Comparison of Growth and Water Quality in the Cultivation of Anguilla japonica and Lactuca sativa in Aquaponics with Biofloc and RAS Technologies
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental System Setup and Conditions
2.2. Water Preparation and Rearing Management
2.3. Aquaponics
2.4. Water Quality Analysis
2.5. Growth Performance and Production of Fish and Corps
2.6. Statistical Analysis
3. Results
3.1. Growth Performance of Fish and Plants
3.2. Water Qualtiy
- Temperature (°C) = 25.54 ± 0.40, 25.18 ± 0.30, 25.10 ± 0.23, and 25.22 ± 0.19;
- DO (mg/L) = 6.61 ± 0.68, 8.68 ± 0.64, 7.55 ± 0.51, and 7.22 ± 0.90 mg/L;
- pH = 6.61 ± 0.68, 6.91 ± 0.18, 7.80 ± 0.09, and 7.65 ± 0.14;
- EC (mS/cm) = 0.45 ± 0.13, 0.44 ± 0.06, 0.24 ± 0.01, and 0.22 ± 0.04;
- TDS (mg/L) = 0.29 ± 0.09, 0.25 ± 0.03, 0.15 ± 0.01, and 0.14 ± 0.02, respectively.
- TAN (mg/L) = 0.52 ± 0.77, 0.18 ± 0.14, 0.07 ± 0.06, and 0.06 ± 0.10;
- NO2−-N (mg/L) = 0.82 ± 1.33, 0.24 ± 0.16, 0.07 ± 0.06, 0.05 ± 0.05;
- NO3−-N (mg/L) = 5.33 ± 2.07, 14.51 ± 2.10, 6.21 ± 2.44, 4.89 ± 0.86, respectively.
3.3. Major Ion and Nutrient Concentration of Rearing Water and Plant
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- FAO. Blue Transformation—Roadmap 2022–2023: A Vision for FAO’s Work on Aquatic Food Systems; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2022. [Google Scholar]
- FAO. The State of World Fisheries and Aquaculture 2022. Towards Blue Transformation; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2022. [Google Scholar]
- Ahmed, N.; Turchini, G.M. Recirculating aquaculture systems (RAS): Environmental solution and climate change adaptation. J. Clean. Prod. 2021, 297, 126604. [Google Scholar] [CrossRef]
- FAO. A Guide to Recirculation Aquaculture: An Introduction to the New Environmentally Friendly and Highly Productive Closed Fish Farming Systems; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2015. [Google Scholar]
- Browdy, C.L.; Ray, A.J.; Leffler, J.W.; Avnimelech, Y. Biofloc-based aquaculture Systems. In Aquaculture Production Systems; Tidwell, J.H., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2012; Chapter 12; pp. 278–307. [Google Scholar]
- Buhmann, A.K.; Waller, U.; Wecker, B.; Papenbrock, J. Optimization of culturing conditions and selection of species for the use of halophytes as biofilter for nutrient-rich saline water. Agric. Water Manag. 2015, 149, 102–114. [Google Scholar] [CrossRef]
- Rakocy, J.E. Aquaponics-integrating fish and plant culture. In Aquaculture Production Systems; Tidwell, J.H., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2012; Chapter 14; pp. 343–386. [Google Scholar]
- Jeong, H.S.; Hwang, S.D.; Won, K.M.; Hwang, J. Dietary soy isoflavones promote feminization and enhance growth of juvenile Japanese eel (Anguilla japonica). Animals 2025, 15, 2513. [Google Scholar] [CrossRef]
- Jiang, X.; Zhang, B.; Zheng, W.; Zeng, X.; Li, Z.; Deng, L. Study on the water-saving and pollution-reducing effect of biofilm–biofloc technique in Anguilla marmorata aquaculture. Desalination Water Treat. 2019, 149, 69–75. [Google Scholar] [CrossRef]
- Sadi, N.H.; Agustiyani, D.; Ali, F.; Badjoeri, M.; Triyanto. Application of biofloc technology in Indonesian eel Anguilla bicolor bicolor fish culture: Water quality profile. Earth Environ. Sci. 2022, 1062, 012006. [Google Scholar] [CrossRef]
- Kim, Y.G.; Niu, K.M.; Hwang, J.A.; Kim, H.S.; Park, J.S.; Lee, J.H.; Ga, G.W.; Jeon, S.W.; Lee, A.R.; Kim, S.K. Characterization of bacterial communities and fish growth in biofloc-based tanks for rearing Eastern catfish (Silurus asotus) or Japanese eel (Anguilla japonica). Iran. J. Fish. Sci. 2025, 24, 795–818. [Google Scholar]
- Lee, D.H.; Kim, J.Y.; Lim, S.R.; Kim, K.B.; Kim, J.M.; Hariati, A.M.; Kim, D.W.; Kim, J.D. Effects of crude protein levels in diets containing MKP on water quality and the growth of Japanese eels Anguilla japonica and leafy vegetables in a hybrid BFT-aquaponic system. Korean J. Fish. Aquat. Sci. 2020, 53, 606–619. [Google Scholar]
- Mordenti, O.; Casalini, A.; Mandelli, M.; Di Biase, A. A closed recirculating aquaculture system for artificial seed production of the European eel (Anguilla anguilla): Technology development for spontaneous spawning and eggs incubation. Aquac. Eng. 2014, 58, 88–94. [Google Scholar] [CrossRef]
- Choi, J.; Hwang, J.; Kim, H.S.; Park, J. Effects of culture systems and feed types on water quality and growth performance of Japanese eel (Anguilla japonica). Animals 2025, 15, 2420. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y. Effects of different feeding frequency on the growth, feed utilization and body composition of juvenile eel Anguilla japonica in semi-RAS (Recirculating Aquaculture System). J. Fish. Mar. Sci. Educ. 2022, 35, 412–420. [Google Scholar] [CrossRef]
- Tan, C.; Sun, D.; Tan, H.; Liu, W.; Luo, G.; Wei, X. Effects of stocking density on growth, body composition, digestive enzyme levels and blood biochemical parameters of Anguilla marmorata in a recirculating aquaculture system. Turk. J. Fish. Aquat. Sci. 2018, 18, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Taufiq-Spj, N.; Sunaryo, S.; Wirasatriya, A.; Sugianto, D.N. The use of water exchange for feeding rate and growth promotion of shortfin eel Anguilla bicolor bicolor in recirculating water system. Earth Environ. Sci. 2016, 55, 012015. [Google Scholar] [CrossRef]
- Hwang, J.; Park, J.S.; Jeong, H.S.; Kim, H.; Oh, S. Productivity of fish and crop growth and characteristics of bacterial communities in the FLOCponics System. Fishes 2023, 8, 422. [Google Scholar] [CrossRef]
- Pinho, S.M.; de Lima, J.P.; David, L.H.; Emerenciano, M.G.C.; Goddek, S.; Verdegem, M.C.J.; Keesman, K.J.; Portella, M.C. FLOCponics: The Integration of Biofloc Technology with Plant Production. Rev. Aquac. 2022, 14, 647–675. [Google Scholar] [CrossRef]
- Park, J.S.; Jeong, H.S.; Lee, J.H.; Hwang, J. Indoor application of coupled FLOCponics system with caipira lettuce (Lactuca sativa) affects the growth performance and water characteristics of Far Eastern catfish (Silurus asotus) and tropical eel (Anguilla bicolor). Animals 2025, 15, 2305. [Google Scholar] [CrossRef]
- Pimentel, O.A.L.F.; Schwars, M.H.; Senten, J.V.; Wasielesky, W.; Urick, S.; Carvalho, A.; McAlhaney, E.; Clarington, J.; Krummenauer, D. The super-intensive culture of Penaeus vannamei in low salinity water: A comparative study among recirculating aquaculture system, biofloc, and synbiotic systems. Aquaculture 2025, 596, 741774. [Google Scholar] [CrossRef]
- Rocha, G.H.D.; Povh, J.A.; Spica, L.N.; Brasileiro, L.D.O.; Salve, L.V.D.; Melo, M.L.; Sousa, R.M.; Cleveland, H.P.K.; Ferreira, R.M.; Filho, R.A.C.C.; et al. Comparative evaluation of biofloc technology (BFT) and RAS (recirculation aquaculture system) on growth performance, water quality, and innate immune response in Pacu (Piaractus mesopotamicus) juveniles. Aquaculture 2025, 602, 742325. [Google Scholar] [CrossRef]
- Hisano, H.; Barbosa, P.T.L.; Hayd, L.D.A.; Mattioli, C.C. Comparative study of growth, feed efficiency, and hematologicalprofile of Nile tilapia fingerlings in biofloc technology and recirculating aquaculture system. Trop. Anim. Health Prod. 2021, 53, 60. [Google Scholar] [CrossRef]
- Luo, G.; Gao, Q.; Wang, C.; Liu, W.; Sun, D.; Li, L.; Tan, H. Growth, digestive activity, welfare, and partial cost effectiveness of genetically improved farmed tilapia (Oreochromis niloticus) cultured in a recirculating aquaculture system and an indoor biofloc system. Aquaculture 2014, 422–423, 1–7. [Google Scholar] [CrossRef]
- Nhi, N.H.Y.; Da, C.T.; Lundh, T.; Lan, T.T.; Kiessling, A. Comparative evaluation of Brewer’s yeast as a replacement for fishmeal in diets for tilapia (Oreochromis niloticus), reared in clear water or biofloc environments. Aquaculture 2018, 495, 654–660. [Google Scholar] [CrossRef]
- Avnimelech, Y. Feeding with microbial flocs by tilapia in minimal discharge bioflocs technology ponds. Aquaculture 2007, 264, 140–147. [Google Scholar] [CrossRef]
- Azim, M.E.; Little, D.C. The biofloc technology (BFT) in indoor tanks: Water quality, biofloc composition, and growth and welfare of Nile tilapia Oreochromis niloticus. Aquaculture 2008, 283, 29–35. [Google Scholar] [CrossRef]
- Yu, Y.; Choi, J.; Lee, J.; Jo, A.; Lee, K.M.; Kim, J. Biofloc technology in fish aquaculture: A review. Antioxidants 2023, 12, 398. [Google Scholar] [CrossRef]
- Sala, F.C.; Costa, C.P. Retrospective and trends of Brazilian lettuce crop. Hortic. Bras. 2012, 30, 187–194. [Google Scholar] [CrossRef]
- Pinho, S.M.; Molinari, D.; Mello, G.L.; Fitzsimmos, K.; Emerenciano, M.G.C. Effluent from a biofloc technology (BFT) tilapia culture on the aquaponics production of different lettuce varieties. Ecol. Eng. 2017, 103, 146–153. [Google Scholar] [CrossRef]
- Rocha, A.F.; Filho, M.L.B.; Stech, M.R.; Silva, R.P. Lettuce production in aquaponic and biofloc systems with silver catfish Rhamdia quelen. Bol. Inst. Pesca São Paulo 2017, 44, 64–73. [Google Scholar] [CrossRef]
- Sadler, K. Effects of temperature on the growth and survival of the European eel, Anguilla anguilla L. J. Fish Biol. 1979, 15, 499–507. [Google Scholar] [CrossRef]
- Seymour, E. Devising optimum feeding regimes and temperatures for the warmwater culture of eel, Anguilla anguilla L. Aquac. Res. 1989, 20, 311–324. [Google Scholar] [CrossRef]
- Arshad, M.; Shakoor, A. Irrigation water quality. Water Int. 2017, 12, 145–160. [Google Scholar]
- Timmons, M.B.; Ebeling, J.; Wheaton, F.; Summerfelt, S.; Vinci, B. Mass balances, loading rates, and fish growth. In Recirculating Aquaculture Systems, 2nd ed.; Cayuga Aqua Ventures: New York, NY, USA, 2002; pp. 89–116. [Google Scholar]
- Wik, T.E.; Lindén, B.T.; Wramner, P.I. Integrated dynamic aquaculture and wastewater treatment modelling for recirculating aquaculture systems. Aquaculture 2009, 287, 361–370. [Google Scholar] [CrossRef]
- Mulyani, I.; Rumondang, R.; Aryani, D.; Lesmana, I. Eel (Anguilla bicolor bicolor) rearing techniques at the UPTD for conservation and supervision of marine fishery resources of Sicincin, West Sumatra. Earth Environ. Sci. 2021, 934, 012080. [Google Scholar] [CrossRef]
- Tyson, R.V.; Simonne, E.H.; White, J.M.; Lamb, E.M. Reconciling water quality parameters impacting nitrification in aquaponics: The pH levels. Proc. Fla. State Hortic. Soc. 2004, 117, 79–83. [Google Scholar]
- Mota, V.C.; Hop, J.; Sampaio, L.A.; Heinsbroek, L.T.; Verdegem, M.C.; Eding, E.H.; Verreth, J.A. The effect of low pH on physiology, stress status and growth performance of turbot (Psetta maxima L.) cultured in recirculating aquaculture systems. Aquac. Res. 2018, 49, 3456–3467. [Google Scholar] [CrossRef]
- Bhatnagar, A.; Devi, P. Water quality guidelines for the management of pond fish culture. Int. J. Environ. Sci. 2019, 5, 2. [Google Scholar]
- Choe, J.R.; Park, J.S.; Hwang, J.; Lee, D.; Kim, H. Effects of acute toxicity of ammonia and nitrite to juvenile marbled eel Anguilla marmorata. Korean J. Fish. Aquat. Sci. 2022, 55, 697–704. [Google Scholar]
- Timmons, M.B. Recirculating Aquaculture Systems. 2002. Available online: https://en.wikipedia.org/wiki/Recirculating_aquaculture_system (accessed on 1 October 2025).






| Initial Weight (g/Fish) | Survival (%) | Final Weight (g/Fish) | Weight Gain (g/Fish) | SGR (%/Day) | CF | FE | |
|---|---|---|---|---|---|---|---|
| BFT | 110.5 ± 0.0 | 100.0 ± 0.0 | 159.2 ± 3.7 | 48.7 ± 3.8 | 1.30 ± 0.08 | 0.13 ± 0.0 | 0.67 ± 0.05 |
| BFT-AP | 110.5 ± 0.0 | 97.2 ± 2.1 | 170.9 ± 5.4 | 60.5 ± 5.4 | 1.56 ± 0.11 | 0.14 ± 0.0 | 0.76 ± 0.04 |
| RAS | 110.5 ± 0.0 | 97.8 ± 1.8 | 157.3 ± 4.2 | 46.8 ± 4.2 | 1.26 ± 0.10 | 0.13 ± 0.0 | 0.59 ± 0.04 |
| RAS-AP | 110.5 ± 0.0 | 91.1 ± 2.6 | 166.1 ± 4.9 | 55.6 ± 4.9 | 1.46 ± 0.10 | 0.13 ± 0.0 | 0.56 ± 0.02 |
| Contents (mg/L) | BFT | BFT-AP | RAS | RAS-AP |
|---|---|---|---|---|
| Cl | 25.35 ± 0.78 | 28.37 ± 1.15 | 20.03 ± 0.47 | 19.93 ± 0.59 |
| SO4 | 33.25 ± 8.13 | 30.37 ± 8.52 | 17.77 ± 3.93 | 21.27 ± 4.93 |
| Total-N | 25.41 ± 3.89 | 21.82 ± 0.58 | 5.28 ± 2.12 | 3.96 ± 1.49 |
| Total-P | 7.79 ± 1.43 | 5.61 ± 2.00 | 0.58 ± 0.18 | 0.43 ± 0.03 |
| Ca | 39.10 ± 5.86 | 38.50 ± 0.00 | 28.33 ± 0.15 | 26.97 ± 0.15 |
| Cu | 0.01 ± 0.01 | 0.04 ± 0.02 | 0.04 ± 0.01 | 0.02 ± 0.00 |
| Fe | 0.16 ± 0.03 | 0.08 ± 0.01 | 0.01 ± 0.01 | 0.02 ± 0.00 |
| K | 14.20 ± 0.99 | 7.27 ± 5.11 | 1.80 ± 0.00 | 0.87 ± 0.06 |
| Mg | 8.55 ± 1.06 | 7.10 ± 0.53 | 5.23 ± 0.06 | 4.90 ± 0.00 |
| Mn | 0.00 ± 0.00 | 0.00 ± 0.01 | 0.00 ± 0.00 | 0.00 ± 0.00 |
| Na | 66.15 ± 4.60 | 36.93 ± 5.61 | 18.70 ± 0.17 | 17.77 ± 0.31 |
| Zn | 0.09 ± 0.02 | 0.11 ± 0.15 | 0.00 ± 0.00 | 0.00 ± 0.00 |
| Si | 2.05 ± 0.13 | 2.06 ± 0.02 | 2.23 ± 0.01 | 2.19 ± 0.01 |
| Contents (mg/L) | BFT-AP | RAS-AP |
|---|---|---|
| Cl | 25.85 ± 0.75 | 17.90 ± 1.56 |
| SO4 | 22.50 ± 0.57 | 18.05 ± 7.14 |
| Total-N | 5.31 ± 1.99 | 4.56 ± 0.60 |
| Total-P | 3.46 ± 0.16 | 0.30 ± 0.12 |
| Ca | 33.35 ± 1.48 | 26.15 ± 0.07 |
| Cu | 0.03 ± 0.00 | 0.01 ± 0.00 |
| Fe | 0.07 ± 0.01 | 0.02 ± 0.00 |
| K | 2.85 ± 0.07 | 0.50 ± 0.00 |
| Na | 40.05 ± 1.48 | 17.35 ± 0.07 |
| Si | 2.03 ± 0.09 | 2.12 ± 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hwang, J.-a.; Park, J.S.; Jeong, H.S. Comparison of Growth and Water Quality in the Cultivation of Anguilla japonica and Lactuca sativa in Aquaponics with Biofloc and RAS Technologies. Animals 2025, 15, 3591. https://doi.org/10.3390/ani15243591
Hwang J-a, Park JS, Jeong HS. Comparison of Growth and Water Quality in the Cultivation of Anguilla japonica and Lactuca sativa in Aquaponics with Biofloc and RAS Technologies. Animals. 2025; 15(24):3591. https://doi.org/10.3390/ani15243591
Chicago/Turabian StyleHwang, Ju-ae, Jun Seong Park, and Hae Seung Jeong. 2025. "Comparison of Growth and Water Quality in the Cultivation of Anguilla japonica and Lactuca sativa in Aquaponics with Biofloc and RAS Technologies" Animals 15, no. 24: 3591. https://doi.org/10.3390/ani15243591
APA StyleHwang, J.-a., Park, J. S., & Jeong, H. S. (2025). Comparison of Growth and Water Quality in the Cultivation of Anguilla japonica and Lactuca sativa in Aquaponics with Biofloc and RAS Technologies. Animals, 15(24), 3591. https://doi.org/10.3390/ani15243591

