Transposable Elements Regulate Tail Development and Fat Deposition in Sheep Fetuses
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Sample Collection
2.2. RNA Extraction, Library Preparation, and Sequencing
2.3. Quality Control, Comparison, Assembly, and Quantification of Sequencing Data
2.4. TE-Gene Co-Expression Correlation Analysis
2.5. Functional Annotation and Pathway Enrichment Analysis of DEGs and TE-Proximal Genes
3. Results
3.1. Tail Related Phenotypes at Different Fetal Developmental Stages
3.2. Distinct Developmental Clustering and Stage-Specific Transposable Element Expression
3.3. Genomic Annotation and Co-Expression of Differential TEs
3.4. Functional Enrichment Analysis of DEGs Across Developmental Transitions
3.5. Functional Enrichment of Transposable Element-Adjacent Genes
3.5.1. TE-Associated Genes in the Tail Elongation Phase (E40–45 vs. E55–60)
3.5.2. TE-Associated Genes in the Tail Fat Formation Phase (E55–60 vs. E70–75)
3.6. Identification of Candidate Transposable Elements
4. Discussion
4.1. TEs Are Linked to Stage-Specific Signaling Pathways
4.2. Candidate TEs Are Positioned to Regulate Key Phenotypic Genes
4.3. A Proposed Cis-Regulatory Mechanism for TEs in Tail Development
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yanai, I. Development and Evolution through the Lens of Global Gene Regulation. Trends Genet. 2018, 34, 11–20. [Google Scholar] [CrossRef]
- Cardoso-Moreira, M.; Halbert, J.; Valloton, D.; Velten, B.; Chen, C.; Shao, Y.; Liechti, A.; Ascenção, K.; Rummel, C.; Ovchinnikova, S.; et al. Gene expression across mammalian organ development. Nature 2019, 571, 505–509. [Google Scholar] [CrossRef] [PubMed]
- Mastrangelo, S.; Bahbahani, H.; Moioli, B.; Ahbara, A.; Al Abri, M.; Almathen, F.; da Silva, A.; Belabdi, I.; Portolano, B.; Mwacharo, J.M.; et al. Novel and known signals of selection for fat deposition in domestic sheep breeds from Africa and Eurasia. PLoS ONE 2019, 14, e0209632. [Google Scholar] [CrossRef] [PubMed]
- al-Rehaimi, A.A.; al-Ali, A.K.; Mutairy, A.R.; Dissanayake, A.S. A comparative study of enzyme profile of camel (Camelus dromedarius) hump and sheep (Ovis aries) tail tissues. Comp. Biochem. Physiol. B 1989, 93, 857–858. [Google Scholar] [CrossRef]
- Kalds, P.; Zhou, S.; Gao, Y.; Cai, B.; Huang, S.; Chen, Y.; Wang, X. Genetics of the phenotypic evolution in sheep: A molecular look at diversity-driving genes. Genet. Sel. Evol. 2022, 54, 61. [Google Scholar] [CrossRef]
- Green, W.W.; Winters, L.M. Prenatal Development of the Sheep; University of Minnesota Agricultural Experiment Station: St. Paul, MN, USA, 1945; pp. 1–36. [Google Scholar]
- Harris, H.A. The Foetal Growth of the Sheep. J. Anat. 1937, 71, 516–527. [Google Scholar]
- Succu, S.; Contu, E.; Bebbere, D.; Gadau, S.D.; Falchi, L.; Nieddu, S.M.; Ledda, S. Fetal Growth and Osteogenesis Dynamics during Early Development in the Ovine Species. Animals 2023, 13, 773. [Google Scholar] [CrossRef] [PubMed]
- Jurberg, A.D.; Aires, R.; Varela-Lasheras, I.; Nóvoa, A.; Mallo, M. Switching axial progenitors from producing trunk to tail tissues in vertebrate embryos. Dev. Cell 2013, 25, 451–462. [Google Scholar] [CrossRef]
- van Rooijen, C.; Simmini, S.; Bialecka, M.; Neijts, R.; van de Ven, C.; Beck, F.; Deschamps, J. Evolutionarily conserved requirement of Cdx for post-occipital tissue emergence. Development 2012, 139, 2576–2583. [Google Scholar] [CrossRef]
- Bessho, Y.; Sakata, R.; Komatsu, S.; Shiota, K.; Yamada, S.; Kageyama, R. Dynamic expression and essential functions of Hes7 in somite segmentation. Genes Dev. 2001, 15, 2642–2647. [Google Scholar] [CrossRef]
- Wilm, B.; Dahl, E.; Peters, H.; Balling, R.; Imai, K. Targeted disruption of Pax1 defines its null phenotype and proves haploinsufficiency. Proc. Natl. Acad. Sci. USA 1998, 95, 8692–8697. [Google Scholar] [CrossRef]
- Zhi, D.; Da, L.; Liu, M.; Cheng, C.; Zhang, Y.; Wang, X.; Li, X.; Tian, Z.; Yang, Y.; He, T.; et al. Whole Genome Sequencing of Hulunbuir Short-Tailed Sheep for Identifying Candidate Genes Related to the Short-Tail Phenotype. G3 2018, 8, 377–383. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Yang, M.; Guo, T.; Niu, C.; Liu, J.; Yue, Y.; Yuan, C.; Yang, B. Two linked TBXT (brachyury) gene polymorphisms are associated with the tailless phenotype in fat-rumped sheep. Anim. Genet. 2019, 50, 772–777. [Google Scholar] [CrossRef]
- Kalds, P.; Huang, S.; Chen, Y.; Wang, X. Ovine HOXB13: Expanding the gene repertoire of sheep tail patterning and implications in genetic improvement. Commun. Biol. 2022, 5, 1196. [Google Scholar] [CrossRef]
- Lagler, D.K.; Hannemann, E.; Eck, K.; Klawatsch, J.; Seichter, D.; Russ, I.; Mendel, C.; Lühken, G.; Krebs, S.; Blum, H.; et al. Fine-mapping and identification of candidate causal genes for tail length in the Merinolandschaf breed. Commun. Biol. 2022, 5, 918. [Google Scholar] [CrossRef]
- Pope, M.; Budge, H.; Symonds, M.E. The developmental transition of ovine adipose tissue through early life. Acta Physiol. 2014, 210, 20–30. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Yu, J.; Tang, G.; Shi, Y.; Wang, B. Characteristics, development regularity and evaluation methods of adipose tissue in beef cattle and sheep. Chin. Sci. Life Sci. 2023, 53, 945–963. [Google Scholar]
- Gemmell, R.T.; Alexander, G. Ultrastructural development of adipose tissue in foetal sheep. Aust. J. Biol. Sci. 1978, 31, 505–515. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Ma, S.; Liang, B.; Bai, T.; Zhao, Y.; Ma, Y.; MacHugh, D.E.; Ma, L.; Jiang, L. Transcriptome Profiling of Developing Ovine Fat Tail Tissue Reveals an Important Role for MTFP1 in Regulation of Adipogenesis. Front. Cell Dev. Biol. 2022, 10, 839731. [Google Scholar] [CrossRef]
- Han, J.; Li, X.; Liang, B.; Ma, S.; Pu, Y.; Yu, F.; Lu, J.; Ma, Y.; MacHugh, D.E.; Jiang, L. Transcriptome profiling of differentiating adipose-derived stem cells across species reveals new genes regulating adipogenesis. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2023, 1868, 159378. [Google Scholar] [CrossRef]
- Li, T.; Jin, M.; Fei, X.; Yuan, Z.; Wang, Y.; Quan, K.; Wang, T.; Yang, J.; He, M.; Wei, C. Transcriptome Comparison Reveals the Difference in Liver Fat Metabolism between Different Sheep Breeds. Animals 2022, 12, 1650. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.X.; Wang, B.; Jing, J.N.; Ma, R.; Luo, Y.H.; Li, X.; Yan, Z.; Liu, Y.J.; Gao, L.; Ren, Y.L.; et al. Whole-body adipose tissue multi-omic analyses in sheep reveal molecular mechanisms underlying local adaptation to extreme environments. Commun. Biol. 2023, 6, 159. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Fang, C.; He, H.; Cao, H.; Liu, L.; Jiang, L.; Ma, Y.; Liu, W. Identification of key genes in sheep fat tail evolution Based on RNA-seq. Gene 2021, 781, 145492. [Google Scholar] [CrossRef]
- Kijas, J.W.; Lenstra, J.A.; Hayes, B.; Boitard, S.; Porto Neto, L.R.; San Cristobal, M.; Servin, B.; McCulloch, R.; Whan, V.; Gietzen, K.; et al. Genome-wide analysis of the world’s sheep breeds reveals high levels of historic mixture and strong recent selection. PLoS Biol. 2012, 10, e1001258. [Google Scholar] [CrossRef]
- He, T. Single Cell Transcriptome Sequencing Analysis of Gene Expression Differences Between Hulunbuir Grassland Short Tailed Sheep and Wuzhumuqin Sheep in 16 day Embryos. Ph.D. Thesis, Inner Mongolia Agricultural University, Hohhot, China, 2021. [Google Scholar]
- Seberg, O.; Petersen, G. A unified classification system for eukaryotic transposable elements should reflect their phylogeny. Nat. Rev. Genet. 2009, 10, 276. [Google Scholar] [CrossRef]
- Feschotte, C. Transposable elements and the evolution of regulatory networks. Nat. Rev. Genet. 2008, 9, 397–405. [Google Scholar] [CrossRef] [PubMed]
- Carninci, P.; Kasukawa, T.; Katayama, S.; Gough, J.; Frith, M.C.; Maeda, N.; Oyama, R.; Ravasi, T.; Lenhard, B.; Wells, C.; et al. The transcriptional landscape of the mammalian genome. Science 2005, 309, 1559–1563. [Google Scholar] [CrossRef]
- Perrat, P.N.; DasGupta, S.; Wang, J.; Theurkauf, W.; Weng, Z.; Rosbash, M.; Waddell, S. Transposition-driven genomic heterogeneity in the Drosophila brain. Science 2013, 340, 91–95. [Google Scholar] [CrossRef]
- Hendrickson, P.G.; Doráis, J.A.; Grow, E.J.; Whiddon, J.L.; Lim, J.W.; Wike, C.L.; Weaver, B.D.; Pflueger, C.; Emery, B.R.; Wilcox, A.L.; et al. Conserved roles of mouse DUX and human DUX4 in activating cleavage-stage genes and MERVL/HERVL retrotransposons. Nat. Genet. 2017, 49, 925–934. [Google Scholar] [CrossRef]
- Halstead, M.M.; Ma, X.; Zhou, C.; Schultz, R.M.; Ross, P.J. Chromatin remodeling in bovine embryos indicates species-specific regulation of genome activation. Nat. Commun. 2020, 11, 4654. [Google Scholar] [CrossRef]
- Peaston, A.E.; Evsikov, A.V.; Graber, J.H.; de Vries, W.N.; Holbrook, A.E.; Solter, D.; Knowles, B.B. Retrotransposons regulate host genes in mouse oocytes and preimplantation embryos. Dev. Cell 2004, 7, 597–606. [Google Scholar] [CrossRef]
- Göke, J.; Lu, X.; Chan, Y.-S.; Ng, H.-H.; Ly, L.-H.; Sachs, F.; Szczerbinska, I. Dynamic Transcription of Distinct Classes of Endogenous Retroviral Elements Marks Specific Populations of Early Human Embryonic Cells. Cell Stem Cell 2015, 16, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Koshi, K.; Ushizawa, K.; Kizaki, K.; Takahashi, T.; Hashizume, K. Expression of endogenous retrovirus-like transcripts in bovine trophoblastic cells. Placenta 2011, 32, 493–499. [Google Scholar] [CrossRef] [PubMed]
- Mario, N.S.; Alessandro, S.; Andrea, C.; Giovanni, F.T.; Mauro, L.; Salvatore, P.; Sergio, L. Comparation of Foetal Growth in Natural Mated and Vitrified/Warmed Ovine Embryos by Ultrasonographic Measurements. Glob. Vet. 2014, 12, 91–97. [Google Scholar]
- McGeady, T.A. Veterinary Embryology, 2nd ed.; John Wiley & Sons Inc.: Chichester, UK, 2017. [Google Scholar]
- Valasi, I.; Barbagianni, M.S.; Ioannidi, K.S.; Vasileiou, N.G.C.; Fthenakis, G.C.; Pourlis, A. Developmental anatomy of sheep embryos, as assessed by means of ultrasonographic evaluation. Small Ruminan. Res. 2017, 152, 56–73. [Google Scholar] [CrossRef]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef]
- Dobin, A.; Davis, C.A.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S.; Batut, P.; Chaisson, M.; Gingeras, T.R. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 2013, 29, 15–21. [Google Scholar] [CrossRef]
- Jin, Y.; Tam, O.H.; Paniagua, E.; Hammell, M. TEtranscripts: A package for including transposable elements in differential expression analysis of RNA-seq datasets. Bioinformatics 2015, 31, 3593–3599. [Google Scholar] [CrossRef]
- Yu, G.; Wang, L.G.; Han, Y.; He, Q.Y. clusterProfiler: An R package for comparing biological themes among gene clusters. Omics 2012, 16, 284–287. [Google Scholar] [CrossRef]
- Luo, W.; Brouwer, C. Pathview: An R/Bioconductor package for pathway-based data integration and visualization. Bioinformatics 2013, 29, 1830–1831. [Google Scholar] [CrossRef] [PubMed]
- Carmeliet, P.; Tessier-Lavigne, M. Common mechanisms of nerve and blood vessel wiring. Nature 2005, 436, 193–200. [Google Scholar] [CrossRef]
- Gelfand, M.V.; Hong, S.; Gu, C. Guidance from above: Common cues direct distinct signaling outcomes in vascular and neural patterning. Trends Cell Biol. 2009, 19, 99–110. [Google Scholar] [CrossRef] [PubMed]
- Jones, C.A.; Li, D.Y. Common cues regulate neural and vascular patterning. Curr. Opin. Genet. Dev. 2007, 17, 332–336. [Google Scholar] [CrossRef] [PubMed]
- Beamish, I.V.; Hinck, L.; Kennedy, T.E. Making Connections: Guidance Cues and Receptors at Nonneural Cell-Cell Junctions. Cold Spring Harb. Perspect. Biol. 2018, 10, a029165. [Google Scholar] [CrossRef]
- Weyers, J.J.; Milutinovich, A.B.; Takeda, Y.; Jemc, J.C.; Van Doren, M. A genetic screen for mutations affecting gonad formation in Drosophila reveals a role for the slit/robo pathway. Dev. Biol. 2011, 353, 217–228. [Google Scholar] [CrossRef][Green Version]
- Morin-Poulard, I.; Sharma, A.; Louradour, I.; Vanzo, N.; Vincent, A.; Crozatier, M. Vascular control of the Drosophila haematopoietic microenvironment by Slit/Robo signalling. Nat. Commun. 2016, 7, 11634. [Google Scholar] [CrossRef]
- Kania, A.; Klein, R. Mechanisms of ephrin-Eph signalling in development, physiology and disease. Nat. Rev. Mol. Cell Biol. 2016, 17, 240–256. [Google Scholar] [CrossRef] [PubMed]
- Escot, S.; Willnow, D.; Naumann, H.; Di Francescantonio, S.; Spagnoli, F.M. Robo signalling controls pancreatic progenitor identity by regulating Tead transcription factors. Nat. Commun. 2018, 9, 5082. [Google Scholar] [CrossRef]
- Weiss, A.C.; Kispert, A. Eph/ephrin signaling in the kidney and lower urinary tract. Pediatr. Nephrol. 2016, 31, 359–371. [Google Scholar] [CrossRef]
- Grieshammer, U.; Le, M.; Plump, A.S.; Wang, F.; Tessier-Lavigne, M.; Martin, G.R. SLIT2-mediated ROBO2 signaling restricts kidney induction to a single site. Dev. Cell 2004, 6, 709–717. [Google Scholar] [CrossRef]
- Mommersteeg, M.T.; Andrews, W.D.; Ypsilanti, A.R.; Zelina, P.; Yeh, M.L.; Norden, J.; Kispert, A.; Chédotal, A.; Christoffels, V.M.; Parnavelas, J.G. Slit-roundabout signaling regulates the development of the cardiac systemic venous return and pericardium. Circ. Res. 2013, 112, 465–475. [Google Scholar] [CrossRef]
- Lin, S.; Wang, B.; Getsios, S. Eph/ephrin signaling in epidermal differentiation and disease. Semin. Cell Dev. Biol. 2012, 23, 92–101. [Google Scholar] [CrossRef]
- Sugie, A.; Marchetti, G.; Tavosanis, G. Structural aspects of plasticity in the nervous system of Drosophila. Neural Dev. 2018, 13, 14. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Gu, X.; Li, D.; Cai, L.; Xu, Q. METTL3 Regulates Osteoblast Differentiation and Inflammatory Response via Smad Signaling and MAPK Signaling. Int. J. Mol. Sci. 2019, 21, 199. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.M.; Yang, Y.S.; Hong, J.; Chaugule, S.; Chun, H.; van der Meulen, M.C.H.; Xu, R.; Greenblatt, M.B.; Shim, J.H. Biphasic regulation of osteoblast development via the ERK MAPK-mTOR pathway. Elife 2022, 11, e78069. [Google Scholar] [CrossRef]
- Takada, S.; Stark, K.L.; Shea, M.J.; Vassileva, G.; McMahon, J.A.; McMahon, A.P. Wnt-3a regulates somite and tailbud formation in the mouse embryo. Genes Dev. 1994, 8, 174–189. [Google Scholar] [CrossRef]
- Cunningham, T.J.; Kumar, S.; Yamaguchi, T.P.; Duester, G. Wnt8a and Wnt3a cooperate in the axial stem cell niche to promote mammalian body axis extension. Dev. Dyn. 2015, 244, 797–807. [Google Scholar] [CrossRef]
- Rivera-Pérez, J.A.; Magnuson, T. Primitive streak formation in mice is preceded by localized activation of Brachyury and Wnt3. Dev. Biol. 2005, 288, 363–371. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Qin, G.; Qu, L.; Zhang, Y.; Li, C.; Cang, C.; Lin, Q. Wnt8a is one of the candidate genes that play essential roles in the elongation of the seahorse prehensile tail. Mar. Life Sci. Technol. 2021, 3, 416–426. [Google Scholar] [CrossRef]
- Klaus, A.; Birchmeier, W. Wnt signalling and its impact on development and cancer. Nat. Rev. Cancer 2008, 8, 387–398. [Google Scholar] [CrossRef]
- Han, J.; Zhang, J.; Zhang, X.; Luo, W.; Liu, L.; Zhu, Y.; Liu, Q.; Zhang, X.A. Emerging role and function of Hippo-YAP/TAZ signaling pathway in musculoskeletal disorders. Stem Cell Res. Ther. 2024, 15, 386. [Google Scholar] [CrossRef]
- Lin, S.; Meng, Z.; Wang, M.; Ye, Z.; Long, M.; Zhang, Y.; Liu, F.; Chen, H.; Li, M.; Qin, J.; et al. Icariin modulates osteogenic and adipogenic differentiation in ADSCs via the Hippo-YAP/TAZ pathway: A novel therapeutic strategy for osteoporosis. Front. Pharmacol. 2024, 15, 1510561. [Google Scholar] [CrossRef]
- Li, M.; Zhang, F.J.; Bai, R.J. The Hippo-YAP Signaling Pathway in Osteoarthritis and Rheumatoid Arthritis. J. Inflamm Res. 2024, 17, 1105–1120. [Google Scholar] [CrossRef]
- Kovar, H.; Bierbaumer, L.; Radic-Sarikas, B. The YAP/TAZ Pathway in Osteogenesis and Bone Sarcoma Pathogenesis. Cells 2020, 9, 972. [Google Scholar] [CrossRef]
- Chen, M.; Liang, H.; Wu, M.; Ge, H.; Ma, Y.; Shen, Y.; Lu, S.; Shen, C.; Zhang, H.; Wang, Z.; et al. Fgf9 regulates bone marrow mesenchymal stem cell fate and bone-fat balance in osteoporosis by PI3K/AKT/Hippo and MEK/ERK signaling. Int. J. Biol. Sci. 2024, 20, 3461–3479. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Hong, G.; Zhan, W.; Liu, T.; Yan, S.; Deng, M.; Tu, C.; Li, P. DPA promotes hBMSCs osteogenic differentiation by miR-9-5p/ERK/ALP signaling pathway. Int. J. Med. Sci. 2022, 19, 1879–1887. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Sun, H.; Chen, P.; Fan, N.; Zhong, H.; Liu, X.; Wu, Y.; Wang, J. YAP1 influences differentiation of osteoblastic MC3T3-E1 cells through the regulation of ID1. J. Cell Physiol. 2019, 234, 14007–14018. [Google Scholar] [CrossRef] [PubMed]
- Brandão, A.S.; Bensimon-Brito, A.; Lourenço, R.; Borbinha, J.; Soares, A.R.; Mateus, R.; Jacinto, A. Yap induces osteoblast differentiation by modulating Bmp signalling during zebrafish caudal fin regeneration. J. Cell Sci. 2019, 132, jcs231993. [Google Scholar] [CrossRef]
- Wilkinson, D.G.; Bhatt, S.; Herrmann, B.G. Expression pattern of the mouse T gene and its role in mesoderm formation. Nature 1990, 343, 657–659. [Google Scholar] [CrossRef]
- Lu, Z.; Du, L.; Liu, R.; Di, R.; Zhang, L.; Ma, Y.; Li, Q.; Liu, E.; Chu, M.; Wei, C. MiR-378 and BMP-Smad can influence the proliferation of sheep myoblast. Gene 2018, 674, 143–150. [Google Scholar] [CrossRef]
- Blázquez-Medela, A.M.; Jumabay, M.; Boström, K.I. Beyond the bone: Bone morphogenetic protein signaling in adipose tissue. Obes. Rev. 2019, 20, 648–658. [Google Scholar] [CrossRef]
- Ma, X.; Fan, C.; Wang, Y.; Du, Y.; Zhu, Y.; Liu, H.; Lv, L.; Liu, Y.; Zhou, Y. MiR-137 knockdown promotes the osteogenic differentiation of human adipose-derived stem cells via the LSD1/BMP2/SMAD4 signaling network. J. Cell Physiol. 2020, 235, 909–919. [Google Scholar] [CrossRef]
- Beck, C.W.; Christen, B.; Barker, D.; Slack, J.M. Temporal requirement for bone morphogenetic proteins in regeneration of the tail and limb of Xenopus tadpoles. Mech. Dev. 2006, 123, 674–688. [Google Scholar] [CrossRef]
- Duan, Y.; Zhang, H.; Zhang, Z.; Gao, J.; Yang, J.; Wu, Z.; Fan, Y.; Xing, Y.; Li, L.; Xiao, S.; et al. VRTN is Required for the Development of Thoracic Vertebrae in Mammals. Int. J. Biol. Sci. 2018, 14, 667–681. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Sun, Y.; Du, W.; He, S.; Liu, M.; Tian, C. Effects of vertebral number variations on carcass traits and genotyping of Vertnin candidate gene in Kazakh sheep. Asian-Australas J. Anim. Sci. 2017, 30, 1234–1238. [Google Scholar] [CrossRef]
- Shao, M.; Wang, M.; Liu, Y.Y.; Ge, Y.W.; Zhang, Y.J.; Shi, D.L. Vegetally localised Vrtn functions as a novel repressor to modulate bmp2b transcription during dorsoventral patterning in zebrafish. Development 2017, 144, 3361–3374. [Google Scholar] [CrossRef]
- Zhao, F.; Deng, T.; Shi, L.; Wang, W.; Zhang, Q.; Du, L.; Wang, L. Genomic Scan for Selection Signature Reveals Fat Deposition in Chinese Indigenous Sheep with Extreme Tail Types. Animals 2020, 10, 773. [Google Scholar] [CrossRef]
- Dong, K.; Yang, M.; Han, J.; Ma, Q.; Han, J.; Song, Z.; Luosang, C.; Gorkhali, N.A.; Yang, B.; He, X.; et al. Genomic analysis of worldwide sheep breeds reveals PDGFD as a major target of fat-tail selection in sheep. BMC Genom. 2020, 21, 800. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yang, J.; Shen, M.; Xie, X.L.; Liu, G.J.; Xu, Y.X.; Lv, F.H.; Yang, H.; Yang, Y.L.; Liu, C.B.; et al. Whole-genome resequencing of wild and domestic sheep identifies genes associated with morphological and agronomic traits. Nat. Commun. 2020, 11, 2815. [Google Scholar] [CrossRef]
- Doege, H.; Grimm, D.; Falcon, A.; Tsang, B.; Storm, T.A.; Xu, H.; Ortegon, A.M.; Kazantzis, M.; Kay, M.A.; Stahl, A. Silencing of hepatic fatty acid transporter protein 5 in vivo reverses diet-induced non-alcoholic fatty liver disease and improves hyperglycemia. J. Biol. Chem. 2008, 283, 22186–22192. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Bie, L.; Wang, Y.; Hong, Y.; Zhou, Z.; Fan, Y.; Yan, X.; Tao, Y.; Huang, C.; Zhang, Y.; et al. LINE-1 transcription activates long-range gene expression. Nat. Genet. 2024, 56, 1494–1502. [Google Scholar] [CrossRef] [PubMed]





| TEs | Type | Insert Type | Chromosome | Start | End | Related Genes |
|---|---|---|---|---|---|---|
| DR0194971_dup419 | DNA/TcMar-Tigger | intronic | NC_056068.1 | 3,978,143 | 3,978,830 | PDGFD |
| DR1810544_dup1125 | SINE/MIR | intergenic | NC_056061.1 | 88,869,734 | 88,869,896 | TBXT |
| DF0000026_dup1473 | DNA/hAT-Charlie | intergenic | NC_056070.1 | 60,187,989 | 60,188,100 | TBX3 |
| DR0195135_dup5673 | SINE/MIR | intergenic | NC_056070.1 | 60,266,809 | 60,267,001 | TBX3 |
| DR0768748_dup3351 | SINE/MIR | intergenic | NC_056070.1 | 60,292,019 | 60,292,044 | TBX3 |
| DF0000224_dup154 | DNA/TcMar-Tc2 | intronic | NC_056055.1 | 161,675,520 | 161,676,122 | ACVR2A |
| DR0082726_dup584 | SINE/MIR | intergenic | NC_056055.1 | 162,147,321 | 162,147,536 | ACVR2A |
| DR0195135_dup3959 | SINE/MIR | intronic | NC_056062.1 | 85,233,981 | 85,234,101 | RUNX1T1 |
| DR1068640_dup4617 | SINE/MIR | intergenic | NC_056060.1 | 83,725,599 | 83,725,862 | VRTN |
| DR0082601_dup3290 | SINE/MIR | intronic | NC_056067.1 | 66,387,303 | 66,387,456 | SLC27A5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, Q.; Yang, H.; Dong, H.; Andersson, G.; Bongcam-Rudloff, E.; Wan, P.; Turganbekovich Kulatayev, B.; Rouzi, M.; Yang, M.; Han, J. Transposable Elements Regulate Tail Development and Fat Deposition in Sheep Fetuses. Animals 2025, 15, 3654. https://doi.org/10.3390/ani15243654
Liang Q, Yang H, Dong H, Andersson G, Bongcam-Rudloff E, Wan P, Turganbekovich Kulatayev B, Rouzi M, Yang M, Han J. Transposable Elements Regulate Tail Development and Fat Deposition in Sheep Fetuses. Animals. 2025; 15(24):3654. https://doi.org/10.3390/ani15243654
Chicago/Turabian StyleLiang, Qianqian, Haichen Yang, Huajiao Dong, Göran Andersson, Erik Bongcam-Rudloff, Pengcheng Wan, Beibit Turganbekovich Kulatayev, Mahaba Rouzi, Min Yang, and Jilong Han. 2025. "Transposable Elements Regulate Tail Development and Fat Deposition in Sheep Fetuses" Animals 15, no. 24: 3654. https://doi.org/10.3390/ani15243654
APA StyleLiang, Q., Yang, H., Dong, H., Andersson, G., Bongcam-Rudloff, E., Wan, P., Turganbekovich Kulatayev, B., Rouzi, M., Yang, M., & Han, J. (2025). Transposable Elements Regulate Tail Development and Fat Deposition in Sheep Fetuses. Animals, 15(24), 3654. https://doi.org/10.3390/ani15243654

