Potential Genetic Markers Associated with Environmental Adaptability in Herbivorous Livestock
Simple Summary
Abstract
1. Introduction
2. Environment-Induced Adaptations in Herbivorous Livestock
2.1. Appearance and Growth Characteristics
2.2. Morphological Adaptations of Tissues and Organs
2.3. Blood Physiological and Biochemical Indices
3. Potential Genetic Markers Associated with Environmental Adaptation of Herbivorous Livestock
3.1. Genes Linked to Adaptations to High-Altitude Environments
3.2. Genes Linked to Adaptations to Cold Environments in Herbivorous Livestock
3.3. Genes Linked to Adaptations to Heat Environments inHerbivorous Livestock
3.4. Genes Linked to Adaptations to Drought Environments in Herbivorous Livestock
4. Suggestion and Recommendations
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviation
FST | Fixation index |
π | Nucleotide diversity |
XP-EHH | Cross-population extended haplotype homozygosity |
Tajimas’ D | Tajima’s D statistic |
iHs | Integrated haplotype score |
XP-CLR | Cross-Population Composite Likelihood Ratio |
PBS | Population Branch Statistic |
edgeR | Empirical Analysis of Digital Gene Expression Data in R |
FLK | Fixation index of Lewontin and Krakauer |
hapFLK | Haplotype Fixation index of Lewontin and Krakauer |
DESeq2 | Differential gene expression analysis based on the negative binomial distribution |
WGCNA | Weighted gene co-expression network analysis |
VST | Variance stabilizing transformation |
ZHp | Z-transformed haplotype homozygosity |
Hp | Haplotype homozygosity |
CLR | Composite likelihood ratio |
iHS | Integrated haplotype score |
Pi | Nucleotide diversity |
SweeD | Sweep detector |
DCMS | De-correlated composite of multiple signals |
ROH | Run of homozygosity |
EHH | Extended haplotype homozygosity |
WssGWAS | Weighted single-step genome-wide association study |
RT-qPCR | Reverse transcription quantitative polymerase chain reaction |
qPCR | Quantitative polymerase chain reaction |
PCR | Polymerase chain reaction |
GWAS | Genome-wide association study |
Rsb | Ratio of shared branch lengths |
References
- De Kort, H.; Prunier, J.G.; Ducatez, S.; Honnay, O.; Baguette, M.; Stevens, V.M.; Blanchet, S. Life history, climate and biogeography interactively affect worldwide genetic diversity of plant and animal populations. Nat. Commun. 2021, 12, 516. [Google Scholar] [CrossRef]
- Depardieu, C.; Girardin, M.P.; Nadeau, S.; Lenz, P.; Bousquet, J.; Isabel, N. Adaptive genetic variation to drought in a widely distributed conifer suggests a potential for increasing forest resilience in a drying climate. New Phytol. 2020, 227, 427–439. [Google Scholar] [CrossRef]
- Pauls, S.U.; Nowak, C.; Bálint, M.; Pfenninger, M. The impact of global climate change on genetic diversity within populations and species. Mol. Ecol. 2013, 22, 925–946. [Google Scholar] [CrossRef]
- Franks, S.J.; Hoffmann, A.A. Genetics of Climate Change Adaptation. Annu. Rev. Genet. 2012, 46, 185–208. [Google Scholar] [CrossRef] [PubMed]
- Somero, G.N. The physiology of climate change: How potentials for acclimatization and genetic adaptation will determine ‘winners’ and ‘losers’. J. Exp. Biol. 2010, 213, 912–920. [Google Scholar] [CrossRef] [PubMed]
- Lima, J.S.; Ballesteros-Mejia, L.; Lima-Ribeiro, M.S.; Collevatti, R.G. Climatic changes can drive the loss of genetic diversity in a Neotropical savanna tree species. Glob. Change Biol. 2017, 23, 4639–4650. [Google Scholar] [CrossRef] [PubMed]
- Provan, J.; Maggs, C.A. Unique genetic variation at a species’ rear edge is under threat from global climate change. Proc. R. Soc. B Biol. Sci. 2011, 279, 39–47. [Google Scholar] [CrossRef]
- Booy, G.; Hendriks, R.J.J.; Smulders, M.J.M.; Van Groenendael, J.M.; Vosman, B. Genetic diversity and the survival of populations. Plant Biol. 2000, 2, 379–395. [Google Scholar] [CrossRef]
- Bellard, C.; Bertelsmeier, C.; Leadley, P.; Thuiller, W.; Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 2012, 15, 365–377. [Google Scholar] [CrossRef]
- Storz, J.F. High-altitude adaptation: Mechanistic insights from integrated genomics and physiology. Mol. Biol. Evol. 2021, 38, 2677–2691. [Google Scholar] [CrossRef]
- Wu, D.-D.; Yang, C.-P.; Wang, M.-S.; Dong, K.-Z.; Yan, D.-W.; Hao, Z.-Q.; Fan, S.-Q.; Chu, S.-Z.; Shen, Q.-S.; Jiang, L.-P.; et al. Convergent genomic signatures of high-altitude adaptation among domestic mammals. Nat. Sci. Rev. 2020, 7, 952–963. [Google Scholar] [CrossRef]
- Sejian, V.; Bhatta, R.; Gaughan, J.B.; Dunshea, F.R.; Lacetera, N. Review: Adaptation of animals to heat stress. Animal 2018, 12, s431–s444. [Google Scholar] [CrossRef] [PubMed]
- Wanjala, G.; Astuti, P.K.; Bagi, Z.; Kichamu, N.; Strausz, P.; Kusza, S. A review on the potential effects of environmental and economic factors on sheep genetic diversity: Consequences of climate change. Saudi J. Biol. Sci. 2023, 30, 103505. [Google Scholar] [CrossRef]
- Hoffmann, I. Climate change and the characterization, breeding and conservation of animal genetic resources. Anim. Genet. 2010, 41, 32–46. [Google Scholar] [CrossRef]
- Nair, M.R.R.; Sejian, V.; Silpa, M.V.; Fonsêca, V.F.C.; Costa, C.C.d.M.; Devaraj, C.; Krishnan, G.; Bagath, M.; Nameer, P.O.; Bhatta, R. Goat as the ideal climate-resilient animal model in tropical environments: Revisiting advantages over other livestock species. Int. J. Biometeorol. 2021, 65, 2229–2240. [Google Scholar] [CrossRef] [PubMed]
- Zepner, L.; Karrasch, P.; Wiemann, F.; Bernard, L. ClimateCharts.net—An interactive climate analysis web platform. Int. J. Digit. Earth 2020, 14, 338–356. [Google Scholar] [CrossRef]
- Liu, Z.; Sun, T.; Yu, Y.; Ke, P.; Deng, Z.; Lu, C.; Huo, D.; Ding, X. Near-real-time carbon emission accounting technology toward carbon neutrality. Engineering 2022, 14, 44–51. [Google Scholar] [CrossRef]
- Horsburgh, J.S.; Tarboton, D.G.; Piasecki, M.; Maidment, D.R.; Zaslavsky, I.; Valentine, D.; Whitenack, T. An integrated system for publishing environmental observations data. Environ. Model. Softw. 2009, 24, 879–888. [Google Scholar] [CrossRef]
- Camarillo-Naranjo, J.M.; Álvarez-Francoso, J.I.; Limones-Rodríguez, N.; Pita-López, M.F.; Aguilar-Alba, M. The global climate monitor system: From climate data-handling to knowledge dissemination. Int. J. Digit. Earth 2019, 12, 394–414. [Google Scholar] [CrossRef]
- Lundstad, E.; Brugnara, Y.; Pappert, D.; Kopp, J.; Samakinwa, E.; Hürzeler, A.; Andersson, A.; Chimani, B.; Cornes, R.; Demarée, G.; et al. The global historical climate database HCLIM. Sci. Data 2023, 10, 44. [Google Scholar] [CrossRef]
- Kozak, K.H.; Graham, C.H.; Wiens, J.J. Integrating GIS-based environmental data into evolutionary biology. Trends Ecol. Evol. 2008, 23, 141–148. [Google Scholar] [CrossRef]
- Sun, Y.; Shang, L.; Zhu, Q.-H.; Fan, L.; Guo, L. Twenty years of plant genome sequencing: Achievements and challenges. Trends Plant Sci. 2022, 27, 391–401. [Google Scholar] [CrossRef]
- Heaton, M.P.; Smith, T.P.L.; Bickhart, D.M.; Ley, B.L.V.; Kuehn, L.A.; Oppenheimer, J.; Shafer, W.R.; Schuetze, F.T.; Stroud, B.; McClure, J.C.; et al. A reference genome assembly of Simmental cattle, Bos taurus taurus. J. Hered. 2021, 112, 184–191. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Li, H.; Guo, Y.; Huang, J.; Sun, Y.; Min, J.; Wang, J.; Fang, X.; Zhao, Z.; Wang, S.; et al. Donkey genomes provide new insights into domestication and selection for coat color. Nat. Commun. 2020, 11, 6014. [Google Scholar] [CrossRef]
- Lappalainen, T.; Scott, A.J.; Brandt, M.; Hall, I.M. Genomic analysis in the age of human genome sequencing. Cell 2019, 177, 70–84. [Google Scholar] [CrossRef] [PubMed]
- van Dijk, E.L.; Auger, H.; Jaszczyszyn, Y.; Thermes, C. Ten years of next-generation sequencing technology. Trends Genet. 2014, 30, 418–426. [Google Scholar] [CrossRef]
- Grada, A.; Weinbrecht, K. Next-generation sequencing: Methodology and application. J. Investig. Dermatol. 2013, 133, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Manel, S.; Perrier, C.; Pratlong, M.; Abi-Rached, L.; Paganini, J.; Pontarotti, P.; Aurelle, D. Genomic resources and their influence on the detection of the signal of positive selection in genome scans. Mol. Ecol. 2016, 25, 170–184. [Google Scholar] [CrossRef]
- Manel, S.; Andrello, M.; Henry, K.; Verdelet, D.; Darracq, A.; Guerin, P.; Desprez, B.; Devaux, P. Predicting genotype environmental range from genome–environment associations. Mol. Ecol. 2018, 27, 2823–2833. [Google Scholar] [CrossRef]
- Li, X.; Guo, T.; Mu, Q.; Li, X.; Yu, J. Genomic and environmental determinants and their interplay underlying phenotypic plasticity. Proc. Natl. Acad. Sci. USA 2018, 115, 6679–6684. [Google Scholar] [CrossRef]
- Han, Z.-P.; Yang, R.-Z.; Zhou, W.; Zhang, L.-L.; Wang, J.-R.; Liu, C.-J.; Liu, S.-D. Population structure and selection signal analysis of indigenous sheep from the southern edge of the Taklamakan Desert. BMC Genom. 2024, 25, 681. [Google Scholar] [CrossRef] [PubMed]
- Nanaei, H.A.; Cai, Y.; Alshawi, A.; Wen, J.; Hussain, T.; Fu, W.-W.; Xu, N.-Y.; Essa, A.; Lenstra, J.A.; Wang, X.; et al. Genomic analysis of indigenous goats in Southwest Asia reveals evidence of ancient adaptive introgression related to desert climate. Zool. Res. 2023, 44, 20–29. [Google Scholar] [CrossRef]
- Booker, T.R.; Yeaman, S.; Whitlock, M.C. Global adaptation complicates the interpretation of genome scans for local adaptation. Evol. Lett. 2021, 5, 4–15. [Google Scholar] [CrossRef]
- He, L.; Li, X.; Liu, G.; Cidan, Y.J.; Ullah, Q.; Mushtaq, R.; Xiu, Y.; Sun, G.; Luosang, D.; Jiang, N. Yak’s Resilience and Adaptation to High-Altitude Stress. Pak. J. Zool. 2024, 1–13. [Google Scholar] [CrossRef]
- Jing, X.; Ding, L.; Zhou, J.; Huang, X.; Degen, A.; Long, R. The adaptive strategies of yaks to live in the Asian highlands. Anim. Nutr. 2022, 9, 249–258. [Google Scholar] [CrossRef]
- Sasazaki, S.; Tomita, K.; Nomura, Y.; Kawaguchi, F.; Kunieda, T.; Shah, M.K.; Mannen, H. FGF5 and EPAS1 gene polymorphisms are associated with high-altitude adaptation in Nepalese goat breeds. Anim. Sci. J. 2021, 92, e13640. [Google Scholar] [CrossRef] [PubMed]
- Ayalew, W.; Chu, M.; Liang, C.; Wu, X.; Yan, P. Adaptation mechanisms of yak (Bos grunniens) to high-altitude environmental stress. Animals 2021, 11, 2344. [Google Scholar] [CrossRef]
- Bhabesh, M.; Tukheswar, C. Adaptive mechanisms of goat to heat stress. In Goat Science; Sándor, K., Ed.; IntechOpen: Rijeka, Croatia, 2021; p. 10. [Google Scholar]
- McManus, C.M.; Faria, D.A.; Lucci, C.M.; Louvandini, H.; Pereira, S.A.; Paiva, S.R. Heat stress effects on sheep: Are hair sheep more heat resistant? Theriogenology 2020, 155, 157–167. [Google Scholar] [CrossRef]
- Berihulay, H.; Abied, A.; He, X.; Jiang, L.; Ma, Y. Adaptation mechanisms of small ruminants to environmental heat stress. Animals 2019, 9, 75. [Google Scholar] [CrossRef]
- Shakeel, M.; Yoon, M. Heat stress and stallion fertility. J. Anim. Sci. Technol. 2023, 65, 683. [Google Scholar] [CrossRef]
- Sapkota, S.; Acharya, K.P.; Laven, R.; Acharya, N. Possible consequences of climate change on survival, productivity and reproductive performance, and welfare of Himalayan yak (Bos grunniens). Vet. Sci. 2022, 9, 449. [Google Scholar] [CrossRef]
- Zhao, P.; Zhao, F.; Hu, J.; Wang, J.; Liu, X.; Zhao, Z.; Xi, Q.; Sun, H.; Li, S.; Luo, Y. Physiology and transcriptomics analysis reveal the contribution of lungs on high-altitude hypoxia adaptation in Tibetan sheep. Front. Physiol. 2022, 13, 885444. [Google Scholar] [CrossRef]
- Zhao, P.; Li, S.; He, Z.; Zhao, F.; Wang, J.; Liu, X.; Li, M.; Hu, J.; Zhao, Z.; Luo, Y. Physiology and proteomic basis of lung adaptation to high-altitude hypoxia in Tibetan sheep. Animals 2022, 12, 2134. [Google Scholar] [CrossRef]
- Ge, Q.; Guo, Y.; Zheng, W.; Zhao, S.; Cai, Y.; Qi, X. Molecular mechanisms detected in yak lung tissue via transcriptome-wide analysis provide insights into adaptation to high altitudes. Sci. Rep. 2021, 11, 7786. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Wang, B.; Jing, J.; Ma, R.; Luo, Y.; Li, X.; Yan, Z.; Liu, Y.; Gao, L.; Ren, Y.; et al. Whole-body adipose tissue multi-omic analyses in sheep reveal molecular mechanisms underlying local adaptation to extreme environments. Commun. Biol. 2023, 6, 159. [Google Scholar] [CrossRef]
- Kayumov, F.G.; Tretyakova, R.F.; Shevlyuk, N.N. The influence of climatic factors on the quality of livestock products obtained from different breeds of cattle. IOP Conf. Ser. Earth Environ. Sci. 2021, 624, 12030. [Google Scholar] [CrossRef]
- Barsila, S.R.; Bhatt, K.; Devkota, B.; Devkota, N.R. Haematological changes in transhumant Baruwal sheep (Ovis aries) grazing in the western Himalayan mountains in Nepal. Pastoralism 2020, 10, 4. [Google Scholar] [CrossRef]
- Ding, X.Z.; Liang, C.N.; Guo, X.; Wu, X.Y.; Wang, H.B.; Johnson, K.A.; Yan, P. Physiological insight into the high-altitude adaptations in domesticated yaks (Bos grunniens) along the Qinghai-Tibetan Plateau altitudinal gradient. Livest. Sci. 2014, 162, 233–239. [Google Scholar] [CrossRef]
- Oke, O.E.; Oso, O.M.; Logunleko, M.O.; Uyanga, V.A.; Akinyemi, F.; Okeniyi, F.A.; Akosile, O.A.; Baloyi, J.J.; Onagbesan, O.M. Adaptation of the White Fulani cattle to the tropical environment. J. Therm. Biol. 2022, 110, 103372. [Google Scholar] [CrossRef]
- Banerjee, D.; Upadhyay, R.C.; Chaudhary, U.B.; Kumar, R.; Singh, S.; Ashutosh; Das, T.K.; De, S. Seasonal variations in physio-biochemical profiles of Indian goats in the paradigm of hot and cold climate. Biol. Rhythm. Res. 2015, 46, 221–236. [Google Scholar] [CrossRef]
- Chedid, M.; Jaber, L.S.; Giger-Reverdin, S.; Duvaux-Ponter, C.; Hamadeh, S.K. Review: Water stress in sheep raised under arid conditions. Can. J. Anim. Sci. 2014, 94, 243–257. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Y.; Li, Y.; Pan, J.; Wang, D.; Chen, W.; Zheng, Z.; He, X.; Zhao, Q.; Pu, Y.; et al. EPAS1 gain-of-function mutation contributes to high-altitude adaptation in Tibetan horses. Mol. Biol. Evol. 2019, 36, 2591–2603. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, H.I.; Mahmood, S.; Hassan, M.; Sajid, M.; Ahmed, I.; Shokrollahi, B.; Shahzad, A.H.; Abbas, S.; Raza, S.; Khan, K.; et al. Genomic insights into yak (Bos grunniens) adaptations for nutrient assimilation in high altitudes. Sci. Rep. 2024, 14, 5650. [Google Scholar] [CrossRef] [PubMed]
- Lyu, Y.; Wang, F.; Cheng, H.; Han, J.; Dang, R.; Xia, X.; Wang, H.; Zhong, J.; Lenstra, J.A.; Zhang, H.; et al. Recent selection and introgression facilitated high-altitude adaptation in cattle. Sci. Bull. 2024, 69, 3415–3424. [Google Scholar] [CrossRef]
- Terefe, E.; Belay, G.; Han, J.; Hanotte, O.; Tijjani, A. Genomic adaptation of Ethiopian indigenous cattle to high altitude. Front. Genet. 2022, 13, 960234. [Google Scholar] [CrossRef]
- Koloi, S.; Ganguly, I.; Singh, S.; Dixit, S. Whole genome re-sequencing reveals high altitude adaptation signatures and admixture in Ladakhi cattle. Gene 2025, 933, 148957. [Google Scholar] [CrossRef]
- Ma, J.; Zhang, T.; Wang, W.; Chen, Y.; Cai, W.; Zhu, B.; Xu, L.; Gao, H.; Zhang, L.; Li, J.; et al. Comparative transcriptome analyses of gayal (Bos frontalis), yak (Bos grunniens), and cattle (Bos taurus) reveal the high-altitude adaptation. Front. Genet. 2022, 12, 778788. [Google Scholar] [CrossRef]
- Wang, X.; Ju, Z.; Jiang, Q.; Zhong, J.; Liu, C.; Wang, J.; Hoff, J.L.; Schnabel, R.D.; Zhao, H.; Gao, Y.; et al. Introgression, admixture, and selection facilitate genetic adaptation to high-altitude environments in cattle. Genomics 2021, 113, 1491–1503. [Google Scholar] [CrossRef]
- Bao, Q.; Zhang, X.; Bao, P.; Liang, C.; Guo, X.; Chu, M.; Yan, P. Using weighted gene co-expression network analysis (WGCNA) to identify the hub genes related to hypoxic adaptation in yak (Bos grunniens). Genes Genom. 2021, 43, 1231–1246. [Google Scholar] [CrossRef]
- Ge, Q.; Guo, Y.; Zheng, W.; Cai, Y.; Qi, X.; Zhao, S. A comparative analysis of differentially expressed mRNAs, miRNAs, and circRNAs provides insights into the key genes involved in the high-altitude adaptation of yaks. BMC Genom. 2021, 22, 744. [Google Scholar] [CrossRef]
- Guang-Xin, E.; Yang, B.; Zhu, Y.; Duang, X.; Basang, W.; Luo, X.; An, T. Genome-wide selective sweep analysis of the high-altitude adaptability of yaks by using the copy number variant. 3 Biotech 2020, 10, 259. [Google Scholar] [CrossRef] [PubMed]
- Basang, W.D.; Zhu, Y.B. Whole-genome analysis identifying candidate genes of altitude adaptive ecological thresholds in yak populations. J. Anim. Breed. Genet. 2019, 136, 371–377. [Google Scholar]
- Qi, X.; Zhang, Q.; He, Y.; Yang, L.; Zhang, X.; Shi, P.; Yang, L.; Liu, Z.; Zhang, F.; Liu, F.; et al. The Transcriptomic Landscape of Yaks Reveals Molecular Pathways for High Altitude Adaptation. Genome Biol. Evol. 2019, 11, 72–85. [Google Scholar] [CrossRef]
- Wang, H.; Chai, Z.; Hu, D.; Ji, Q.; Xin, J.; Zhang, C.; Zhong, J. A global analysis of CNVs in diverse yak populations using whole-genome resequencing. BMC Genom. 2019, 20, 61. [Google Scholar] [CrossRef]
- Qiu, Q.; Zhang, G.; Ma, T.; Qian, W.; Wang, J.; Ye, Z.; Cao, C.; Hu, Q.; Kim, J.; Larkin, D.M.; et al. The yak genome and adaptation to life at high altitude. Nat. Genet. 2012, 44, 946–949. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.; Yang, C.; Bao, P.; Wu, X.; Pei, J.; Yan, P.; Guo, X. Population genetic variations of the matrix metalloproteinases-3 gene revealed hypoxia adaptation in domesticated yaks (Bos grunniens). Asian-Australas J. Anim. Sci. 2019, 32, 1801–1808. [Google Scholar] [CrossRef]
- Tian, D.; Zhou, B.C.; Han, B.; Li, X.; Tian, F.; Qi, D.; Zhao, K. Genome-wide analysis reveals the molecular basis of genetic variation of important economic traits in cashmere goats on the Qinghai-Tibet Plateau. J. Anim. Plant Sci. 2023, 33, 1473–1489. [Google Scholar] [CrossRef]
- Jin, M.; Lu, J.; Fei, X.; Lu, Z.; Quan, K.; Liu, Y.; Chu, M.; Di, R.; Wei, C.; Wang, H. Selection signatures analysis reveals genes associated with high-altitude adaptation in Tibetan goats from Nagqu, Tibet. Animals 2020, 10, 1599. [Google Scholar] [CrossRef]
- Belay, S.; Belay, G.; Nigussie, H.; Ahbara, A.M.; Tijjani, A.; Dessie, T.; Tarekegn, G.M.; Jian-Lin, H.; Mor, S.; Woldekiros, H.S.; et al. Anthropogenic events and responses to environmental stress are shaping the genomes of Ethiopian indigenous goats. Sci. Rep. 2024, 14, 14908. [Google Scholar] [CrossRef]
- Bao, M.H.; Yang, C.; Tse, A.P.; Wei, L.; Lee, D.; Zhang, M.S.; Goh, C.C.; Chiu, D.K.; Yuen, V.W.; Law, C.; et al. Genome-wide CRISPR-Cas9 knockout library screening identified PTPMT1 in cardiolipin synthesis as crucial to survival in hypoxia in liver cancer. Cell Rep. 2021, 34, 108676. [Google Scholar] [CrossRef]
- Zhong, T.; Wang, X.; Huang, C.; Yang, L.; Zhao, Q.; Chen, X.; Freitas-De-Melo, A.; Zhan, S.; Wang, L.; Dai, D.; et al. A genome-wide perspective on the diversity and selection signatures in indigenous goats using 53 K single nucleotide polymorphism array. Animal 2023, 17, 100706. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Wu, Y.; Chen, B.; Cai, Y.; Guo, J.; Leonard, A.S.; Kalds, P.; Zhou, S.; Zhang, J.; Zhou, P.; et al. Markhor-derived introgression of a genomic region encompassing PAPSS2 confers high-altitude adaptability in Tibetan goats. Mol. Biol. Evol. 2022, 39, msac253. [Google Scholar] [CrossRef]
- Higgins, C.A.; Petukhova, L.; Harel, S.; Ho, Y.Y.; Drill, E.; Shapiro, L.; Wajid, M.; Christiano, A.M. FGF5 is a crucial regulator of hair length in humans. Proc. Natl. Acad. Sci. USA 2014, 111, 10648–10653. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Duan, Q.; Li, B.; Wang, Y.; Bu, Y.; Zhang, Y.; Kuang, Z.; Mao, L.; An, X.; Wang, H.; et al. Genomic structural variation contributes to evolved changes in gene expression in high-altitude Tibetan sheep. Proc. Natl. Acad. Sci. USA 2024, 121, e1972676175. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Chen, B.; Langda, S.; Pu, P.; Zhu, X.; Zhou, S.; Kalds, P.; Zhang, K.; Bhati, M.; Leonard, A.; et al. Multi-omic analyses shed light on the genetic control of high-altitude adaptation in sheep. Genom. Proteom. Bioinform. 2024, 22, qzae30. [Google Scholar] [CrossRef]
- Zhao, P.; He, Z.; Xi, Q.; Sun, H.; Luo, Y.; Wang, J.; Liu, X.; Zhao, Z.; Li, S. Variations in HIF-1α contributed to high-altitude hypoxia adaptation via affected oxygen metabolism in Tibetan sheep. Animals 2022, 12, 58. [Google Scholar] [CrossRef]
- Zhang, Y.; Xue, X.; Liu, Y.; Abied, A.; Ding, Y.; Zhao, S.; Wang, W.; Ma, L.; Guo, J.; Guan, W.; et al. Genome-wide comparative analyses reveal selection signatures underlying adaptation and production in Tibetan and Poll Dorset sheep. Sci. Rep. 2021, 11, 2466. [Google Scholar] [CrossRef]
- Liu, J.; Yuan, C.; Guo, T.; Wang, F.; Zeng, Y.; Ding, X.; Lu, Z.; Renqing, D.; Zhang, H.; Xu, X.; et al. Genetic signatures of high-altitude adaptation and geographic distribution in Tibetan sheep. Sci. Rep. 2020, 10, 18332. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, X.; Zhou, X.; Zhang, Y.; La, Y.; Zhang, Y.; Li, C.; Zhao, Y.; Li, F.; Liu, B.; et al. Deep genome resequencing reveals artificial and natural selection for visual deterioration, plateau adaptability, and high prolificacy in Chinese domestic sheep. Front. Genet. 2019, 10, 300. [Google Scholar] [CrossRef]
- Xu, J.; Yang, Y.; Tang, F.; Ga, Q.; Wuren, T.; Wang, Z.; Ma, L.; Rondina, M.T.; Ge, R. CYP17A1 and CYP2E1 variants associated with high-altitude polycythemia in Tibetans at the Qinghai-Tibetan Plateau. Gene 2015, 566, 257–263. [Google Scholar] [CrossRef]
- Han, J.; Lu, M.; Li, C.; Sun, M.; Hu, Q.; Li, Y.; Jafari, H.; Wang, Z.; Zhao, P.; Dang, R. Whole-genome sequencing of Ganzi horse reveals the genetic diversity and provides unique insights into its plateau adaptation. Livest. Sci. 2024, 288, 105549. [Google Scholar] [CrossRef]
- Liu, H.; Han, X.; Zhao, N.; Hu, L.; Wang, X.; Luo, C.; Chen, Y.; Zhao, X.; Xu, S. The gut microbiota determines the high-altitude adaptability of Tibetan wild asses (Equus kiang) in Qinghai-Tibet Plateau. Front. Microbiol. 2022, 13, 949002. [Google Scholar] [CrossRef] [PubMed]
- Zeng, L.; Liu, H.; Tu, X.; Ji, C.; Gou, X.; Esmailizadeh, A.; Wang, S.; Wang, M.; Wang, M.; Li, X.; et al. Genomes reveal selective sweeps in kiang and donkey for high-altitude adaptation. Zool. Res. 2021, 42, 450–460. [Google Scholar] [CrossRef]
- Zhao, F.; Yang, L.; Zhang, T.; Zhuang, D.; Wu, Q.; Yu, J.; Tian, C.; Zhang, Z. Gut microbiome signatures of extreme environment adaptation in Tibetan pig. Npj Biofilms Microbiomes 2023, 9, 27. [Google Scholar] [CrossRef]
- Sharma, V.; Varshney, R.; Sethy, N.K. Human adaptation to high altitude: A review of convergence between genomic and proteomic signatures. Hum. Genomics 2022, 16, 21. [Google Scholar] [CrossRef]
- Zhou, Z.; Fan, Y.; Wang, G.; Lai, Z.; Gao, Y.; Wu, F.; Lei, C.; Dang, R. Detection of selection signatures underlying production and adaptive traits based on whole-genome sequencing of six donkey populations. Animals 2020, 10, 1823. [Google Scholar] [CrossRef]
- Wang, L.; Gao, Y.; Wang, J.; Huang, N.; Jiang, Q.; Ju, Z.; Yang, C.; Wei, X.; Xiao, Y.; Zhang, Y.; et al. Selection signature and CRISPR/Cas9-mediated gene knockout analyses reveal ZC3H10 involved in cold adaptation in Chinese native cattle. Genes 2022, 13, 1910. [Google Scholar] [CrossRef] [PubMed]
- Tian, R.; Asadollahpour Nanaie, H.; Wang, X.; Dalai, B.; Zhao, M.; Wang, F.; Li, H.; Yang, D.; Zhang, H.; Li, Y.; et al. Genomic adaptation to extreme climate conditions in beef cattle as a consequence of cross-breeding program. BMC Genom. 2023, 24, 186. [Google Scholar] [CrossRef]
- Huang, N.; Zhao, L.; Wang, J.; Jiang, Q.; Ju, Z.; Wang, X.; Yang, C.; Gao, Y.; Wei, X.; Zhang, Y.; et al. Signatures of selection in indigenous Chinese cattle genomes reveal adaptive genes and genetic variations to cold climate. J. Anim. Sci. 2023, 101, skad006. [Google Scholar] [CrossRef]
- Yan, C.; Lin, J.; Huang, Y.; Gao, Q.; Piao, Z.; Yuan, S.; Chen, L.; Ren, X.; Ye, R.; Dong, M.; et al. Population genomics reveals that natural variation in PRDM16 contributes to cold tolerance in domestic cattle. Zool. Res. 2022, 43, 275–284. [Google Scholar] [CrossRef]
- Buggiotti, L.; Yurchenko, A.A.; Yudin, N.S.; Vander Jagt, C.J.; Vorobieva, N.V.; Kusliy, M.A.; Vasiliev, S.K.; Rodionov, A.N.; Boronetskaya, O.I.; Zinovieva, N.A.; et al. Demographic history, adaptation, and NRAP convergent evolution at amino acid residue 100 in the world northernmost cattle from Siberia. Mol. Biol. Evol. 2021, 38, 3093–3110. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Hanif, Q.; Cao, Y.; Yu, Y.; Lei, C.; Zhang, G.; Zhao, Y. Whole genome scan and selection signatures for climate adaptation in Yanbian cattle. Front. Genet. 2020, 11, 94. [Google Scholar] [CrossRef]
- Ghoreishifar, S.M.; Eriksson, S.; Johansson, A.M.; Khansefid, M.; Moghaddaszadeh-Ahrabi, S.; Parna, N.; Davoudi, P.; Javanmard, A. Signatures of selection reveal candidate genes involved in economic traits and cold acclimation in five Swedish cattle breeds. Genet. Sel. Evol. 2020, 52, 52. [Google Scholar] [CrossRef]
- Hu, L.; Ma, Y.; Liu, L.; Kang, L.; Brito, L.F.; Wang, D.; Wu, H.; Liu, A.; Wang, Y.; Xu, Q. Detection of functional polymorphisms in the hsp70 gene and association with cold stress response in Inner-Mongolia Sanhe cattle. Cell Stress Chaperones 2019, 24, 409–418. [Google Scholar] [CrossRef] [PubMed]
- Weldenegodguad, M.; Popov, R.; Pokharel, K.; Ammosov, I.; Ming, Y.; Ivanova, Z.; Kantanen, J. Whole-genome sequencing of three native cattle breeds originating from the northernmost cattle farming regions. Front. Genet. 2019, 9, 728. [Google Scholar] [CrossRef] [PubMed]
- Igoshin, A.V.; Yurchenko, A.A.; Belonogova, N.M.; Petrovsky, D.V.; Aitnazarov, R.B.; Soloshenko, V.A.; Yudin, N.S.; Larkin, D.M. Genome-wide association study and scan for signatures of selection point to candidate genes for body temperature maintenance under the cold stress in Siberian cattle populations. BMC Genet. 2019, 20, 26. [Google Scholar] [CrossRef]
- Ji, K.; Jiao, D.; Yang, G.; Degen, A.A.; Zhou, J.; Liu, H.; Wang, W.; Cong, H. Transcriptome analysis revealed potential genes involved in thermogenesis in muscle tissue in cold-exposed lambs. Front. Genet. 2022, 13, 1017458. [Google Scholar] [CrossRef]
- Jiao, D.; Ji, K.; Wang, W.; Liu, H.; Zhou, J.; Degen, A.A.; Zhang, Y.; Zhou, P.; Yang, G.; Mohindra, V. Transcriptome profiles of the liver in two cold-exposed sheep breeds revealed different mechanisms and candidate genes for thermogenesis. Genet. Res. 2021, 2021, e10. [Google Scholar] [CrossRef]
- Jiao, D.; Ji, K.; Liu, H.; Wang, W.; Wu, X.; Zhou, J.; Zhang, Y.; Zhou, H.; Hickford, J.G.H.; Degen, A.A.; et al. Transcriptome analysis reveals genes involved in thermogenesis in two cold-exposed sheep breeds. Genes 2021, 12, 375. [Google Scholar] [CrossRef]
- Saravanan, K.A.; Panigrahi, M.; Kumar, H.; Bhushan, B.; Dutt, T.; Mishra, B.P. Genome-wide analysis of genetic diversity and selection signatures in three Indian sheep breeds. Livest. Sci. 2021, 243, 104367. [Google Scholar] [CrossRef]
- Liu, Y.; Mikrani, R.; He, Y.; Faran Ashraf Baig, M.M.; Abbas, M.; Naveed, M.; Tang, M.; Zhang, Q.; Li, C.; Zhou, X. TRPM8 channels: A review of distribution and clinical role. Eur. J. Pharmacol. 2020, 882, 173312. [Google Scholar] [CrossRef] [PubMed]
- Yurchenko, A.A.; Deniskova, T.E.; Yudin, N.S.; Dotsev, A.V.; Khamiruev, T.N.; Selionova, M.I.; Egorov, S.V.; Reyer, H.; Wimmers, K.; Brem, G.; et al. High-density genotyping reveals signatures of selection related to acclimation and economically important traits in 15 local sheep breeds from Russia. BMC Genom. 2019, 20, 294. [Google Scholar] [CrossRef] [PubMed]
- Bauters, D.; Cobbaut, M.; Geys, L.; Van Lint, J.; Hemmeryckx, B.; Lijnen, H.R. Loss of ADAMTS5 enhances brown adipose tissue mass and promotes browning of white adipose tissue via CREB signaling. Mol. Metab. 2017, 6, 715–724. [Google Scholar] [CrossRef]
- Yudin, N.; Larkin, D.M. Shared signatures of selection related to adaptation and acclimation in local cattle and sheep breeds from Russia. Russ. J. Genet. 2019, 55, 1008–1014. [Google Scholar]
- Akinsola, O.M.; Musa, A.A.; Muansangi, L.; Singh, S.P.; Mukherjee, S.; Mukherjee, A. Genomic insights into adaptation and inbreeding among Sub-Saharan African cattle from pastoral and agropastoral systems. Front. Genet. 2024, 15, 1430291. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Ye, T.; Li, Z.; Li, J.; Jamil, A.M.; Zhou, Y.; Hua, G.; Liang, A.; Deng, T.; Yang, L. Identifying hub genes for heat tolerance in water buffalo (Bubalus bubalis) using transcriptome data. Front. Genet. 2019, 10, 209. [Google Scholar] [CrossRef]
- Luo, H.; Hu, L.; Brito, L.F.; Dou, J.; Sammad, A.; Chang, Y.; Ma, L.; Guo, G.; Liu, L.; Zhai, L.; et al. Weighted single-step GWAS and RNA sequencing reveals key candidate genes associated with physiological indicators of heat stress in Holstein cattle. J. Anim. Sci. Biotechnol. 2022, 13, 108. [Google Scholar] [CrossRef]
- Liu, S.; Yue, T.; Ahmad, M.J.; Hu, X.; Zhang, X.; Deng, T.; Hu, Y.; He, C.; Zhou, Y.; Yang, L. Transcriptome Analysis Reveals Potential Regulatory Genes Related to Heat Tolerance in Holstein Dairy Cattle. Genes 2020, 11, 68. [Google Scholar] [CrossRef]
- Li, R.; Li, C.; Chen, H.; Li, R.; Chong, Q.; Xiao, H.; Chen, S. Genome-wide scan of selection signatures in Dehong humped cattle for heat tolerance and disease resistance. Anim. Genet. 2020, 51, 292–299. [Google Scholar] [CrossRef]
- Wang, K.; Cao, Y.; Rong, Y.; Ning, Q.; Jia, P.; Huang, Y.; Lan, X.; Dang, R.; Chen, H.; Lei, C. A Novel SNP in EIF2AK4 Gene Is Associated with Thermal Tolerance Traits in Chinese Cattle. Animals 2019, 9, 375. [Google Scholar] [CrossRef]
- de Fátima Bretanha Rocha, R.; Baena, M.M.; de Cássia Estopa, A.; Gervásio, I.C.; Guaratini Ibelli, A.M.; Santos Gionbelli, T.R.; Gionbelli, M.P.; Fonseca De Freitas, R.T.; Conceição Meirelles, S.L. Differential expression of HSF1 and HSPA6 genes and physiological responses in Angus and Simmental cattle breeds. J. Therm. Biol. 2019, 84, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Pires, B.V.; Stafuzza, N.B.; Lima, S.B.G.P.; Negrão, J.A.; Paz, C.C.P. Differential expression of heat shock protein genes associated with heat stress in Nelore and Caracu beef cattle. Livest. Sci. 2019, 230, 103839. [Google Scholar] [CrossRef]
- Otto, P.I.; Guimarães, S.E.F.; Verardo, L.L.; Azevedo, A.L.S.; Vandenplas, J.; Sevillano, C.A.; Marques, D.B.D.; Pires, M.D.F.A.; de Freitas, C.; Verneque, R.S.; et al. Genome-wide association studies for heat stress response in Bos taurus × Bos indicus crossbred cattle. J. Dairy Sci. 2019, 102, 8148–8158. [Google Scholar] [CrossRef]
- Jia, P.; Cai, C.; Qu, K.; Chen, N.; Jia, Y.; Hanif, Q.; Liu, J.; Zhang, J.; Chen, H.; Huang, B.; et al. Four Novel SNPs of MYO1A Gene Associated with Heat-Tolerance in Chinese Cattle. Animals 2019, 9, 964. [Google Scholar] [CrossRef] [PubMed]
- de Andrade Pantoja, M.H.; Poleti, M.D.; de Novais, F.J.; Duarte, K.K.S.; Mateescu, R.G.; Mourão, G.B.; Coutinho, L.L.; Fukumasu, H.; Titto, C.G. Skin transcriptomic analysis reveals candidate genes and pathways associated with thermotolerance in hair sheep. Int. J. Biometeorol. 2024, 68, 435–444. [Google Scholar] [CrossRef] [PubMed]
- Saadatabadi, L.M.; Mohammadabadi, M.; Nanaei, H.A.; Ghanatsaman, Z.A.; Stavetska, R.V.; Kalashnyk, O.; Kochuk-Yashchenko, O.A.; Kucher, D.M. Unraveling candidate genes related to heat tolerance and immune response traits in some native sheep using whole genome sequencing data. Small Rumin. Res. 2023, 225, 107018. [Google Scholar] [CrossRef]
- Ibrahim, S.; Al-Sharif, M.; Younis, F.; Ateya, A.; Abdo, M.; Fericean, L. Analysis of Potential Genes and Economic Parameters Associated with Growth and Heat Tolerance in Sheep (Ovis aries). Animals 2023, 13, 353. [Google Scholar] [CrossRef]
- Aboul-Naga, A.M.; Alsamman, A.M.; El Allali, A.; Elshafie, M.H.; Abdelal, E.S.; Abdelkhalek, T.M.; Abdelsabour, T.H.; Mohamed, L.G.; Hamwieh, A. Genome-wide analysis identified candidate variants and genes associated with heat stress adaptation in Egyptian sheep breeds. Front. Genet. 2022, 13, 898522. [Google Scholar] [CrossRef]
- Afsal, A.; Bagath, M.; Sejian, V.; Krishnan, G.; Beena, V.; Bhatta, R. Effect of heat stress on HSP70 gene expression pattern in different vital organs of Malabari goats. Biol. Rhythm. Res. 2021, 52, 380–394. [Google Scholar] [CrossRef]
- Li, Y.X.; Feng, X.P.; Wang, H.L.; Meng, C.H.; Zhang, J.; Qian, Y.; Zhong, J.F.; Cao, S.X. Transcriptome analysis reveals corresponding genes and key pathways involved in heat stress in Hu sheep. Cell Stress Chaperones 2019, 24, 1045–1054. [Google Scholar] [CrossRef]
- Lu, Z.; Chu, M.; Li, Q.; Jin, M.; Fei, X.; Ma, L.; Zhang, L.; Wei, C. Transcriptomic Analysis Provides Novel Insights into Heat Stress Responses in Sheep. Animals 2019, 9, 387. [Google Scholar] [CrossRef] [PubMed]
- Pantoja, M.H.D.A.; Novais, F.J.D.; Mourão, G.B.; Mateescu, R.G.; Poleti, M.D.; Beline, M.; Monteiro, C.P.; Fukumasu, H.; Titto, C.G. Exploring candidate genes for heat tolerance in ovine through liver gene expression. Heliyon 2024, 10, e25692. [Google Scholar] [CrossRef]
- Syafiqa, N.N.; Zulkifli, I.; Zuki, A.B.M.; Goh, Y.M.; Kaka, U. Physiological, haematological and electroencephalographic responses to heat stress in Katjang and Boer goats. Saudi J. Biol. Sci. 2023, 30, 103836. [Google Scholar] [CrossRef]
- de Faria, D.A.; Do Prado Paim, T.; Dos Santos, C.A.; Paiva, S.R.; Nogueira, M.B.; Mcmanus, C. Selection signatures for heat tolerance in Brazilian horse breeds. Mol. Genet. Genom. 2022, 297, 449–462. [Google Scholar] [CrossRef]
- Wang, M.; Liu, Y.; Bi, X.; Ma, H.; Zeng, G.; Guo, J.; Guo, M.; Ling, Y.; Zhao, C. Genome-Wide Detection of Copy Number Variants in Chinese Indigenous Horse Breeds and Verification of CNV-Overlapped Genes Related to Heat Adaptation of the Jinjiang Horse. Genes 2022, 13, 603. [Google Scholar] [CrossRef] [PubMed]
- Alsharif, W.; Saad, M.M.; Hirt, H. Desert Microbes for Boosting Sustainable Agriculture in Extreme Environments. Front. Microbiol. 2020, 11, 1666. [Google Scholar] [CrossRef] [PubMed]
- Lyu, Y.; Yao, T.; Chen, Z.; Huangfu, R.; Cheng, H.; Ma, W.; Qi, X.; Li, F.; Chen, N.; Lei, C. Genomic characterization of dryland adaptation in endangered Anxi cattle in China. Anim. Genet. 2024, 55, 352–361. [Google Scholar] [CrossRef]
- Sukhija, N.; Malik, A.A.; Devadasan, J.M.; Dash, A.; Bidyalaxmi, K.; Ravi Kumar, D.; Kousalaya Devi, M.; Choudhary, A.; Kanaka, K.K.; Sharma, R.; et al. Genome-wide selection signatures address trait specific candidate genes in cattle indigenous to arid regions of India. Anim. Biotechnol. 2024, 35, 2290521. [Google Scholar] [CrossRef]
- Liu, X.; Li, Z.; Yan, Y.; Li, Y.; Wu, H.; Pei, J.; Yan, P.; Yang, R.; Guo, X.; Lan, X. Selection and introgression facilitated the adaptation of Chinese native endangered cattle in extreme environments. Evol. Appl. 2021, 14, 860–873. [Google Scholar] [CrossRef]
- Ben-Jemaa, S.; Mastrangelo, S.; Lee, S.; Lee, J.H.; Boussaha, M. Genome-wide scan for selection signatures reveals novel insights into the adaptive capacity in local North African cattle. Sci. Rep. 2020, 10, 19466. [Google Scholar] [CrossRef]
- Yang, Z.; Shi, H.; Ma, P.; Zhao, S.; Kong, Q.; Bian, T.; Gong, C.; Zhao, Q.; Liu, Y.; Qi, X.; et al. Darwinian Positive Selection on the Pleiotropic Effects of KITLG Explain Skin Pigmentation and Winter Temperature Adaptation in Eurasians. Mol. Biol. Evol. 2018, 35, 2272–2283. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Liu, C.; Zhang, J.; Zheng, L.; Chang, Q.; Cui, Z.; Liu, S. Analysis on the desert adaptability of indigenous sheep in the southern edge of Taklimakan Desert. Sci. Rep. 2022, 12, 12264. [Google Scholar] [CrossRef] [PubMed]
- Mohamadipoor Saadatabadi, L.; Mohammadabadi, M.; Amiri Ghanatsaman, Z.; Babenko, O.; Stavetska, R.; Kalashnik, O.; Kucher, D.; Kochuk-Yashchenko, O.; Asadollahpour Nanaei, H. Signature selection analysis reveals candidate genes associated with production traits in Iranian sheep breeds. BMC Vet. Res. 2021, 17, 369. [Google Scholar] [CrossRef]
- Gu, J.; Liang, Q.; Liu, C.; Li, S. Genomic Analyses Reveal Adaptation to Hot Arid and Harsh Environments in Native Chickens of China. Front. Genet. 2020, 11, 582355. [Google Scholar] [CrossRef] [PubMed]
- Hieng, B.; Ugrinović, K.; šuštar-Vozlič, J.; Kidrič, M. Different classes of proteases are involved in the response to drought of Phaseolus vulgaris L. cultivars differing in sensitivity. J. Plant Physiol. 2004, 161, 519–530. [Google Scholar] [CrossRef]
- hebii, V.J.; Oyola, S.O.; Kotze, A.; Domelevo Entfellner, J.; Musembi Mutuku, J.; Agaba, M. Genome-Wide Analysis of Nubian Ibex Reveals Candidate Positively Selected Genes That Contribute to Its Adaptation to the Desert Environment. Animals 2020, 10, 2181. [Google Scholar] [CrossRef]
- Wang, G.; Wang, F.; Pei, H.; Li, M.; Bai, F.; Lei, C.; Dang, R. Genome-wide analysis reveals selection signatures for body size and drought adaptation in Liangzhou donkey. Genomics 2022, 114, 110476. [Google Scholar] [CrossRef]
- Carroll, M.A.; Balazy, M.; Margiotta, P.; Huang, D.D.; Falck, J.R.; Mcgiff, J.C. Cytochrome P-450-dependent HETEs: Profile of biological activity and stimulation by vasoactive peptides. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 1996, 271, R863–R869. [Google Scholar] [CrossRef]
- Shashank, C.G.; Sejian, V.; Silpa, M.V.; Devaraj, C.; Madhusoodan, A.P.; Rebez, E.B.; Kalaignazhal, G.; Sahoo, A.; Dunshea, F.R. Climate Resilience in Farm Animals: Transcriptomics-Based Alterations in Differentially Expressed Genes and Stress Pathways. BioTech 2024, 13, 49. [Google Scholar] [CrossRef]
- Thornton, P.; Nelson, G.; Mayberry, D.; Herrero, M. Impacts of heat stress on global cattle production during the 21st century: A modelling study. Lancet Planet. Health 2022, 6, e192–e201. [Google Scholar] [CrossRef]
- Cheng, M.; McCarl, B.; Fei, C. Climate Change and Livestock Production: A Literature Review. Atmosphere 2022, 13, 140. [Google Scholar] [CrossRef]
- Henry, B.K.; Eckard, R.J.; Beauchemin, K.A. Review: Adaptation of ruminant livestock production systems to climate changes. Animal 2018, 12, s445–s456. [Google Scholar] [CrossRef] [PubMed]
Species | Genes | Variations | Methods | Function | References |
---|---|---|---|---|---|
Yak | CAMK2B, GLUL | - | dN/dS, ω | Encode for key components in calcium signaling and nitrogen metabolism | [54] |
Tibetan cattle | EGLN1 | - | Fst, θπ, XP-EHH and Tajimas’ D | Hypoxia tolerance | [55] |
Ethiopian indigenous cattle | CLCA2 SLC26A2 CBFA2T3 | - | iHs, XP-CLR and PBS | Renin secretion KEGG pathway Ion channel activity Response to hypoxia | [56] |
Ladakhi cattle | HIF-1A VPS13C, CPT1A DNAJA3, HSPA2, HSP90AB1 PER1, CRY1, ARNTL, CLOCK, FBXL3 | - | Fst and π | Hypoxia adaptation Energy metabolism Cold adaptation Circadian rhythm | [57] |
Gayal, Yak | UQCRC1, COX5A CAPS EDN3 CHRM2 EGLN1 | - | edgeR | Related to the energy supply of myocardial contraction Related to pulmonary artery smooth muscle contraction Related to the tracheal epithelium and pulmonary vasoconstriction The autonomous regulation of the heart The target gene of the hypoxia-sensing pathway | [58] |
Tibetan cattle | ACSS2 | rs43717468 A > G, rs439295601 G > T in the 5′-flanking region | FLK, hapFLK, XP-EHH, and composite Fst | Promotes metabolic adaptation to hypoxia via the hypoxia-inducible factor (HIF) pathway | [59] |
Yak | HSPB7, HSPB2, HSPD1, HSPA1L, HSP90AA1 VEGFA | - | DESeq2, WGCNA | Encode the heat shock protein (HSP) protein family Maintain the balance of blood vessel density | [60] |
Yak | UVSSA | - | clusterProfiler package in R | Resistance to UV radiation | [61] |
Yak | GRIK4, IFNLR1, LOC102275985, GRHL3, LOC102275713 | GRIK4 (a dup CNV_202) IFNLR1 (a dup CNV_265) LOC102275985 (del CNV_199 and del CNV_200) GRHL3 (a dup CNV_265) LOC102275713 (a del CNV_201) | Fst, VST | Physiological regulation under a hypoxic environment | [62] |
Yak | RPS6KA6, ITPR1, GNAO1, PDE4D | - | Fst, ZHp | Associated with environmental adaptability | [63] |
Yak | EPAS1 | - | voom embedded in the R package limma | Encodes hypoxia-induced-factor 2α | [64] |
Yak | DCC, GSTCD, MRPS28, MOGAT2 | - | CNVnator | Adaptation to hypoxia | [65] |
Pali yak | MMP3 | rs2381 A > G and rs4331 C > G in intron V and intron VII | Haplotype analysis | Regulates the cellular response to hypoxia | [67] |
Qaidam cashmere goat | TH, ACER1, GNB1, and HIF1A | - | Fst, θπ | Hypoxic adaptation | [68] |
Tibetan goat | LEPR, LDB1, EGFR and FGF2 | - | Fst | Associated with high-altitude adaptation | [69] |
Ethiopian indigenous goat | PTPMT1 | - | Hp, Fst, XP-EHH | Associated with critical hypoxic survival gene | [70] |
Tibetan goat | ADIRF | - | Fst, XP-EHH | Relates to high-altitude adaptation | [72] |
Tibetan goat | PAPSS2 | chr26: 42012872 G > T in intron region | Fst, XP-EHH | Adaptation to hypoxia | [73] |
Nepalese goat | FGF5, EPAS1 | FGF5 (c.-253G>A within 5’UTR) EPAS1 (Q579L in exon 5) | Pearson correlation coefficients | Regulated hair growth; encodes hypoxia-induced-factor 2α | [36] |
Tibetan sheep | EPAS1 PAPSS2 PTPRD | EPAS1 (1 deletion SV) PAPSS2 (1 insertion SV) PTPRD (1 deletion SV) | Delly, Manta, Amoove | High-altitude adaptation Blood circulation Pulmonary hypertension | [75] |
Tibetan sheep | HBBC, HBB, EGLN1 | EGLN1 (Chr25:3503284 G > A in 3′UTR) | XP-EHH, XP-CLR | Relates to high-altitude adaptation | [76] |
Tibetan sheep | HIF-1α | g.76805181 G > A in exon 9, g.76806025 G > A in exon 10, and g.76808146 T > A in exon 12 | Haplotype analysis | Key regulator of adaptation to high-altitude hypoxia | [77] |
White Tibetan sheep | HIF1A, ATR, SLC24A, PPA2, ROCK2 | - | Fst, XP-EHH | Linked to high-altitude adaptation | [78] |
Tibetan sheep | HAG1 | C-INDEL in 5′UTR | Fst, ZHp | Relates to high-altitude adaptation | [79] |
Tibetan sheep | CYP17 | - | Fst, Hp | Associated with hemoglobin levels | [80] |
Ganzi horse | EPAS1, ABTB2, RHOQ, TMEM247 | EPAS1 (Chr15:53538574 A > T) | CLR, iHS, Fst, XP-EHH | Related to high-altitude adaptation | [82] |
Tibetan Horses | EPAS1 | SNP1 (R144C), SNP2 (E263D) | Fst, ZHP, θπ | Encodes hypoxia-induced-factor 2α | [53] |
Equus kiang | GH43, GH3, GH31, GH5, GH10 | - | metastat analysis | Associated with carbohydrate metabolism genes | [83] |
Kiang | EPAS1 | - | Fst, θπ | Encodes hypoxia-induced-factor 2α | [84] |
Tibetan donkeys | EGLN1 | - | Fst, θπ | Associated with high-altitude adaptation | [84] |
Qinghai donkey | HBB, GLDC | - | ZHP | Relates to high-altitude adaptation | [87] |
Species | Genes | Variations | Methods | Function | References |
---|---|---|---|---|---|
Chinese native cattle | ZC3H10 | - | FLK and hapFLK | Participates in thermogenesis and immune responses | [88] |
Cross-bred cattle | TRPM8, NMUR1, OXR1, PRKAA2, SMTNL2 PCLB4, SIN3A | - | θπ, XP-CLR, Fst | Metabolic homeostasis Immune responses | [89] |
Chinese indigenous cattle | UQCR11, DNAJC18, EGR1, STING1 | UQCR11 (rs43485110 C > T and rs110122520 C > G in the 5’-flanking region) DNAJC18 (rs207746463 C > T in the 5′-flanking region) EGR1 (c.190 G > A SNP) STING1 (c.601 C > A SNP) | hapFLK, FLK | Hermogenesis and energy metabolism | [90] |
Northern cattle | PRDM16 | c.2336 T > C, p.L779P SNV | Fst, Pi, Tajima’s D | Maintains brown adipocyte formation | [91] |
Yakut cattle | NRAP | Chr26:34131393 G > T SNP | hapFLK | Associated with myofibrillar assembly and force transmission in the heart | [92] |
Yanbian Cattle | CORT FGF5 CD36 | CORT (c.269C > T, p.Lys90Ile; c.251A > G, p.Glu84Gly; c.112C > T, p.Pro38Ser; c.86G > A, p.Pro29His) FGF5 (c.191C > T, p.Ser64Phe) CD36 (c.638A > G, p.Lys 213Arg) | θπ, XP-CLR, Fst | Regulate primary hormone in the hypothalamic–pituitary–adrenal (HPA) axis Linked with hair follicle and length development Affect intramuscular fat deposition | [93] |
Swedish cattle | AQP3, AQP7, HSPB8 | - | Tajima’s D, Pi, Fst | Associated with cold adaptation | [94] |
Inner Mongolia Sanhe cattle | Hsp70 | SNP-42− C > T, SNP-205 + G > T | General linear model procedure and Bonferroni t test | Cytoprotective effects by regulating pathways related to cell stress response | [95] |
Eastern Finncattle | DNAJC28, HSP90B1, AGTRAP, TAF7, TRIP13, NPPA, NPPB | - | SweeD, CLR | Associated with cold adaptation | [96] |
Western Finncattle | CD14, COBL, JMJD1C, KCNMA1, PLA2G4, SERPINF2, SRA1, TAF7 | - | SweeD, CLR | Boost up adaptability to cold environment | [96] |
Yakutian cattle | DNAJC9, SOCS3, TRPC7, SLC8A1 GLP1R, PKLR, TCF7L2 | - | SweeD, CLR | Enhance resistance to cold weather | [96] |
Siberian cattle | MSANTD4, GRIA4 | - | H1, H12, Pi, DCMS, Tajima’s D | Indirect involvement in the cold shock response and body thermoregulation | [97] |
Altay sheep, Hu lambs | APOC3, FABP4, LPL, PCK1, ADCY10, ADORA2A, MYL2 | - | Pairwise comparisons | Thermoregulation and muscle contraction | [98] |
Altay lambs | ACTA1, MYH1, MYH2, MYL1, MYL2, TNNC1, TNNC2, TNNT3 ATP2A1, SLN, CKM | - | DESeq2 software (https://bioconductor.org/packages/release/bioc/html/DESeq2.html (accessed on 17 January 2025)) | Muscle shivering thermogenesis Muscle non-shivering thermogenesis | [99] |
Altay lambs, Hu lambs | UCP1, RYR1, ADIPOQ and LPL | - | DESeq2 software | Thermogenesis | [100] |
Changthangi sheep | TRPM8 | - | ROH, iHS | Enhances ability of animals to tolerate cold weather | [101] |
Kulundin, Altai Mountain, and Baikal sheep | ADAMTS5 | - | hapFLK, p-value, DCMS, Tajima’s D, FST, Pi | Promotes adipogenesis and white adipose tissue expansion | [103] |
Russia sheep and cattle | NEB | - | hapFLK, DCMS | Thermoregulation | [105] |
Species | Genes | Variations | Methods | Function | References |
---|---|---|---|---|---|
SSA cattle | RIMS1, RSAD2, CMPK2, NOTCH1 OR1J1 SLC25A17 | - | iHS, EHH | Immune response, cellular stress mechanisms Olfactory function Metabolic efficiency | [106] |
Water buffalo | IL18RAP, IL6R, CCR1, PPBP, IL1B, and IL1R1 | - | WGCNA | Cytokine–cytokine receptor interaction | [107] |
Chinese Holstein cattle | PMAIP1 SBK1 TMEM33, GATB, BTBD7, CHORDC1, RTN4IP1, | - | WssGWAS | Regulate diverse cellular functions in autophagic cell death and metabolism Involved in the protection of cells Heat stress/heat shock and cellular adaptive function | [108] |
Chinese Holstein dairy cows | OAS2, MX2, IFIT5 and TGFB2 | - | DESeq2 R package | Activate immune effector process | [109] |
Dehong humped cattle | HSF1 PLCB1, PLCB4 RAB31 ATP8A1, SHC3 TP63, MAP3K13, PTPN4, PPP3CC, ADAMTSL1, SS18L1, TOX, RREB1, GRK2, OSBPL2 | - | Fst, XP-EHH, XP-CLR | Heat tolerance Oxidative stress response Coat color Feed intake Reproduction | [110] |
Southern Chinese cattle | EIF2AK4 | g.35615224 T > G in exon 6 | POPGENE software (version 7.32) | Thermal stress | [111] |
Angus and Simmental cattle | HSF1, HSPA6 | - | RT-qPCR | Thermotolerance indicators | [112] |
Nelore and Caracu beef cattle | HSPD1, HSP90AA1 | - | qPCR | Enhance immune response, stress adaptation and heat tolerance | [113] |
Gir × Holstein F2 cattle | LIF, OSM, TXNRD2, DGCR8 | - | GWAS | Heat stress effects | [114] |
Chinese indigenous cattle | MYO1A | g.56383560G > A, g.56383565T > C, g.56383578T > C, g.56383635A > G | PCR | Heat tolerance | [115] |
Santa Ines sheep | HSPA1A, HSPA6 CXCL1, CAPN14, SAA4, IGHG4 | - | dgeR package | Cellular protection Promote immune response | [116] |
Iranian sheep | SIK2, FER, TLR4, ATP1A1, CDK5RAP3 CD109, CR2, EOMES, MARCHF1 HTR4, ALDH1A3, TRHDE | - | Fst, θπ | Heat stress Immune response Control digestive metabolism | [117] |
Barki and Aboudeleik lambs | HSP90AB1, HSPB6, HSF1, ST1P1 and ATP1A1 | HSP90AB1 (3 SNPs:A118G, A478G, C232T) HSPB6 (1 SNP:C155T) HSF1 (3 SNPs:G283A, G170A, C410T) ST1P1 (4 SNPs:A177G, C336T, C491T, A457) ATP1A1 (2 SNPs:A47G, C143T) | PCR | Heat tolerance | [118] |
Egyptian sheep | MYO5A PRKG1 GSTCD RTN1 | MYO5A (Chr7:54927841 G > A, Chr7:54966248 A > C) PRKG1 (Chr22:8045910 G > A) GSTCD (Chr6:19441931 G > A) RTN1(Chr7:68761822 G > A) | statgenGWAS | Pigmentation Body thermoregulation Respiratory system Alleviate endoplasmic reticulum stress | [119] |
Malabari goats | HSP70 | - | RT-PCR | Heat stress acclimation | [120] |
Duolang sheep | DNAJB5 | - | Fst, Hp | Heat tolerance | [80] |
Hu sheep | 5-HTR4, HTR1B NPR1, ANGPT2, SLC13A5 HSPA2 | - | DESeq2 software | Body thermoregulation Energy metabolism Immune response | [122] |
Thermotolerant sheep | GPX3 IGHG1 VLDLR EVC GPAT3 RGS6 | - | EdgeR | Protect cells from heat damage Immunoglobulin synthesis Body temperature regulation Intercellular communication Metabolic homeostasis Cellular signaling and responses to heat stress | [123] |
Brazilian horse | ADO, GRHPR, GFOD1, KLF9, PIP5K1B, RANBP9, JMJD1C HSP40, HSP70, HSP27, HSP90 | - | hapFLK, PCAdapt | Oxidative reduction Encode heat shock protein | [125] |
Jinjiang horse | NFKBIA SOCS4 HSPA1A IL6 | - | qPCR | Inhibit heat shock Negatively regulate the inflammatory response Protect cell homeostasis Regulate the immune system | [126] |
Species | Genes | Variations | Methods | Function | References |
---|---|---|---|---|---|
Anxi cattle | RBFOX2 CERS3 SLC16A7 SPATA3 | SPATA3 (c. 184G>A, rs43347904) | CLR, FST, θπ, XP-CLR | Cardiac development Involved in regulating skin permeability and antimicrobial functions Regulation of pancreatic endocrine function Reproduction | [128] |
Indian cattle | CACNA1D, GHRHR ESR1, RBMS3 NOSTRIN, IL12B ADAM22, ASL | - | CLR, FST | Production traits Reproduction Immunity Environmental adaptation | [129] |
Zhangmu cattle, Qaidam cattle, Anxi cattle, Kazakh cattle, Mongolian cattle | PLA2G4B | - | θπ, FST, Tajima’s D | Regulates water retention and reabsorption | [130] |
North African cattle | GH1 | - | iHS, Rsb, XP-EHH, FST | Responds to nutrient levels, positive regulation of lactation and triglyceride biosynthetic process | [131] |
Taklamakan Desert sheep | RAPSN, CNBD2 KCNJ16, KCNMB2 PLCG1, BMP7 CELF1 TECRL | - | XP-EHH, iHS, FST | Body sizes Facilitate heat dissipation Kidney function and development Lens development Pigment deposition | [31] |
Southwest Asia goats | KITLG | - | θπ, FST, Tajima’s D | Pigmentation | [32] |
Taklamakan Desert sheep | DNTT, FEN1, POLL PRKDC MAFB, PTEN, MITF EDN3 F13A1 FGF3, ARNTL, CHKA NRG4 | - | FST, XP-EHH, Rsb, iHS | Immunity Vision Heat stress tolerance High reproduction rate | [133] |
Iranian sheep | CORIN, CPQ | - | FST, Pi | Maintain the proper volume of blood and proteolytic functions | [134] |
Nubian ibex | ABCA12, ASCL4, UVSSA | - | comparative analysis of protein-coding genes | Skin barrier development and DNA repairing | [13] |
Liangzhou donkey | CYP4A11 | - | FST, θπ, CLR, XP-EHH | Promotes water reabsorption | [138] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Peng, Y.; Zhang, X.; Chen, W.; Chen, Y.; Wei, L.; Zhu, Q.; Khan, M.Z.; Wang, C. Potential Genetic Markers Associated with Environmental Adaptability in Herbivorous Livestock. Animals 2025, 15, 748. https://doi.org/10.3390/ani15050748
Liu X, Peng Y, Zhang X, Chen W, Chen Y, Wei L, Zhu Q, Khan MZ, Wang C. Potential Genetic Markers Associated with Environmental Adaptability in Herbivorous Livestock. Animals. 2025; 15(5):748. https://doi.org/10.3390/ani15050748
Chicago/Turabian StyleLiu, Xiaotong, Yongdong Peng, Xinhao Zhang, Wenting Chen, Yinghui Chen, Lin Wei, Qifei Zhu, Muhammad Zahoor Khan, and Changfa Wang. 2025. "Potential Genetic Markers Associated with Environmental Adaptability in Herbivorous Livestock" Animals 15, no. 5: 748. https://doi.org/10.3390/ani15050748
APA StyleLiu, X., Peng, Y., Zhang, X., Chen, W., Chen, Y., Wei, L., Zhu, Q., Khan, M. Z., & Wang, C. (2025). Potential Genetic Markers Associated with Environmental Adaptability in Herbivorous Livestock. Animals, 15(5), 748. https://doi.org/10.3390/ani15050748