Effects of Onion Peel Inclusion on In Vitro Fermentation, Methane and Carbon Dioxide Emissions, and Nutrient Degradability in Dairy Cow Diets
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Dietary Substrates
2.2. Animal Care and Feeding
2.3. Treatments and In Vitro Batch Culture
2.4. Individual Gases
2.5. Volatile Fatty Acid
2.6. Chemical Analysis
2.7. Statistical Analysis
3. Results
3.1. Total and Individual Gas Concentrations
3.2. Nutrient Disappearance
3.3. Volatile Fatty Acids Production
4. Discussion
4.1. Total and Individual Gas Concentrations
4.2. Nutrient Disappearance
4.3. Volatile Fatty Acids Production
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ADF | Acid detergent fiber |
C2 | Acetate |
C3 | Propionate |
C4 | Butyrate |
CH4 | Methane |
CP | Crude protein |
CO2 | Carbon dioxide |
dADF | Degradable acid detergent fiber |
dDM | Degradable dry matter |
DM | Dry matter |
dNDF | Degradable neutral detergent fiber |
EE | Ether extract |
GHG | GHG |
GP | Gas production |
HC | High concentrate |
HF | High forage |
H2S | Hydrogen sulfide |
NDF | Neutral detergent fiber |
OM | Organic matter |
OP | Onion peel |
NH3 | Ammonia |
VFA | Volatile fatty acids |
References
- Lambo, M.T.; Ma, H.; Liu, R.; Dai, B.; Zhang, Y.; Li, Y. Review: Mechanism, Effectiveness, and the Prospects of Medicinal Plants and Their Bioactive Compounds in Lowering Ruminants’ Enteric Methane Emission. Animal 2024, 18, 101134. [Google Scholar] [CrossRef]
- Beauchemin, K.A.; Ungerfeld, E.M.; Abdalla, A.L.; Alvarez, C.; Arndt, C.; Becquet, P.; Benchaar, C.; Berndt, A.; Mauricio, R.M.; McAllister, T.A.; et al. Invited Review: Current Enteric Methane Mitigation Options. J. Dairy Sci. 2022, 105, 9297–9326. [Google Scholar] [CrossRef]
- Kholif, A.E.; Elghandour, M.M.Y.; Salem, A.Z.M.; Barbabosa, A.; Márquez, O.; Odongo, N.E. The Effects of Three Total Mixed Rations with Different Concentrate to Maize Silage Ratios and Different Levels of Microalgae Chlorella vulgaris on In Vitro Total Gas, Methane and Carbon Dioxide Production. J. Agric. Sci. 2016, 155, 494–507. [Google Scholar] [CrossRef]
- Morsy, T.A.; Kholif, A.E.; Adegbeye, M.J.; Olafadehan, O.A.; Gouda, G.A.; Fahmy, M.; Chahine, M. Lupin Seed Supplementation as a Functional Feed Additive: In Vitro Ruminal Gas, Methane and Carbon Dioxide Production, Fermentation Kinetics, and Nutrient Degradability. Animals 2024, 14, 2119. [Google Scholar] [CrossRef] [PubMed]
- Alabi, J.O.; Dele, P.A.; Okedoyin, D.O.; Wuaku, M.; Anotaenwere, C.C.; Adelusi, O.O.; Gray, D.; Ike, K.A.; Oderinwale, O.A.; Subedi, K.; et al. Synergistic Effects of Essential Oil Blends and Fumaric Acid on Ruminal Fermentation, Volatile Fatty Acid Production and Greenhouse Gas Emissions Using the Rumen Simulation Technique (RUSITEC). Fermentation 2024, 10, 114. [Google Scholar] [CrossRef]
- Olagunju, L.K.; Adelusi, O.O.; Dele, P.A.; Shaw, Y.; Brice, R.M.; Orimaye, O.E.; Villarreal-González, J.A.; Kang, H.W.; Kholif, A.E.; Anele, U.Y. Synergistic Effects of Mannan Oligosaccharides and Onion Peels on In Vitro Batch Culture Fermentation of High Concentrate and Forage Diets. Animals 2024, 14, 3180. [Google Scholar] [CrossRef]
- Celano, R.; Docimo, T.; Piccinelli, A.L.; Gazzerro, P.; Tucci, M.; Di Sanzo, R.; Carabetta, S.; Campone, L.; Russo, M.; Rastrelli, L. Onion Peel: Turning a Food Waste into a Resource. Antioxidants 2021, 10, 304. [Google Scholar] [CrossRef]
- Bains, A.; Sridhar, K.; Singh, B.N.; Kuhad, R.C.; Chawla, P.; Sharma, M. Valorization of Onion Peel Waste: From Trash to Treasure. Chemosphere 2023, 343, 140178. [Google Scholar] [CrossRef]
- Kholif, A.E.; Gouda, G.A.; Fahmy, M.; Morsy, T.A.; Abdelsattar, M.M.; Vargas-Bello-Pérez, E. Fennel Seeds Dietary Inclusion as A Sustainable Approach to Reduce Methane Production and Improve Nutrient Utilization and Ruminal Fermentation. Anim. Sci. J. 2024, 95, e13910. [Google Scholar] [CrossRef]
- Vastolo, A.; Serrapica, F.; Cavallini, D.; Fusaro, I.; Atzori, A.S.; Todaro, M. Editorial: Alternative and Novel Livestock Feed: Reducing Environmental Impact. Front. Veter. Sci. 2024, 11, 1441905. [Google Scholar] [CrossRef]
- Kholif, A.E.; Olafadehan, O.A.; Gouda, G.A.; Fahmy, M.; Morsy, T.A.; Ammar, H.; Hamdon, H.A.; Chahine, M. Turmeric Rhizomes Reduced in vitro Methane Production and Improved Gas Production and Nutrient Degradability. Anim. Biotechnol. 2024, 35, 2371519. [Google Scholar] [CrossRef]
- Sari, N.F.; Ray, P.; Rymer, C.; Kliem, K.E.; Stergiadis, S. Garlic and Its Bioactive Compounds: Implications for Methane Emissions and Ruminant Nutrition. Animals 2022, 12, 2998. [Google Scholar] [CrossRef] [PubMed]
- Eom, J.S.; Lee, S.J.; Lee, Y.; Kim, H.S.; Choi, Y.Y.; Kim, H.S.; Kim, D.H.; Lee, S.S. Effects of Supplementation Levels of Allium fistulosum L. Extract on In Vitro Ruminal Fermentation Characteristics and Methane Emission. PeerJ 2020, 8, e9651. [Google Scholar] [CrossRef]
- Kholif, A.E. A Review of Effect of Saponins on Ruminal Fermentation, Health and Performance of Ruminants. Vet. Sci. 2023, 10, 450. [Google Scholar] [CrossRef]
- Alabi, J.O.; Wuaku, M.; Anotaenwere, C.C.; Okedoyin, D.O.; Adelusi, O.O.; Ike, K.A.; Gray, D.; Kholif, A.E.; Subedi, K.; Anele, U.Y. A Mixture of Prebiotics, Essential Oil Blends, and Onion Peel Did Not Affect Greenhouse Gas Emissions or Nutrient Degradability, but Altered Volatile Fatty Acids Production in Dairy Cows Using Rumen Simulation Technique (RUSITEC). Fermentation 2024, 10, 324. [Google Scholar] [CrossRef]
- Busquet, M.; Calsamiglia, S.; Ferret, A.; Carro, M.D.; Kamel, C. Effect of Garlic Oil and Four of its Compounds on Rumen Microbial Fermentation. J. Dairy Sci. 2005, 88, 4393–4404. [Google Scholar] [CrossRef]
- National Research Council. Nutrient Requirements of Dairy Cattle, 7th ed.; National Academies Press: Washington, DC, USA, 2001; p. 138. ISBN 978-0-309-06997-7. [Google Scholar] [CrossRef]
- Anele, U.; Refat, B.; Swift, M.-L.; He, Z.; Zhao, Y.; McAllister, T.; Yang, W. Effects of Bulk Density, Precision Processing and Processing Index on In Vitro Ruminal Fermentation of Dry-Rolled Barley Grain. Anim. Feed. Sci. Technol. 2014, 195, 28–37. [Google Scholar] [CrossRef]
- Mauricio, R.M.; Mould, F.L.; Dhanoa, M.S.; Owen, E.; Channa, K.S.; Theodorou, M.K. A Semi-Automated In Vitro Gas Production Technique for Ruminant Feedstuff Evaluation. Anim. Feed. Sci. Technol. 1999, 79, 321–330. [Google Scholar] [CrossRef]
- Palmonari, A.; Cavallini, D.; Sniffen, C.J.; Fernandes, L.; Holder, P.; Fusaro, I.; Giammarco, M.; Formigoni, A.; Mammi, L.M.E. In Vitro Evaluation of Sugar Digestibility in Molasses. Ital. J. Anim. Sci. 2021, 20, 571–577. [Google Scholar] [CrossRef]
- Koakoski, D.L.; Bordin, T.; Cavallini, D.; Buonaiuto, G. A Preliminary Study of the Effects of Gaseous Ozone on the Microbiological and Chemical Characteristics of Whole-Plant Corn Silage. Fermentation 2024, 10, 398. [Google Scholar] [CrossRef]
- Olagunju, L.K.; Isikhuemhen, O.S.; Dele, P.A.; Anike, F.N.; Ike, K.A.; Shaw, Y.; Brice, R.M.; Orimaye, O.E.; Wuaku, M.; Essick, B.G.; et al. Effects of the Incubation Period of Pleurotus ostreatus on the Chemical Composition and Nutrient Availability of Solid-State-Fermented Corn Stover. Animals 2023, 13, 2587. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Moreno, M.; Binversie, E.; Fessenden, S.W.; Stern, M.D. Mitigation of In Vitro Hydrogen Sulfide Production Using Bismuth subsalicylate with and without Monensin in Beef Feedlot Diets. J. Anim. Sci. 2015, 93, 5346–5354. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of AOAC International, 21st ed.; Oxford University Press: Washington, DC, USA, 2019; ISBN 9780197610138. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef] [PubMed]
- Morsy, T.A.; Gouda, G.A.; Kholif, A.E. In Vitro Fermentation and Production of Methane and Carbon dioxide from Rations Containing Moringa oleifera Leave Silage as a Replacement of Soybean Meal: In vitro Assessment. Environ. Sci. Pollut. Res. 2022, 29, 69743–69752. [Google Scholar] [CrossRef]
- Ramos, S.C.; Jeong, C.D.; Mamuad, L.L.; Kim, S.H.; Kang, S.H.; Kim, E.T.; Cho, Y.I.; Lee, S.S.; Lee, S.S. Diet Transition from High-Forage to High-Concentrate Alters Rumen Bacterial Community Composition, Epithelial Transcriptomes and Ruminal Fermentation Parameters in Dairy Cows. Animals 2021, 11, 838. [Google Scholar] [CrossRef]
- Kazemi, M. An Investigation on Chemical/Mineral Compositions, Ruminal Microbial Fermentation, and Feeding Value of Some Leaves as Alternative Forages for Finishing Goats During the Dry Season. AMB Express 2021, 11, 76. [Google Scholar] [CrossRef] [PubMed]
- Ankri, S.; Mirelman, D. Antimicrobial Properties of Allicin from Garlic. Microbes Infect. 1999, 1, 125–129. [Google Scholar] [CrossRef] [PubMed]
- Reuter, H.D.; Koch, H.P.; Lawson, D.L. Lawson Effects and Applications of Garlic and Its Preparations; Williams & Wilkins: Baltimore, MD, USA, 1996. [Google Scholar]
- Ma, T.; Chen, D.; Tu, Y.; Zhang, N.; Si, B.; Deng, K.; Diao, Q. Effect of Supplementation of Allicin on Methanogenesis and Ruminal Microbial Flora in Dorper Crossbred Ewes. J. Anim. Sci. Biotechnol. 2016, 7, 1. [Google Scholar] [CrossRef]
- Oskoueian, E.; Abdullah, N.; Oskoueian, A. Effects of Flavonoids on Rumen Fermentation Activity, Methane Production, and Microbial Population. BioMed Res. Int. 2013, 2013, 349129. [Google Scholar] [CrossRef]
- Kholif, A.E.; Olafadehan, O.A. Essential Oils and Phytogenic Feed Additives in Ruminant Diet: Chemistry, Ruminal Microbiota and Fermentation, Feed Utilization and Productive Performance. Phytochem. Rev. 2021, 20, 1087–1108. [Google Scholar] [CrossRef]
- Li, R.; Teng, Z.; Lang, C.; Zhou, H.; Zhong, W.; Ban, Z.; Yan, X.; Yang, H.; Farouk, M.H.; Lou, Y. Effect of Different Forage-to-Concentrate Ratios on Ruminal Bacterial Structure and Real-Time Methane Production in Sheep. PLoS ONE 2019, 14, e0214777. [Google Scholar] [CrossRef]
- Olagaray, K.E.; Bradford, B.J. Plant Flavonoids to Improve Productivity of Ruminants-A review. Anim. Feed. Sci. Technol. 2019, 251, 21–36. [Google Scholar] [CrossRef]
- Kumar, S.; Treloar, B.P.; Teh, K.H.; McKenzie, C.M.; Henderson, G.; Attwood, G.T.; Waters, S.M.; Patchett, M.L.; Janssen, P.H. Sharpea and Kandleria are Lactic Acid Producing Rumen Bacteria That Do Not Change Their Fermentation Products When Co-Cultured with a Methanogen. Anaerobe 2018, 54, 31–38. [Google Scholar] [CrossRef]
- Yaxing, Z.; Erdene, K.; Zhibi, B.; Changjin, A.; Chen, B. Effects of Allium mongolicum Regel Essential Oil Supplementation on Growth Performance, Nutrient Digestibility, Rumen Fermentation, and Bacterial Communities in Sheep. Front. Veter-Sci. 2022, 9, 926721. [Google Scholar] [CrossRef]
- Xie, K.; Wang, Z.; Wang, Y.; Wang, C.; Chang, S.; Zhang, C.; Zhu, W.; Hou, F. Effects of Allium mongolicum Regel Supplementation on the Digestibility, Methane Production, and Antioxidant Capacity of Simmental Calves in Northwest China. Anim. Sci. J. 2020, 91, e13392. [Google Scholar] [CrossRef] [PubMed]
- Aoyama, S.; Yamamoto, Y. Antioxidant Activity and Flavonoid Content of Welsh Onion (Allium fistulosum) and the Effect of Thermal Treatment. Food Sci. Technol. Res. 2007, 13, 67–72. [Google Scholar] [CrossRef]
- Chen, X.; Yan, F.; Liu, T.; Zhang, Y.; Li, X.; Wang, M.; Zhang, C.; Xu, X.; Deng, L.; Yao, J.; et al. Ruminal Microbiota Determines the High-Fiber Utilization of Ruminants: Evidence from the Ruminal Microbiota Transplant. Microbiol. Spectr. 2022, 10, e0044622. [Google Scholar] [CrossRef]
- Shah, A.M.; Ma, J.; Wang, Z.; Hu, R.; Wang, X.; Peng, Q.; Amevor, F.K.; Goswami, N. Production of Hydrogen Sulfide by Fermentation in Rumen and Its Impact on Health and Production of Animals. Processes 2020, 8, 1169. [Google Scholar] [CrossRef]
- Sun, X.; Cheng, L.; Jonker, A.; Munidasa, S.; Pacheco, D. A Review: Plant Carbohydrate Types—The Potential Impact on Ruminant Methane Emissions. Front. Vet. Sci. 2022, 9, 880115. [Google Scholar] [CrossRef]
- Klevenhusen, F.; Zebeli, Q. A review on the Potentials of Using Feeds Rich in Water-Soluble Carbohydrates to Enhance Rumen Health and Sustainability of Dairy Cattle Production. J. Sci. Food Agric. 2021, 101, 5737–5746. [Google Scholar] [CrossRef]
- Urrutia, N.; Bomberger, R.; Matamoros, C.; Harvatine, K. Effect of Dietary Supplementation of Sodium Acetate and Calcium Butyrate on Milk Fat Synthesis in Lactating Dairy Cows. J. Dairy Sci. 2019, 102, 5172–5181. [Google Scholar] [CrossRef] [PubMed]
- Rigout, S.; Hurtaud, C.; Lemosquet, S.; Bach, A.; Rulquin, H. Lactational Effect of Propionic Acid and Duodenal Glucose in Cows. J. Dairy Sci. 2003, 86, 243–253. [Google Scholar] [CrossRef] [PubMed]
- Lamminen, M.; Halmemies-Beauchet-Filleau, A.; Kokkonen, T.; Jaakkola, S.; Vanhatalo, A. Different Microalgae Species as a Substitutive Protein Feed for Soya Bean Meal in Grass Silage Based Dairy Cow Diets. Anim. Feed. Sci. Technol. 2019, 247, 112–126. [Google Scholar] [CrossRef]
- Zhao, Y.; Ao, C.; Bao, Z.; Fan, Z.; Liu, W.; Ding, H.; Chen, H. Effects of Allium monogolium Regel and Its Extracts on Rumen Fermentation and Microflora of Sheep. Chin. J. Anim. Nutr. 2019, 31, 2313–2322. [Google Scholar]
High Forage | High Concentrate | |
---|---|---|
Dry matter | 96.2 | 95.8 |
Total ash | 4.20 | 6.60 |
Organic matter | 95.8 | 93.4 |
Crude protein | 6.72 | 16.6 |
Ether extract | 5.95 | 5.60 |
Non-fiber carbohydrates | 38.4 | 39.2 |
Neutral detergent fiber | 44.7 | 32.0 |
Acid detergent fiber | 21.3 | 13.7 |
Acid detergent lignin | 1.67 | 2.86 |
Cellulose | 19.6 | 10.8 |
Hemicellulose | 23.4 | 18.3 |
Diet | Incubation Time (h) | Additive 1 | Gas | CH4 | CO2 | NH3 | H2S |
---|---|---|---|---|---|---|---|
HC | 6 | Control | 21.9 | 0.31 | 6.9 | 39.3 | 182 |
OP2.5 | 21.4 | 0.31 | 6.5 | 39.2 | 194 | ||
OP5 | 21.3 | 0.29 | 6.2 | 38.4 | 186 | ||
OP7.5 | 22.6 | 0.36 | 7.0 | 40.4 | 192 | ||
OP10 | 21.3 | 0.29 | 6.4 | 29.3 | 142 | ||
HF | 6 | Control | 13.0 | 0.15 | 3.6 | 14.8 | 78 |
OP2.5 | 14.1 | 0.12 | 3.2 | 12.6 | 61 | ||
OP5 | 14.2 | 0.14 | 3.5 | 17.5 | 88 | ||
OP7.5 | 12.3 | 0.15 | 3.9 | 20.2 | 103 | ||
OP10 | 12.5 | 0.15 | 3.8 | 21.6 | 101 | ||
SEM | 0.73 | 0.017 | 0.32 | 2.69 | 16.1 | ||
Linear | 0.608 | 0.460 | 0.802 | 0.145 | 0.156 | ||
Quadratic | 0.876 | 0.026 | 0.068 | 0.019 | 0.347 | ||
HC | 24 | Control | 140 | 5.6 | 45.1 | 178 | 1401 |
OP2.5 | 159 | 6.4 | 52.8 | 206 | 1648 | ||
OP5 | 137 | 5.1 | 43.6 | 171 | 1327 | ||
OP7.5 | 131 | 4.6 | 41.9 | 1666 | 1224 | ||
OP10 | 126 | 4.5 | 41.1 | 161 | 1198 | ||
HF | 24 | Control | 111 | 4.3 | 36.4 | 144 | 1043 |
OP2.5 | 118 | 4.6 | 39.3 | 171 | 1314 | ||
OP5 | 116 | 4.6 | 38.6 | 158 | 1261 | ||
OP7.5 | 118 | 4.7 | 39.6 | 157 | 1240 | ||
OP10 | 118 | 4.2 | 38.7 | 149 | 1142 | ||
SEM | 7.0 | 0.31 | 2.41 | 11.1 | 88.1 | ||
Linear | 0.868 | 0.984 | 0.821 | 0.658 | 0.468 | ||
Quadratic | 0.015 | 0.027 | 0.012 | 0.037 | 0.034 | ||
HC | 48 | Control | 287 | 12.7 | 94 | 289 | 2308 |
OP2.5 | 281 | 12.8 | 93 | 287 | 2348 | ||
OP5 | 294 | 13.4 | 97 | 296 | 2413 | ||
OP7.5 | 316 | 15.0 | 106 | 315 | 2583 | ||
OP10 | 294 | 12.5 | 96 | 284 | 2338 | ||
HF | 48 | Control | 284 | 11.5 | 93 | 312 | 1827 |
OP2.5 | 282 | 11.9 | 96 | 349.4 | 2223 | ||
OP5 | 267 | 10.9 | 88 | 298 | 2010 | ||
OP7.5 | 275 | 11.4 | 93 | 281 | 1963 | ||
OP10 | 265 | 11.1 | 90 | 265 | 1946 | ||
SEM | 2.8 | 0.60 | 3.2 | 22.5 | 141.1 | ||
Linear | 0.254 | 0.056 | 0.148 | 0.724 | 0.139 | ||
Quadratic | 0.035 | 0.027 | 0.019 | 0.045 | 0.019 | ||
Pooled SEM | 6.09 | 0.389 | 2.30 | 14.57 | 96.5 | ||
Pooled p-value | |||||||
Linear | 0.654 | 0.547 | 0.795 | 0.417 | 0.107 | ||
Quadratic | 0.031 | 0.039 | 0.018 | 0.025 | 0.033 | ||
Time | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | ||
Diet | <0.001 | <0.001 | <0.001 | 0.039 | <0.001 | ||
Additive × Time | 0.104 | 0.051 | 0.118 | 0.644 | 0.355 | ||
Additive × Diet | 0.829 | 0.704 | 0.897 | 0.805 | 0.697 | ||
Time × Diet | 0.028 | <0.001 | 0.026 | 0.026 | 0.001 | ||
Additive × Time × Diet | 0.004 | 0.010 | 0.008 | 0.100 | 0.193 |
Diet | Incubation Time (h) | Additive 1 | dDM | dNDF | dADF | dADL |
---|---|---|---|---|---|---|
HC | 6 | Control | 19.3 | 42.3 | 44.0 | 6.61 |
OP2.5 | 19.6 | 41.8 | 45.8 | 8.10 | ||
OP5 | 18.3 | 41.2 | 48.0 | 8.05 | ||
OP7.5 | 18.0 | 41.1 | 49.1 | 7.62 | ||
OP10 | 15.8 | 40.6 | 48.9 | 6.96 | ||
HF | 6 | Control | 19.4 | 55.2 | 55.3 | 6.70 |
OP2.5 | 20.6 | 55.4 | 53.8 | 6.40 | ||
OP5 | 18.8 | 55.5 | 57.0 | 5.58 | ||
OP7.5 | 19.2 | 56.6 | 57.3 | 4.74 | ||
OP10 | 19.7 | 57.8 | 58.8 | 5.27 | ||
SEM | 0.79 | 1.10 | 0.65 | 0.494 | ||
Linear | 0.662 | 0.819 | 0.001 | 0.821 | ||
Quadratic | 0.039 | 0.880 | 0.994 | 0.018 | ||
HC | 24 | Control | 29.5 | 48.1 | 46.1 | 9.99 |
OP2.5 | 23.7 | 48.6 | 47.5 | 9.94 | ||
OP5 | 29.4 | 48.1 | 48.9 | 9.77 | ||
OP7.5 | 29.1 | 49.2 | 51.0 | 9.47 | ||
OP10 | 28.5 | 48.8 | 52.0 | 8.48 | ||
HF | 24 | Control | 26.0 | 63.5 | 57.2 | 8.82 |
OP2.5 | 27.0 | 63.0 | 57.9 | 8.53 | ||
OP5 | 27.7 | 63.2 | 58.8 | 7.05 | ||
OP7.5 | 27.4 | 63.2 | 59.6 | 7.48 | ||
OP10 | 26.3 | 62.8 | 59.9 | 6.47 | ||
SEM | 1.86 | 0.77 | 0.46 | 0.727 | ||
Linear | 0.613 | 0.702 | <0.001 | 0.569 | ||
Quadratic | 0.028 | 0.641 | 0.307 | 0.047 | ||
HC | 48 | Control | 34.3 | 50.0 | 47.9 | 13.0 |
OP2.5 | 34.0 | 49.2 | 49.8 | 13.1 | ||
OP5 | 34.7 | 48.6 | 49.2 | 13.6 | ||
OP7.5 | 35.9 | 47.8 | 48.1 | 14.9 | ||
OP10 | 35.2 | 48.0 | 50.0 | 12.5 | ||
HF | 48 | Control | 33.5 | 70.5 | 56.2 | 9.00 |
OP2.5 | 32.3 | 66.8 | 56.7 | 9.81 | ||
OP5 | 32.2 | 67.8 | 56.5 | 10.12 | ||
OP7.5 | 32.8 | 67.2 | 58.9 | 9.52 | ||
OP10 | 32.5 | 66.6 | 59.4 | 8.22 | ||
SEM | 0.50 | 0.81 | 0.89 | 1.510 | ||
Linear | 0.697 | 0.015 | 0.618 | 0.025 | ||
Quadratic | 0.038 | 0.070 | 0.023 | 0.757 | ||
Pooled SEM | 1.20 | 0.91 | 0.69 | 1.006 | ||
Pooled p-value | ||||||
Linear | 0.702 | 0.195 | <0.001 | 0.486 | ||
Quadratic | 0.165 | 0.196 | 0.192 | 0.848 | ||
Time | <0.001 | <0.001 | <0.001 | <0.001 | ||
Diet | 0.135 | <0.001 | <0.001 | <0.001 | ||
Additive × Time | 0.178 | 0.209 | 0.026 | 0.813 | ||
Additive × Diet | 0.452 | 0.723 | 0.212 | 0.626 | ||
Time × Diet | 0.005 | <0.001 | 0.221 | 0.017 | ||
Additive × Time × Diet | 0.300 | 0.376 | 0.021 | 0.982 |
Diet | Incubation Time (h) | Additive 1 | Total | C2 | C2 (%) | C3 | C3 (%) | C4 | C4 (%) | C5 | C5 (%) | Iso-C4 | Iso-C4 (%) | Iso-C5 | Iso-C5 (%) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
HC | 6 | Control | 56.1 | 41.4 | 73.8 | 9.33 | 16.7 | 4.52 | 8.1 | 0.53 | 0.94 | 0.21 | 0.37 | 0.08 | 0.14 |
OP2.5 | 52.4 | 38.2 | 72.8 | 9.01 | 17.2 | 4.48 | 8.6 | 0.52 | 0.98 | 0.20 | 0.38 | 0.08 | 0.15 | ||
OP5 | 49.8 | 35.6 | 71.4 | 8.92 | 17.9 | 4.55 | 9.1 | 0.51 | 1.02 | 0.20 | 0.41 | 0.08 | 0.16 | ||
OP7.5 | 48.8 | 34.4 | 70.3 | 8.89 | 18.3 | 4.71 | 9.7 | 0.54 | 1.12 | 0.21 | 0.43 | 0.08 | 0.17 | ||
OP10 | 50.9 | 36.9 | 72.6 | 8.71 | 17.2 | 4.42 | 8.7 | 0.51 | 1.01 | 0.19 | 0.37 | 0.08 | 0.15 | ||
HF | 6 | Control | 50.4 | 36.8 | 72.9 | 8.73 | 17.3 | 4.09 | 8.1 | 0.54 | 1.06 | 0.22 | 0.43 | 0.09 | 0.18 |
OP2.5 | 52.0 | 39.0 | 73.0 | 8.33 | 17.3 | 3.87 | 8.1 | 0.50 | 1.03 | 0.21 | 0.43 | 0.09 | 0.18 | ||
OP5 | 44.5 | 31.9 | 74.5 | 8.00 | 16.3 | 3.87 | 7.6 | 0.51 | 0.97 | 0.20 | 0.40 | 0.09 | 0.18 | ||
OP7.5 | 48.2 | 35.1 | 71.4 | 8.39 | 18.0 | 3.92 | 8.8 | 0.50 | 1.15 | 0.21 | 0.45 | 0.09 | 0.20 | ||
OP10 | 47.5 | 34.7 | 72.8 | 8.21 | 17.4 | 3.86 | 8.1 | 0.49 | 1.03 | 0.20 | 0.43 | 0.09 | 0.18 | ||
SEM | 2.23 | 2.08 | 0.88 | 0.202 | 0.53 | 0.078 | 0.30 | 0.070 | 0.045 | 0.006 | 0.017 | 0.002 | 0.007 | ||
Linear | 0.029 | 0.028 | 0.017 | 0.094 | 0.048 | 0.616 | 0.003 | 0.293 | 0.046 | 0.655 | 0.033 | 0.876 | 0.030 | ||
Quadratic | 0.646 | 0.858 | 0.474 | 0.045 | 0.480 | 0.015 | 0.503 | 0.100 | 0.423 | 0.069 | 0.332 | 0.065 | 0.599 | ||
HC | 24 | Control | 76.5 | 48.2 | 62.9 | 16.75 | 21.9 | 10.26 | 13.4 | 0.91 | 1.19 | 0.31 | 0.41 | 0.13 | 0.17 |
OP2.5 | 76.2 | 46.9 | 65.2 | 17.34 | 20.9 | 10.58 | 12.2 | 0.96 | 1.08 | 0.30 | 0.37 | 0.13 | 0.16 | ||
OP5 | 72.5 | 45.6 | 61.5 | 15.62 | 22.7 | 9.98 | 14.0 | 0.87 | 1.25 | 0.30 | 0.40 | 0.13 | 0.17 | ||
OP7.5 | 74.6 | 47.5 | 62.8 | 16.11 | 21.6 | 9.69 | 13.8 | 0.83 | 1.22 | 0.29 | 0.41 | 0.12 | 0.18 | ||
OP10 | 76.0 | 49.6 | 63.7 | 15.89 | 21.6 | 9.31 | 13.0 | 0.82 | 1.12 | 0.28 | 0.39 | 0.12 | 0.16 | ||
HF | 24 | Control | 67.5 | 43.9 | 65.0 | 12.98 | 19.2 | 9.46 | 14.0 | 0.74 | 1.10 | 0.30 | 0.44 | 0.14 | 0.20 |
OP2.5 | 77.8 | 51.3 | 65.8 | 14.94 | 19.2 | 10.36 | 13.4 | 0.76 | 0.98 | 0.32 | 0.41 | 0.14 | 0.18 | ||
OP5 | 72.8 | 47.8 | 65.7 | 14.13 | 19.4 | 9.67 | 13.3 | 0.75 | 1.03 | 0.30 | 0.41 | 0.14 | 0.19 | ||
OP7.5 | 73.8 | 48.3 | 65.4 | 14.75 | 20.0 | 9.57 | 13.0 | 0.78 | 1.05 | 0.31 | 0.42 | 0.14 | 0.19 | ||
OP10 | 72.9 | 48.0 | 65.7 | 14.42 | 19.8 | 9.34 | 12.8 | 0.75 | 1.03 | 0.30 | 0.41 | 0.14 | 0.19 | ||
SEM | 2.98 | 2.20 | 0.65 | 0.667 | 0.37 | 0.282 | 0.35 | 0.022 | 0.040 | 0.009 | 0.018 | 0.003 | 0.008 | ||
Linear | 0.712 | 0.744 | 0.944 | 0.571 | 0.469 | 0.951 | 0.599 | 0.581 | 0.504 | 0.923 | 0.767 | 0.421 | 0.413 | ||
Quadratic | 0.027 | 0.032 | 0.928 | 0.039 | 0.994 | 0.014 | 0.969 | 0.038 | 0.660 | 0.742 | 0.246 | 0.577 | 0.543 | ||
HC | 48 | Control | 92.9 | 58.3 | 62.7 | 21.08 | 22.7 | 11.55 | 12.5 | 1.31 | 1.42 | 0.45 | 0.48 | 0.20 | 0.21 |
OP2.5 | 89.4 | 56.0 | 63.8 | 20.43 | 22.4 | 11.16 | 11.8 | 1.25 | 1.27 | 0.42 | 0.44 | 0.19 | 0.20 | ||
OP5 | 93.5 | 58.7 | 62.6 | 21.06 | 22.9 | 11.75 | 12.5 | 1.27 | 1.40 | 0.44 | 0.47 | 0.20 | 0.21 | ||
OP7.5 | 95.8 | 60.6 | 62.8 | 21.43 | 22.6 | 11.93 | 12.6 | 1.25 | 1.36 | 0.46 | 0.47 | 0.21 | 0.21 | ||
OP10 | 95.3 | 60.9 | 63.2 | 21.32 | 22.4 | 11.26 | 12.5 | 1.21 | 1.30 | 0.42 | 0.48 | 0.19 | 0.21 | ||
HF | 48 | Control | 96.4 | 62.3 | 64.6 | 19.91 | 20.6 | 12.42 | 12.9 | 1.17 | 1.21 | 0.43 | 0.45 | 0.21 | 0.21 |
OP2.5 | 93.4 | 59.5 | 63.7 | 19.94 | 21.3 | 12.31 | 13.2 | 1.07 | 1.14 | 0.42 | 0.45 | 0.20 | 0.21 | ||
OP5 | 94.2 | 59.3 | 63.0 | 20.72 | 22.0 | 12.39 | 13.2 | 1.10 | 1.17 | 0.45 | 0.48 | 0.20 | 0.22 | ||
OP7.5 | 90.8 | 59.1 | 65.1 | 19.07 | 21.0 | 11.02 | 12.1 | 1.02 | 1.12 | 0.39 | 0.43 | 0.19 | 0.20 | ||
OP10 | 91.4 | 59.4 | 64.9 | 19.33 | 21.2 | 11.01 | 12.1 | 1.07 | 1.17 | 0.40 | 0.44 | 0.19 | 0.21 | ||
SEM | 2.17 | 1.83 | 0.80 | 0.58 | 0.54 | 0.293 | 0.28 | 0.034 | 0.043 | 0.015 | 0.014 | 0.005 | 0.005 | ||
Linear | 0.657 | 0.626 | 0.787 | 0.948 | 0.703 | 0.898 | 0.789 | 0.028 | 0.088 | 0.771 | 0.571 | 0.719 | 0.936 | ||
Quadratic | 0.312 | 0.256 | 0.337 | 0.952 | 0.289 | 0.761 | 0.454 | 0.210 | 0.787 | 0.248 | 0.583 | 0.269 | 0.946 | ||
Pooled SEM | 2.49 | 2.04 | 0.78 | 0.522 | 0.49 | 0.239 | 0.310 | 0.024 | 0.043 | 0.011 | 0.016 | 0.003 | 0.007 | ||
Pooled p-value | |||||||||||||||
Linear | 0.252 | 0.164 | 0.071 | 0.937 | 0.065 | 0.964 | 0.117 | 0.019 | 0.915 | 0.886 | 0.155 | 0.451 | 0.366 | ||
Quadratic | 0.997 | 0.935 | 0.951 | 0.759 | 0.811 | 0.757 | 0.991 | 0.171 | 0.373 | 0.068 | 0.112 | 0.204 | 0.445 | ||
Time | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | ||
Diet | 0.040 | 0.819 | <0.001 | <0.001 | <0.001 | 0.027 | 0.295 | <0.001 | <0.001 | 0.695 | 0.032 | <0.001 | <0.001 | ||
Additive × Time | 0.187 | 0.170 | 0.060 | 0.240 | 0.338 | 0.011 | 0.002 | 0.019 | 0.081 | 0.297 | 0.522 | 0.629 | 0.215 | ||
Additive × Diet | 0.336 | 0.275 | 0.262 | 0.637 | 0.244 | 0.133 | 0.080 | 0.343 | 0.059 | 0.247 | 0.319 | 0.056 | 0.301 | ||
Time × Diet | 0.401 | 0.277 | 0.096 | 0.009 | <0.001 | 0.002 | 0.002 | <0.001 | <0.001 | 0.015 | 0.001 | 0.004 | <0.001 | ||
Additive × Time × Diet | 0.389 | 0.596 | 0.361 | 0.204 | 0.481 | 0.008 | 0.359 | 0.060 | 0.134 | 0.056 | 0.494 | 0.010 | 0.585 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olagunju, L.K.; Adelusi, O.O.; Dele, P.A.; Shaw, Y.; Brice, R.M.; Orimaye, O.E.; Villarreal-González, J.A.; Kang, H.W.; Kholif, A.E.; Anele, U.Y. Effects of Onion Peel Inclusion on In Vitro Fermentation, Methane and Carbon Dioxide Emissions, and Nutrient Degradability in Dairy Cow Diets. Animals 2025, 15, 969. https://doi.org/10.3390/ani15070969
Olagunju LK, Adelusi OO, Dele PA, Shaw Y, Brice RM, Orimaye OE, Villarreal-González JA, Kang HW, Kholif AE, Anele UY. Effects of Onion Peel Inclusion on In Vitro Fermentation, Methane and Carbon Dioxide Emissions, and Nutrient Degradability in Dairy Cow Diets. Animals. 2025; 15(7):969. https://doi.org/10.3390/ani15070969
Chicago/Turabian StyleOlagunju, Lydia K., Oludotun O. Adelusi, Peter A. Dele, Yasmine Shaw, Rosetta M. Brice, Oluteru E. Orimaye, Jorge A. Villarreal-González, Hye Won Kang, Ahmed E. Kholif, and Uchenna Y. Anele. 2025. "Effects of Onion Peel Inclusion on In Vitro Fermentation, Methane and Carbon Dioxide Emissions, and Nutrient Degradability in Dairy Cow Diets" Animals 15, no. 7: 969. https://doi.org/10.3390/ani15070969
APA StyleOlagunju, L. K., Adelusi, O. O., Dele, P. A., Shaw, Y., Brice, R. M., Orimaye, O. E., Villarreal-González, J. A., Kang, H. W., Kholif, A. E., & Anele, U. Y. (2025). Effects of Onion Peel Inclusion on In Vitro Fermentation, Methane and Carbon Dioxide Emissions, and Nutrient Degradability in Dairy Cow Diets. Animals, 15(7), 969. https://doi.org/10.3390/ani15070969