Abattoir Countrywide Survey of Dairy Small Ruminants’ Haemonchosis in Greece and Associated Risk Factors
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design—Methodology
2.2. Collection and Post-Mortem Examination of Sheep’s and Goats’ Abomasa from Abattoirs
2.3. Data Collection
2.4. Data Handling—Statistical Analyses
2.5. Molecular Identification of Haemonchus contortus
3. Results
3.1. Prevalence of Haemonchus contortus Infection
3.2. Molecular Identification of Haemonchus spp.
3.3. Descriptive Results
3.4. Risk Factors of Sheep Infected by Haemonchus contortus
3.5. Risk Factors of Goats Infected by Haemonchus contortus
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Familton, A.S.; McAnulty, R.W. Life cycles and development of nematode parasites of ruminants in sustainable control of internal parasites in ruminants. Anim. Ind. Workshop 1997, 67–80. [Google Scholar]
- Perry, B.D.; Randolph, T.F. Improving the assessment of the economic impact of parasitic diseases and of their control in production animals. Vet. Parasitol. 1999, 84, 145–168. [Google Scholar] [CrossRef] [PubMed]
- Rehbein, S.; Visser, M.; Winter, R. Ein Beitrag zur Kenntnis des Parasitenbefalls von Bergschafen aus dem Oberpinzgau (Salzburg). Mitt. Österr Ges. Tropenmed Parasitol. 1999, 21, 99–106. [Google Scholar]
- Burgess, C.G.S.; Bartley, Y.; Redman, E.; Skuce, P.J.; Nath, M.; Whitelaw, F.; Tait, A.; Gilleard, J.S.; Jackson, F. A survey of the trichostrongylid nematode species present on UK sheep farms and associated anthelmintic control practices. Vet. Parasitol. 2012, 189, 299–307. [Google Scholar] [CrossRef]
- Domke, A.V.; Chartier, C.; Gjerde, B.; Leine, N.; Vatn, S.; Stuen, S. Prevalence of gastrointestinal helminths, lungworms and liver fluke in sheep and goats in Norway. Vet. Parasitol. 2012, 194, 40–48. [Google Scholar] [CrossRef]
- Cringoli, G.; Rinaldi, L.; Veneziano, V.; Capelli, G. Efficacy of eprinomectin pour on against gastrointestinal nematode infections in sheep. Vet. Parasitol. 2003, 112, 203–209. [Google Scholar] [CrossRef]
- Torina, A.; Dara, S.; Marino, A.M.F.; Sparagano, O.A.E.; Vitale, F.; Reale, S.; Caracappa, S. Study on gastrointestinal nematodes of Sicilian sheep and goats. Ann. N. Y Acad. Sci. 2004, 1026, 187–194. [Google Scholar] [CrossRef]
- Uriarte, J.; Llorente, M.M.; Valderrábano, J. Seasonal changes of gastrointestinal nematode burden in sheep under an intensive grazing system. Vet. Parasitol. 2004, 118, 79–92. [Google Scholar] [CrossRef]
- Papadopoulos, E.; Arsenos, G.; Sotiraki, S.; Deligiannis, C.; Lainas, T.; Zygogiannis, D. The epizootiology of gastrointestinal nematode parasites in Greek dairy breeds of sheep and goats. Small Rum. Res. 2003, 47, 193–202. [Google Scholar] [CrossRef]
- Kantzoura, V.; Kouam, M.K.; Theodoropoulou, H.; Feidas, H.; Theodoropoulos, G. Prevalence and risk factors of gastrointestinal parasitic infections in small ruminants in the Greek temperate Mediterranean environment. Open J. Vet. Med. 2012, 2, 25–33. [Google Scholar] [CrossRef]
- Geurden, T.; Chartier, C.; Fanke, J.; Frangipane di Regalbono, A.; Traversa, D.; von Samson-Himmelstjerna, G.; Demeler, J.; Vanimisetti, H.B.; Bartram, D.J.; Denwood, M.J. Anthelmintic resistance to ivermectin and moxidectin in gastrointestinal nematodes of cattle in Europe. Int. J. Parasitol. Drugs Drug Resist. 2015, 5, 163–171. [Google Scholar] [CrossRef] [PubMed]
- Hamel, D.; Bosco, A.; Rinaldi, L.; Cringoli, G.; Kaulfub, K.H.; Kellermann, M.; Fischer, J.; Wang, H.; Kley, K.; Mayr, S.; et al. Eprinomectin pour-on (EPRINEX® Pour-on, Merial): Efficacy against gastrointestinal and pulmonary nematodes and pharmacokinetics in sheep. BMC Vet. Res. 2017, 13, 148. [Google Scholar] [CrossRef] [PubMed]
- Cringoli, G.; Veneziano, V.; Pennacchio, S.; Mezzino, L.; Santaniello, M.; Schioppi, M.; Fedele, V.; Rinaldi, L. Economic efficacy of anthelmintic treatments in dairy sheep naturally infected by gastrointestinal strongyles. Parassitologia 2007, 49, 201–207. [Google Scholar] [PubMed]
- Arsenopoulos, K.V.; Fthenakis, G.C.; Katsarou, E.I.; Papadopoulos, E. Haemonchosis: A challenging parasitic infection of sheep and goats. Animals 2014, 11, 363. [Google Scholar] [CrossRef] [PubMed]
- Geurden, T.; Hoste, H.; Jacquiet, P.; Traversa, D.; Sotiraki, S.; Frangipane di Regalbono, A.; Tzanidakis, N.; Kostopoulou, D.; Gaillac, C.; Privat, S.; et al. Anthelmintic resistance and multidrug resistance in sheep gastro-intestinal nematodes in France, Greece and Italy. Vet. Parasitol. 2014, 201, 59–66. [Google Scholar] [CrossRef]
- Gallidis, E.; Angelopoulou, K.; Papadopoulos, E. First identification of benzimidazole resistant Haemonchus contortus in sheep in Greece. Small Rum. Res. 2012, 106, 27–29. [Google Scholar] [CrossRef]
- Kaimakamis, I.; Dotas, V.; Gourdouvelis, D.; Hatzizisis, L.; Koidou, M. Typology of mixed sheep and goat production system in the regional unit of Larissa, Greece. J. Hellenic Vet. Med. 2024, 75, 7917–7924. [Google Scholar] [CrossRef]
- Hillis, D.; Mable, B.K.; Larson, A.; Davis, S.K.; Zimmer, E.A. Nucleic acids IV: Sequencing and cloning. In Molecular Systematics, 2nd ed.; Hills, D., Moritz, C., Mable, B.K., Eds.; Sinauer Associates: Sunderland, MA, USA, 1996; pp. 321–382. [Google Scholar]
- Arsenopoulos, K.V.; Minoudi, S.; Symeonidou, I.; Triantafyllidis, A.; Fthenakis, G.C.; Papadopoulos, E. Extensive countrywide molecular identification and high genetic diversity of Haemonchus spp. in domestic ruminants in Greece. Pathogens 2024, 13, 238. [Google Scholar] [CrossRef]
- Besier, R.B.; Kahn, L.P.; Sargison, N.D.; Van Wyk, J.A. The pathophysiology, ecology and epidemiology of Haemonchus contortus infection in small ruminants. Adv. Parasitol. 2016, 93, 95–143. [Google Scholar]
- Barger, I.A. The role of epidemiological knowledge and grazing management for helminth control in small ruminants. Int. J. Parasitol. 1999, 29, 41–47. [Google Scholar] [CrossRef]
- Soulsby, E.J.L. Helminths, Arthropods and Protozoa of Domestic Animals; Bailliere Tindall: London, UK, 1968. [Google Scholar]
- Flay, K.J.; Hill, F.I.; Muguiro, D.H. A review: Haemonchus contortus infection in pasture-based sheep production systems, with a focus on the pathogenesis of anaemia and changes in haematological parameters. Animals 2022, 12, 1238. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulos, E.; Arsenos, G.; Coles, G.C.; Himonas, C. Gastrointestinal nematode infection pattern of Greek dairy goats reared under extensive husbandry conditions and treated with anthelmintics at different times during the year. Small Rum. Res. 2007, 69, 68–73. [Google Scholar] [CrossRef]
- Arsenopoulos, K.; Gelasakis, A.I.; Delistamatis, V.; Papadopoulos, E. Evaluation of the pour-on administration of eprinomectin on milk yield and somatic cell counts in dairy ewes naturally infected with gastrointestinal nematodes. Vet. Parasitol. 2019, X2, 100016. [Google Scholar] [CrossRef] [PubMed]
- Termatzidou, S.A.; Arsenopoulos, K.V.; Siachos, N.; Kazana, P.; Papadopoulos, E.; Achard, D.; Karembe, H.; Bramis, G.; Arsenos, G. Anthelmintic activity of injectable eprinomectin (Eprecis® 20 mg/mL) in naturally infected dairy sheep. Vet. Parasitol. 2019, 266, 7–11. [Google Scholar] [CrossRef]
- Arsenopoulos, K.V.; Minoudi, S.; Symeonidou, I.; Triantafyllidis, A.; Katsafadou, A.I.; Lianou, D.T.; Fthenakis, G.C.; Papadopoulos, E. Frequency of resistance to benzimidazoles of Haemonchus contortus helminths from dairy sheep, goats, cattle and buffaloes in Greece. Pathogens 2020, 9, 347. [Google Scholar] [CrossRef]
- Van Dijk, J.; Sargison, N.D.; Kenyon, F.; Skuce, P.J. Climate change and infectious disease: Helminthological challenges to farmed ruminants in temperate regions. Animal 2010, 4, 377–392. [Google Scholar] [CrossRef]
- Polley, L.; Hoberg, E.; Kutz, S. Climate change, parasites and shifting boundaries. Acta Vet. Scand. 2010, 52, S1. [Google Scholar] [CrossRef]
- Sargison, N.D.; Wilson, D.J.; Bartley, D.J.; Penny, C.D.; Jackson, F. Haemonchosis and teladorsagiosis in a Scottish sheep flock putatively associated with the overwintering of hypobiotic fourth stage larvae. Vet. Parasitol. 2007, 147, 326–331. [Google Scholar] [CrossRef]
- Van Dijk, J.; David, G.O.; Baird, G.; Morgan, E.R. Back to the future: Developing hypotheses on the effects of climate change on ovine parasitic gastroenteritis from historical data. Vet. Parasitol. 2008, 158, 73–84. [Google Scholar] [CrossRef]
- Kenyon, F.; Sargison, N.D.; Skuce, P.; Jackson, F. Sheep helminth parasitic disease in southeastern Scotland arising as a possible consequence of climate change. Vet. Parasitol. 2009, 163, 293–297. [Google Scholar] [CrossRef]
- Taylor, M.A.; Coop, R.L.; Wall, R.L. Veterinary Parasitology; Blackwell Publishing: London, UK, 2007. [Google Scholar]
- Silvestre, A.; Sauve, C.; Cortet, J.; Cabaret, J. Contrasting genetic structures of two parasitic nematodes, determined on the basis of neutral microsatellite markers and selected anthelmintic resistance markers. Mol. Ecol. 2009, 18, 5086–5100. [Google Scholar] [CrossRef] [PubMed]
- Brasil, B.S.A.F.; Nunes, R.L.; Bastianetto, E.; Drummond, M.G.; Carvalho, D.C.; Leite, R.C.; Molento, M.B.; Oliveira, D.A.A. Genetic diversity patterns of Haemonchus placei and Haemonchus contortus populations isolated from domestic ruminants in Brazil. Int. J. Parasitol. 2012, 42, 469–479. [Google Scholar] [CrossRef] [PubMed]
- Chaudhry, U.; Redman, E.M.; Abbas, M.; Muthusamy, R.; Ashraf, K.; Gilleard, J.S. Genetic evidence for hybridisation between Haemonchus contortus and Haemonchus placei in natural field populations and its implications for interspecies transmission of anthelmintic resistance. Int. J. Parasitol. 2015, 45, 149–159. [Google Scholar] [CrossRef] [PubMed]
- Chaudhry, U.; Redman, E.M.; Ashraf, K.; Shabbir, M.Z.; Rashid, M.I.; Ashraf, S.; Gilleard, J.S. Microsatellite marker analysis of Haemonchus contortus populations from Pakistan suggests that frequent benzimidazole drug treatment does not result in a reduction of overall genetic diversity. Parasit. Vectors 2016, 9, 349. [Google Scholar] [CrossRef]
- Babjak, M.; Dolinska, M.U.; von Samson-Himmelstjerna, G.; Syrota, Y.; Komaromyova, M.; Varady, M. Effectiveness of benzimidazole treatments against Haemonchus contortus in sheep and goats-Do they produce similar responses? Vet. Parasitol. 2024, 332, 110301. [Google Scholar] [CrossRef]
- Hofmann, R.R. Evolutionary steps of ecophysiological adaptation and diversification of ruminants: A comparative view of their digestive system. Oecologia 1989, 78, 443–457. [Google Scholar] [CrossRef]
- Kasapidou, E.; Basdagianni, Z.; Papadopoulos, V.; Karaiskou, C.; Kesidis, A.; Tsiotsias, A. Effects of intensive and semi-intensive production on sheep milk chemical composition, physicochemical characteristics, fatty acid profile and nutritional indices. Animals 2021, 11, 2578. [Google Scholar] [CrossRef]
- Morgan-Davies, C.; Tesniere, G.; Gautier, J.M.; Jorgensen, G.H.M.; Gonzalez-Garcia, E.; Patsios, S.I.; Sossidou, E.N.; Keady, T.W.J.; McClearn, B.; Kenyon, F.; et al. Review: Exploring the use of precision livestock farming for small ruminant welfare management. Animal 2024, 18, 101233. [Google Scholar] [CrossRef]
- Adduci, I.; Sajovitz, F.; Hinney, B.; Lichtmannsperge, K.; Joachim, A.; Wittek, T.; Yan, S. Haemonchosis in sheep and goats, control strategies and development of vaccines against Haemonchus contortus. Animals 2022, 12, 2339. [Google Scholar] [CrossRef]
- Hoste, H.; Torres-Acosta, J.F.J.; Aguilar-Caballero, A.J. Nutrition-parasite interactions in goats: Is immunoregulation involved in the control of gastrointestinal nematodes? Parasite Immunol. 2008, 30, 79–88. [Google Scholar] [CrossRef]
- Abella, J.C.V.; Becerra, R.J.A.; Manrique, L.E.T. Prevalence of gastrointestinal parasites in crossbred sheep diagnosed at different altitudes in the Highland Boyaca-Colombia. Red Vet. 2020, 21, 38–49. [Google Scholar]
- O’Connor, L.J.; Walkden-Brown, S.W.; Kahn, L.P. Ecology of the free-living stages of major trichostrongylid parasites of sheep. Vet. Parasitol. 2006, 42, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Fleming, M.W. Acute or chronic administration of prolactin alters ovine infections of Haemonchus contortus. Vet. Parasitol. 1993, 50, 109–155. [Google Scholar] [CrossRef] [PubMed]
- Beasley, A.M.; Kahn, L.P.; Windon, R.G. The periparturient relaxation of immunity in Merino ewes infected with Trichostrongylus colubriformis: Endocrine and body compositional responses. Vet. Parasitol. 2010, 168, 51–59. [Google Scholar] [CrossRef]
- Beasley, A.M.; Kahn, L.P.; Windon, R.G. The influence of reproductive physiology and nutrient supply on the periparturient relaxation of immunity to the gastrointestinal nematode Trichostrongylus colubriformis in Merino ewes. Vet. Parasitol. 2012, 188, 306–324. [Google Scholar] [CrossRef]
1. Abattoir Information |
Location of theabattoir |
Visit day |
Season |
Spring |
Summer |
Autumn |
Winter |
2. Animals Information |
Age |
<2 months |
2–15 months |
>15 months |
Sex |
Male |
Female |
Species |
Sheep |
Goat |
3. Farm Information |
Management system |
Semi-intensive |
Intensive |
Altitude |
<300 m a.s.l. |
>300 m a.s.l. |
Co-existence of sheep and goats |
Single-species farming |
Mixed-species farming |
Anthelmintic treatment |
Exclusively pro/benzimidazoles |
Exclusively macrocyclic lactones |
Combination of pro/benzimidazoles |
and macrocyclic lactones |
No anthelmintic treatment |
Greece | Region | Prefecture/Island | Numbers from Figure 1 | Sheep (%) | Goats (%) |
---|---|---|---|---|---|
Continental | Thrace | Evros | 1 | 26.7 (10.9–52.0) | 11.1 (2.0–43.5) |
Rodopi | 2 | 18.8 (6.6–43.0) | 25.0 (7.2–59.1) | ||
Xanthi | 3 | 40.0 (19.8–64.3) | 27.3 (9.8–56.6) | ||
Macedonia | Kavala | 4 | 28.6 (11.7–54.7) | 16.7 (4.7–44.8) | |
Serres | 5 | 42.9 (21.4–67.4) | 13.3 (3.7–37.9) | ||
Kilkis | 6 | 42.9 (21.4–67.4) | 36.4 (15.2–64.6) | ||
Thessaloniki | 7 | 43.8 (23.1–66.8) | 33.3 (15.2–58.3) | ||
Chalkidiki | 8 | 42.9 (21.4–67.4) | 26.7 (10.9–52.0) | ||
Imathia | 9 | 35.7 (16.3–61.2) | 45.5 (21.3–72.0) | ||
Pieria | 10 | 28.6 (11.7–54.7) | 50.0 (18.8–81.2) | ||
Kozani | 11 | 31.3 (14.2–55.6) | 21.4 (7.6–47.6) | ||
Grevena | 12 | 25.0 (10.2–49.5) | 42.9 (15.8–75.0) | ||
Kastoria | 13 | 29.4 (13.3–53.1) | 25.0 (7.2–59.1) | ||
Florina | 14 | 57.1 (32.6–78.6) | 18.2 (5.1–47.7) | ||
Thessaly | Larissa | 15 | 50.0 (29.0–71.0) | 53.3 (30.1–75.2) | |
Karditsa | 16 | 31.6 (15.4–54.0) | 47.1 (26.2–69.0) | ||
Trikala | 17 | 38.9 (20.3–61.4) | 36.8 (19.2–59.0) | ||
Magnesia | 18 | 29.4 (13.3–53.1) | 35.0 (18.1–56.7) | ||
Epirus | Ioannina | 19 | 28.6 (11.7–54.7) | 20.0 (5.7–51.0) | |
Thesprotia | 20 | 35.7 (16.3–61.2) | 27.3 (9.8–56.7) | ||
Preveza | 21 | 35.7 (16.3–61.2) | 36.4 (15.2–64.6) | ||
Central Greece | Aitoloakarnania | 22 | 42.9 (21.4–67.4) | 37.5 (13.7–69.4) | |
Evritania | 23 | 50.0 (26.8–73.2) | 42.9 (15.8–75.0) | ||
Fokida | 24 | 35.7 (16.3–61.2) | 60.0 (23.1–88.2) | ||
Fthiotida | 25 | 42.9 (21.4–67.4) | 25.0 (7.2–59.1) | ||
Viotia | 26 | 50.0 (26.8–73.2) | 37.5 (13.7–69.4) | ||
Pelopponnese | Achaia | 27 | 57.1 (32.6–78.6) | 28.6 (8.2–64.1) | |
Arkadia | 28 | 42.9 (21.4–67.4) | 14.3 (2.6–51.3) | ||
Messinia | 29 | 64.3 (38.8–83.7) | 28.6 (8.2–64.1) | ||
Lakonia | 30 | 71.4 (45.4–88.3) | 14.3 (2.6–51.3) | ||
Insular | Cyclades | Syros | 31 | 83.3 (43.7–93.0) | 33.3 (9.7–70.0) |
Paros | 32 | 33.3 (9.7–70.0) | 33.3 (9.7–70.0) | ||
Naxos | 33 | 33.3 (9.7–70.0) | 50.0 (18.8–81.2) | ||
Nothern Sporades | Skopelos | 34 | 83.3 (43.7–97.0) | 33.3 (9.7–70.0) | |
Alonnisos | 35 | 33.3 (9.7–70.0) | 33.3 (9.7–70.0) | ||
Dodekanese | Leros | 36 | 66.7 (30.0–90.3) | 33.3 (9.7–70.0) | |
Kalimnos | 37 | 50.0 (18.8–81.2) | 50.0 (18.8–81.2) | ||
Rhodes | 38 | 33.3 (12.1–64.6) | 33.3 (12.1–64.6) | ||
Astypalea | 39 | 16.7 (3.0–56.4) | 16.7 (3.0–56.4) | ||
Northern–Eastern Aegean | Lesvos | 40 | 50.0 (18.8–81.2) | 33.3 (12.1–64.6) | |
Samos | 41 | 16.7 (3.0–56.4) | 16.7 (3.0–56.4) | ||
Crete | Rethymno | 42 | 83.3 (43.7–97.0) | 50.0 (18.8–81.2) | |
Heraklion | 43 | 83.3 (43.7–97.0) | 50.0 (18.8–81.2) | ||
Ionian | Corfu | 44 | 20.0 (5.7–51.0) | 16.7 (3.0–56.4) | |
Zakynthos | 45 | 33.3 (9.7–70.0) | 33.3 (9.7–70.0) | ||
Kefallonia | 46 | 50.0 (18.8–81.2) | 50.0 (18.8–81.2) | ||
Kythira | 47 | 16.7 (3.0–56.4) | 16.7 (3.0–56.4) | ||
Central Greece | Evia | 48 | 53.3 (30.1–75.2) | 33.3 (9.7–70.0) |
Sheep * | % | Goats * | % | |
---|---|---|---|---|
Co-existence of sheep and goats | ||||
Single-species farming | 162 | 68.9 | 96 | 69.6 |
Mixed-species farming | 73 | 31.1 | 42 | 30.4 |
Anthelmintic treatment | ||||
Exclusively pro/benzimidazoles | 125 | 53.2 | 85 | 61.6 |
Exclusively macrocyclic lactones | 27 | 11.5 | 11 | 08.0 |
Combination of pro/benzimidazoles and macrocyclic lactones | 27 | 11.5 | 13 | 09.4 |
No anthelmintic treatment | 56 | 23.8 | 29 | 21.0 |
Age | ||||
<2 months | 42 | 17.9 | 56 | 40.6 |
2–15 months | 113 | 48.1 | 58 | 42.0 |
>15 months | 80 | 34.0 | 24 | 17.4 |
Altitude | ||||
<300 m a.s.l. | 160 | 68.1 | 118 | 85.5 |
>300 m a.s.l. | 75 | 31.9 | 20 | 14.5 |
Management system | ||||
Semi-intensive | 193 | 82.1 | 130 | 94.2 |
Intensive | 42 | 17.9 | 8 | 05.8 |
Sex | ||||
Male | 106 | 45.1 | 61 | 44.2 |
Female | 129 | 54.9 | 77 | 55.8 |
Season | ||||
Spring | 36 | 15.3 | 34 | 24.6 |
Summer | 85 | 36.1 | 37 | 26.8 |
Autumn | 59 | 25.2 | 41 | 29.8 |
Winter | 55 | 23.4 | 26 | 18.8 |
B | S.E. | Wald | p-Value | Odds Ratio | 95% C.I. for Odds Ratio | ||
---|---|---|---|---|---|---|---|
Lower | Upper | ||||||
Mixed-species farming | −0.12 | 0.214 | 0.30 | 0.584 | 0.89 | 0.59 | 1.35 |
Single-species farming | Ref. | ||||||
Pro/benzimidazoles | −2.19 | 0.381 | 33.06 | 0.000 | 0.11 | 0.05 | 0.24 |
Macrocyclic lactones | −2.03 | 0.444 | 20.83 | 0.000 | 0.13 | 0.06 | 0.32 |
Pro/benzimidazoles and macrocyclic lactones | −2.14 | 0.440 | 23.64 | 0.000 | 0.12 | 0.05 | 0.28 |
No anthelmintic treatment | Ref. | ||||||
<2 months | −1.61 | 0.279 | 33.15 | 0.000 | 0.20 | 0.12 | 0.35 |
2–15 months | −0.19 | 0.247 | 0.59 | 0.441 | 0.83 | 0.51 | 1.34 |
>15 months | Ref. | ||||||
<300 m a.s.l. | 0.04 | 0.209 | 0.04 | 0.843 | 1.04 | 0.69 | 1.57 |
>300 m a.s.l. | Ref. | ||||||
Semi-intensive | 1.00 | 0.234 | 18.45 | 0.000 | 2.73 | 1.73 | 4.32 |
Intensive | Ref. | ||||||
Male | 0.05 | 0.196 | 0.07 | 0.797 | 1.05 | 0.72 | 1.55 |
Female | Ref. | ||||||
Spring | 0.24 | 0.337 | 0.50 | 0.479 | 1.27 | 0.66 | 2.46 |
Summer | 0.26 | 0.271 | 0.89 | 0.346 | 1.29 | 0.76 | 2.20 |
Autumn | −0.53 | 0.293 | 3.21 | 0.073 | 0.59 | 0.33 | 1.05 |
Winter | Ref. | ||||||
Constant | 1.44 | 0.499 | 8.37 | 0.004 | 4.23 |
B | S.E. | Wald | p-Value | Odds Ratio | 95% C.I. for Odds Ratio | ||
---|---|---|---|---|---|---|---|
Lower | Upper | ||||||
Mixed-species farming | 0.05 | 0.250 | 0.04 | 0.835 | 1.05 | 0.65 | 1.72 |
Single-species farming | Ref. | ||||||
Pro/benzimidazoles | −3.95 | 0.811 | 23.69 | 0.000 | 0.02 | 0.00 | 0.10 |
Macrocyclic lactones | −4.40 | 0.879 | 25.01 | 0.000 | 0.01 | 0.00 | 0.07 |
Pro/benzimidazoles and macrocyclic lactones | −4.30 | 0.858 | 25.01 | 0.000 | 0.01 | 0.00 | 0.07 |
No anthelmintic treatment | Ref. | ||||||
<2 months | 0.23 | 0.310 | 0.53 | 0.467 | 1.25 | 0.68 | 2.30 |
2–15 months | 0.22 | 0.313 | 0.47 | 0.491 | 1.24 | 0.67 | 2.29 |
>15 months | Ref. | ||||||
<300 m a.s.l. | 0.97 | 0.309 | 9.75 | 0.002 | 2.63 | 1.43 | 4.82 |
>300 m a.s.l. | Ref. | ||||||
Semi-intensive | 1.20 | 0.545 | 4.81 | 0.028 | 3.30 | 1.14 | 9.62 |
Intensive | Ref. | ||||||
Male | −0.02 | 0.235 | 0.01 | 0.933 | 0.98 | 0.62 | 1.55 |
Female | Ref. | ||||||
Spring | −0.96 | 0.362 | 6.98 | 0.008 | 0.38 | 0.19 | 0.78 |
Summer | −0.94 | 0.386 | 5.87 | 0.015 | 0.39 | 0.18 | 0.84 |
Autumn | −0.55 | 0.350 | 2.43 | 0.119 | 0.58 | 0.29 | 1.15 |
Winter | Ref. | ||||||
Constant | 1.63 | 0.980 | 2.76 | 0.097 | 5.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arsenopoulos, K.V.; Gelasakis, A.I.; Papadopoulos, E. Abattoir Countrywide Survey of Dairy Small Ruminants’ Haemonchosis in Greece and Associated Risk Factors. Animals 2025, 15, 487. https://doi.org/10.3390/ani15040487
Arsenopoulos KV, Gelasakis AI, Papadopoulos E. Abattoir Countrywide Survey of Dairy Small Ruminants’ Haemonchosis in Greece and Associated Risk Factors. Animals. 2025; 15(4):487. https://doi.org/10.3390/ani15040487
Chicago/Turabian StyleArsenopoulos, Konstantinos V., Athanasios I. Gelasakis, and Elias Papadopoulos. 2025. "Abattoir Countrywide Survey of Dairy Small Ruminants’ Haemonchosis in Greece and Associated Risk Factors" Animals 15, no. 4: 487. https://doi.org/10.3390/ani15040487
APA StyleArsenopoulos, K. V., Gelasakis, A. I., & Papadopoulos, E. (2025). Abattoir Countrywide Survey of Dairy Small Ruminants’ Haemonchosis in Greece and Associated Risk Factors. Animals, 15(4), 487. https://doi.org/10.3390/ani15040487