robinson, T.R.; Brawn, J.D.; Ricklefs, R.E. Interspecific associations between circulating antioxidant levels and life-history variation in birds. Am. Nat. 2008, 172, 178–193. [Google Scholar] [CrossRef]
- Tsahar, E.; Arad, Z.; Izhaki, I.; Guglielmo, C.G. The relationship between uric acid and its oxidative product allantoin: A potential indicator for the evaluation of oxidative stress in birds. J. Comp. Physiol. B 2006, 176, 653–661. [Google Scholar] [CrossRef] [PubMed]
- Hill, G.E.; Hood, W.R.; Ge, Z.; Grinter, R.; Greening, C.; Johnson, J.D.; Park, N.R.; Taylor, H.A.; Andreasen, V.A.; Powers, M.J.; et al. Plumage redness signals mitochondrial function in the house finch. Proc. R. Soc. B Biol. Sci. 2019, 286, 20191354. [Google Scholar] [CrossRef]
- Hartley, R.C.; Kennedy, M.W. Are carotenoids a red herring in sexual display? Trends Ecol. Evol. 2004, 19, 353–354. [Google Scholar] [CrossRef]
- Perez-Rodriguez, L.; Mougeot, F.; Alonso-Alvarez, C.; Blas, J.; Viñuela, J.; Bortolotti, G.R. Cell-mediated immune activation rapidly decreases plasma carotenoids but does not affect oxidative stress in red-legged partridges (Alectoris rufa). J. Exp. Biol. 2008, 211, 2155–2163. [Google Scholar] [CrossRef]
- Eid, Y.; Ebeid, T.; Younis, H. Vitamin E supplementation reduces dexamethasone-induced oxidative stress in chicken semen. Br. Poult. Sci. 2006, 47, 350–356. [Google Scholar] [CrossRef] [PubMed]
- de Ayala, R.M.; Martinelli, R.; Saino, N. Vitamin E supplementation enhances growth and condition of nestling barn swallows (Hirundo rustica). Behav. Ecol. Sociobiol. 2007, 60, 619–630. [Google Scholar] [CrossRef]
- Cohen, A.A.; McGraw, K.J. No simple measures for antioxidant status in birds: Complexity in inter- and intraspecific correlations among circulating antioxidant types. Funct. Ecol. 2009, 23, 310–320. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faraguna, S.; Milinković Tur, S.; Sobočanec, S.; Pinterić, M.; Belić, M. Assessment of Oxidative Stress and Associated Biomarkers in Wild Avian Species. Animals 2025, 15, 1203. https://doi.org/10.3390/ani15091203
Faraguna S, Milinković Tur S, Sobočanec S, Pinterić M, Belić M. Assessment of Oxidative Stress and Associated Biomarkers in Wild Avian Species. Animals. 2025; 15(9):1203. https://doi.org/10.3390/ani15091203
Chicago/Turabian StyleFaraguna, Siniša, Suzana Milinković Tur, Sandra Sobočanec, Marija Pinterić, and Maja Belić. 2025. "Assessment of Oxidative Stress and Associated Biomarkers in Wild Avian Species" Animals 15, no. 9: 1203. https://doi.org/10.3390/ani15091203
APA StyleFaraguna, S., Milinković Tur, S., Sobočanec, S., Pinterić, M., & Belić, M. (2025). Assessment of Oxidative Stress and Associated Biomarkers in Wild Avian Species. Animals, 15(9), 1203. https://doi.org/10.3390/ani15091203