Comparison of Impacts of Essential Oils, Green Tea Powder, Betaine, Probiotics, and Other Dietary Supplements on Growth and Well-Being of Heat-Stressed White Pekin Ducks
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Husbandry
2.2. Dietary Additives
2.3. Production Measures
2.4. Stress Susceptibility
2.5. Intestinal Histomophology
2.6. Statistical Analysis
3. Results
3.1. Experiment 1
3.1.1. Production Measures
3.1.2. Stress Susceptibility and Intestinal Histomorphology
3.2. Experiment 2
3.2.1. Production Measures
3.2.2. Stress Susceptibility and Intestinal Histomorphology
3.3. Experiment 3
3.3.1. Production Measures
3.3.2. Stress Susceptibility and Intestinal Histomorphology
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| CORT | Plasma corticosterone |
| H/L | Heterophil/lymphocyte ratio |
| V/C | Villus/crypt ratio |
| BW | Body weight |
| FC | Feed consumption |
| FCR | Feed conversion ratio |
| CON | Control (basal diet) |
| BET | Betaine |
| EO | Essential oil |
| EGCG | Epigallocatechin gallate |
| MOS | Mannanoligosaccharide |
| PS | Poultry Star synbiotic |
| MS | Microsaf probiotic |
| YF | Yeast fermentate |
| SE | Seaweed extract |
| GT | Green tea |
| SEM | Standard error of the mean |
References
- Thornton, P.; Nelson, G.; Mayberry, D.; Herrero, M. Increases in extreme heat stress in domesticated livestock species during the twenty-first century. Glob. Change Biol. 2021, 27, 5762–5772. [Google Scholar] [CrossRef] [PubMed]
- Sun, P.X.; Shen, Z.J.; Tang, J.; Huang, W.; Hou, S.S.; Xie, M. Effects of ambient temperature on growth performance and growing White Pekin ducks. Br. Poult. Sci. 2019, 60, 513–516. [Google Scholar] [CrossRef]
- Zeng, T.; Li, J.; Wang, D.; Li, G.; Wang, G.; Lu, L. Effects of heat stress on antioxidant defense system, inflammatory injury, and heat shock proteins of Muscovy and Pekin ducks: Evidence for differential thermal sensitivities. Cell Stress Chaperones 2014, 19, 895–901. [Google Scholar] [CrossRef]
- He, J.; He, Y.; Pan, D.; Cao, J.; Sun, Y.; Zeng, X. Associations of gut microbiota with heat stress-induced changes of growth, fat deposition, intestinal morphology, and antioxidant capacity in ducks. Front. Microbiol. 2019, 10, 903. [Google Scholar] [CrossRef]
- Nelson, J.R.; Archer, G.S. Effect of yeast fermentate supplementation on intestinal health and plasma biochemistry in heat-stressed Pekin ducks. Animals 2019, 9, 790. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.; He, Y.; Zeng, T.; Wang, D.; He, J.; Xia, Q.; Zhou, C.; Pan, D.; Cao, J. Heat stress induces various oxidative damages to myofibrillar proteins in ducks. Food Chem. 2022, 390, 133209. [Google Scholar] [CrossRef]
- Zeng, X.; Javid, A.; Tian, G.; Zhang, K.; Bai, S.; Ding, X.; Wang, J.; Lv, L.; Xuan, Y.; Li, S.; et al. Metabolomics analysis to interpret changes in physiological and metabolic responses to chronic heat stress in Pekin ducks. Sci. Total Environ. 2024, 912, 169382. [Google Scholar] [CrossRef]
- Kasjanenko, S.M.; Kasjanenko, O.I.; Nagornaya, L.V.; Yevstafieva, V.A.; Melnychuk, V.V.; Lukyanova, G.A.; Gurenko, I.A. Yeast-rich mannan fractions in duck cultivation: Prospects of using. Foods Raw Mater. 2020, 8, 337–347. [Google Scholar] [CrossRef]
- Park, J.; Jung, S.; Carey, J.B. Effects of a commercial mannan-oligosaccharide product on growth performance, intestinal histomorphology, and amino acid digestibility in white Pekin ducks. J. Appl. Poult. Res. 2019, 28, 72–77. [Google Scholar] [CrossRef]
- Shen, Y.B.; Carroll, J.A.; Yoon, I.; Mateo, R.D.; Kim, S.W. Effects of supplementing Saccharomyces cerevisiae fermentation product in sow diets on performance of sows and nursing piglets. J. Anim. Sci. 2011, 89, 2462–2471. [Google Scholar] [CrossRef] [PubMed]
- Awad, W.A.; Ghareeb, K.; Abdel-Raheem, S.; Böhm, J. Effects of dietary inclusion of probiotic and synbiotic on growth performance, organ weights, and intestinal histomorphology of broiler chickens. Poult. Sci. 2009, 88, 49–56. [Google Scholar] [CrossRef]
- Sobotik, E.B.; Ramirez, S.; Roth, N.; Tacconi, A.; Pender, C.; Murugesan, R.; Archer, G.S. Evaluating the effects of a dietary synbiotic or synbiotic plus enhanced organic acid on broiler performance and cecal and carcass Salmonella load. Poult. Sci. 2021, 100, 101508. [Google Scholar] [CrossRef]
- Wang, R.X.; Chen, Z.W.; Chen, R.; Liu, Q.; Zhuang, S. Effects of dietary supplementation of synbiotics on growth, intestinal barrier function and cecal microorganisms of Cherry Valley ducks. J. Anim. Plant Sci. 2022, 32, 403–412. [Google Scholar] [CrossRef]
- Mohammed, A.A.; Jacobs, J.A.; Murugesan, G.R.; Cheng, H.W. Effect of dietary synbiotic supplement on behavioral patterns and growth performance of broiler chickens reared under heat stress. Poult. Sci. 2018, 97, 1101–1108. [Google Scholar] [CrossRef]
- Hu, J.Y.; Mohammed, A.A.; Murugesan, G.R.; Cheng, H.W. Effect of a synbiotic supplement as an antibiotic alternative on broiler skeletal, physiological, and oxidative parameters under heat stress. Poult. Sci. 2022, 101, 101769. [Google Scholar] [CrossRef]
- Gisbert, M.; Franco, D.; Sineiro, J.; Moreira, R. Antioxidant and antidiabetic properties of phlorotannins from Ascophyllum nodosum seaweed extracts. Molecules 2023, 28, 4937. [Google Scholar] [CrossRef]
- Leonel, P.; Morrison, L.; Shukla, P.S.; Critchley, A.T. A concise review of the brown macroalga Ascophyllum nodosum (Linnaeus) Le Jolis. J. Appl. Phycol. 2020, 32, 3561–3584. [Google Scholar] [CrossRef]
- Archer, G.S. Evaluation of an extract derived from the seaweed Ascophyllum nodosum to reduce the negative effects of heat stress on broiler growth and stress parameters. Animals 2023, 13, 259. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Chen, K.K.; Zhao, X.H.; Wang, C.; Geng, Z.Y. Effect of L-theanine on the growth performance, immune function, and jejunum morphology and antioxidant status of ducks. Animal 2019, 13, 1145–1153. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, X.; Yao, Y.; Huang, X.; Li, C.; Deng, P.; Jiang, G.; Dai, Q. The effect of epigallocatechin gallate on laying performance, egg quality, immune status, antioxidant capacity, and hepatic metabolome of laying ducks reared in high temperature condition. Vet. Q. 2023, 43, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Ge, C.; Luo, X.; Wu, L.; Lv, Y.; Hu, Z.; Yu, D.; Liu, B. Plant essential oils improve growth performance by increasing antioxidative capacity, enhancing intestinal barrier function, and modulating gut microbiota in Muscovy ducks. Poult. Sci. 2023, 102, 102813. [Google Scholar] [CrossRef]
- Park, J.H.; Jang, S.N.; Shin, D.; Shim, K.S. Antioxidant enzyme activity and meat quality of meat type ducks fed with dried oregano (Origanum vulgare L.) powder. Asian Australas. J. Anim. Sci. 2015, 28, 79–85. [Google Scholar] [CrossRef]
- Abouelezz, K.; Abou-Hadied, M.; Yuan, J.; Elokil, A.A.; Wang, G.; Wang, S.; Wang, J.; Bian, G. Nutritional impacts of dietary oregano and Enviva essential oils on the performance, gut microbiota and blood biochemicals of growing ducks. Animal 2019, 13, 2216–2222. [Google Scholar] [CrossRef]
- Bao, H.; Xue, Y.; Zhang, Y.; Tu, F.; Wang, R.; Cao, Y.; Lin, Y. Encapsulated essential oils improve the growth performance of meat ducks by enhancing intestinal morphology, barrier function, antioxidant capacity and the cecal microbiota. Antioxidants 2023, 12, 253. [Google Scholar] [CrossRef]
- Rocha, J.J.; Archer, G.S. The effect of supplementation with organic acid and oregano oils in drinking water on Pekin duck growth and welfare. Poultry 2024, 3, 95–106. [Google Scholar] [CrossRef]
- Li, L.; Zhang, K.; Ding, X.; Bai, S.; Wang, J.; LYU, L.; Xuan, Y.; Zeng, Q. Effects of plant essential oil eutectic on growth performance, intestinal morphology, digestive enzyme activity and antioxidant capacity of meat ducks. Chin. J. Anim. Nutr. 2022, 34, 7145–7157. [Google Scholar]
- Kidd, M.T.; Ferket, P.R.; Garlich, J.D. Nutritional and osmoregulatory functions of betaine. World’s Poult. Sci. J. 1997, 53, 125–139. [Google Scholar] [CrossRef]
- Park, S.O.; Kim, W.K. Effects of betaine on biological functions in meat-type ducks exposed to heat stress. Poult. Sci. 2017, 96, 1212–1218. [Google Scholar] [CrossRef]
- Ahmed, M.M.M.; Ismail, Z.S.H.; Abdel-Wareth, A.A.A. Effect of dietary supplementation of prebiotic, betaine and their combination on growth performance, nutrient digestibility, carcass criteria and cecum microbial population of ducks under hot environmental conditions. Egypt. Poult. Sci. 2018, 38, 289–304. [Google Scholar]
- Shuzhen, L.; Yang, L.; Wenhuan, C.; Zhimin, C.; Aijuan, Z.; Zedong, W.; Guohua, L. Supplementation of guanidinoacetic acid and betaine improve growth performance and meat quality of ducks by accelerating energy metabolism. Ital. J. Anim. Sci. 2021, 20, 1656–1663. [Google Scholar] [CrossRef]
- Metzler-Zebeli, B.U.; Eklund, M.; Mosenthin, R. Impact of osmoregulatory and methyl donor functions of betaine on intestinal health and performance in poultry. World’s Poult. Sci. J. 2009, 65, 419–442. [Google Scholar] [CrossRef]
- Federation of Animal Science Societies (FASS). Guide for the Care and Use of Agricultural Animals in Research and Teaching, 3rd ed.; Federation of Animal Science Societies: Champaign, IL, USA, 2010. [Google Scholar]
- Scanes, C.G. Biology of stress in poultry with emphasis on glucocorticoids and the heterophil to lymphocyte ratio. Poult. Sci. 2016, 95, 2208–2215. [Google Scholar] [CrossRef]
- Uni, Z.; Platin, R.; Sklan, D. Cell proliferation in chicken intestinal epithelium occurs both in the crypt and along the villus. J. Comp. Physiol. B 1998, 168, 241–247. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Li, L.; Miao, Z.; Xin, Q.; Zhang, L.; Cai, Q.; Shi, W.; Zhao, B.; Zheng, N.; Zhu, Z. Effect of acute heat stress on intestinal immune response of Jindig ducks. Poult. Sci. 2025, 104, 105273. [Google Scholar] [CrossRef] [PubMed]
- Nelson, J.R.; Sobotik, E.B.; Athrey, G.; Archer, G.S. Effects of supplementing yeast fermentate in the feed or drinking water on stress susceptibility, plasma chemistry, cytokine levels, antioxidant status, and stress- and immune-related gene expression of broiler chickens. Poult. Sci. 2020, 99, 3312–3318. [Google Scholar] [CrossRef]
- Klasing, K.C.; Adler, K.L.; Calvert, C.C.; Remus, J.C. Dietary betaine increases intraepithelial lymphocytes in the duodenum of coccidia-infected chicks and increases functional properties of phagocytes. J. Nutr. 2002, 132, 2274–2282. [Google Scholar] [CrossRef]
- Downing, J.A. Nutritional strategies to support performance of commercial Pekin ducks exposed to a high-temperature thermal challenge over 29–41 days of age. Anim. Prod. Sci. 2022, 62, 572–580. [Google Scholar] [CrossRef]
- Mohammed, A.; Mahmoud, M.; Murugesan, R.; Cheng, H. Effect of a synbiotic supplement on fear response and memory assessment of broiler chickens subjected to heat stress. Animals 2021, 11, 427. [Google Scholar] [CrossRef]
- Jiang, S.; Mohammed, A.A.; Jacobs, J.A.; Cramer, T.A.; Cheng, H.W. Effect of synbiotics on thyroid hormones, intestinal histomorphology, and heat shock protein 70 expression in broiler chickens reared under cyclic heat stress. Poult. Sci. 2020, 99, 142–150. [Google Scholar] [CrossRef] [PubMed]
- Kridhtayopas, C.; Rakangtong, C.; Bunchasaka, C.; Loongyai, W. Effect of prebiotic and synbiotic supplementation in diet on growth performance, small intestinal morphology, stress, and bacterial population under high stocking density condition of broiler chickens. Poult. Sci. 2019, 98, 4595–4605. [Google Scholar] [CrossRef]
- Awad, W.; Ghareeb, K.; Böhm, J. Intestinal structure and function of broiler chickens on diets supplemented with a synbiotic containing Enterococcus faecium and oligosaccharides. Int. J. Mol. Sci. 2008, 11, 2205–2216. [Google Scholar] [CrossRef] [PubMed]
- Hoan, N.D.; Dung, T.H.; Hoan, P.D.; Thang, T.V. Effect of supplementation of green tea extract on blood corticosterone and growth performance in heat-stressed broiler. Livest. Res. Rural Dev. 2021, 33, 351655281. [Google Scholar]
- Jelveh, K.; Rasouli, B.; Seidavi, A.; Diarra, S.S. Comparative effects of Chinese green tea (Camellia sinensis) extract and powder as feed supplements for broiler chickens. J. Appl. Anim. Res. 2018, 46, 1114–1117. [Google Scholar] [CrossRef]
- Cheng, Y.F.; Chen, Y.P.; Chen, R.; Su, Y.; Zhang, R.Q.; He, Q.F.; Wang, K.; Wen, C.; Zhou, Y.M. Dietary mannan oligosaccharide ameliorates cyclic heat stress-induced damages on intestinal oxidative status and barrier integrity of broilers. Poult. Sci. 2019, 98, 4767–4776. [Google Scholar] [CrossRef] [PubMed]
| Ingredient | Starter (%; d 0–14) | Grower (%; d 15–35) |
|---|---|---|
| Corn | 43.37 | 55.23 |
| Soybean meal | 39.70 | 27.28 |
| Soy Oil | 5.91 | 7.90 |
| Wheat Middlings | 6.02 | 6.01 |
| DL-Methionine, 98% | 0.36 | 0.27 |
| L-Lysine | 0.01 | 0.08 |
| Limestone | 2.67 | 1.18 |
| Monocalcium phosphate | 1.25 | 1.32 |
| Salt | 0.42 | 0.42 |
| Trace Mineral Mix 2 | 0.05 | 0.05 |
| Vitamin Premix 3 | 0.25 | 0.25 |
| Treatment * | Feed Consumption (kg; d 0–35) | Feed Conversion Ratio (d 0–35) | Body Weight (kg; d 35) | Mortality (%; d 0–35) |
|---|---|---|---|---|
| CON + H | 122.45 de | 1.58 ab | 2.78 c | 4.17 |
| SE + H | 126.48 cd | 1.59 ab | 2.84 bc | 2.08 |
| BET + H | 119.05 e | 1.58 ab | 2.71 c | 6.25 |
| YF + H | 127.75 cd | 1.63 a | 2.83 bc | 0.00 |
| CON + A | 131.47 bc | 1.54 b | 3.07 a | 4.17 |
| SE + A | 141.61 a | 1.61 ab | 3.16 a | 0.00 |
| BET + A | 138.95 a | 1.60 ab | 3.14 a | 4.17 |
| YF + A | 135.55 ab | 1.61 ab | 3.00 ab | 6.25 |
| Heat × Diet p-value | 0.088 | 0.608 | 0.307 | 0.345 |
| Main Effect Heat | ||||
| Heat Stress | 123.93 b | 1.60 | 2.79 b | 3.65 |
| Ambient | 136.89 a | 1.59 | 3.10 a | 3.13 |
| p-value | <0.001 | 0.761 | <0.001 | 0.778 |
| Main Effect Diet | ||||
| CON | 126.96 | 1.56 | 2.93 | 4.17 |
| SE | 134.04 | 1.60 | 3.00 | 1.04 |
| BET | 129.00 | 1.59 | 2.93 | 5.21 |
| YF | 131.65 | 1.62 | 2.91 | 3.13 |
| p-value | 0.053 | 0.312 | 0.561 | 0.434 |
| SEM | 1.55 | 0.01 | 0.04 | 0.91 |
| Treatment * | Plasma CORT (pg/mL; d 35) | Heterophil/ Lymphocyte Ratio (d 35) | Villus Length (µm) | Crypt Depth (µm) | V/C Ratio |
|---|---|---|---|---|---|
| CON + H | 11,956.2 a | 0.55 a | 506.42 c | 143.68 | 4.02 |
| SE + H | 8401.3 b | 0.39 b | 562.38 abc | 137.08 | 4.48 |
| BET + H | 7939.3 b | 0.36 b | 556.46 abc | 138.26 | 4.47 |
| YF + H | 8053.1 b | 0.38 b | 585.99 abc | 141.26 | 4.56 |
| CON + A | 6537.1 b | 0.37 b | 601.60 ab | 144.30 | 4.52 |
| SE + A | 6373.7 b | 0.31 b | 643.80 a | 148.59 | 4.98 |
| BET + A | 6323.9 b | 0.33 b | 551.08 bc | 162.45 | 4.19 |
| YF + A | 6883.9 b | 0.32 b | 620.57 ab | 128.84 | 5.24 |
| Heat × Diet p-value | 0.182 | 0.248 | 0.373 | 0.409 | 0.621 |
| Main Effect Heat | |||||
| Heat Stress | 9087.47 a | 0.42 a | 552.81 b | 140.07 | 4.39 |
| Ambient | 6529.63 b | 0.33 b | 604.26 a | 146.04 | 4.73 |
| p-value | 0.001 | 0.001 | 0.024 | 0.455 | 0.219 |
| Main Effect Diet | |||||
| CON | 9246.63 | 0.46 a | 554.01 | 143.99 | 4.27 |
| SE | 7387.50 | 0.35 b | 603.09 | 142.83 | 4.73 |
| BET | 7131.56 | 0.34 b | 553.77 | 150.36 | 4.33 |
| YF | 7468.50 | 0.35 b | 603.28 | 135.05 | 4.90 |
| p-value | 0.182 | 0.004 | 0.190 | 0.596 | 0.315 |
| SEM | 397.67 | 0.01 | 11.53 | 3.90 | 0.14 |
| Treatment * | Feed Consumption (kg; d 0–35) | Feed Conversion Ratio (d 0–35) | Body Weight (kg; d 35) | Mortality (%, d 0–35) |
|---|---|---|---|---|
| CON + H | 134.15 abc | 1.67 | 2.87 b | 4.17 |
| MOS + H | 131.58 abc | 1.68 | 2.80 b | 0.00 |
| GT + H | 129.94 bc | 1.65 | 2.84 b | 6.25 |
| PS + H | 128.97 c | 1.66 | 2.79 b | 6.25 |
| CON + A | 139.80 a | 1.65 | 3.04 a | 8.33 |
| MOS + A | 138.81 ab | 1.61 | 3.09 a | 6.25 |
| GT + A | 135.90 abc | 1.57 | 3.13 a | 6.25 |
| PS + A | 137.20 abc | 1.65 | 3.06 a | 10.42 |
| Heat × Diet p-value | 0.972 | 0.784 | 0.440 | 0.837 |
| Main Effect Heat | ||||
| Heat Stress | 131.16 b | 1.66 | 2.82 b | 4.17 |
| Ambient | 137.93 a | 1.62 | 3.08 a | 7.81 |
| p-value | 0.005 | 0.145 | <0.001 | 0.152 |
| Main Effect Diet | ||||
| CON | 136.97 | 1.66 | 2.96 | 6.25 |
| MOS | 135.20 | 1.64 | 2.94 | 3.13 |
| GT | 132.92 | 1.61 | 2.98 | 6.25 |
| PS | 133.09 | 1.66 | 2.92 | 8.33 |
| p-value | 0.511 | 0.509 | 0.536 | 0.527 |
| SEM | 1.17 | 0.01 | 0.03 | 1.20 |
| Treatment * | Plasma CORT (pg/mL; d 35) | Heterophil/ Lymphocyte Ratio (d 35) | Villus Length (µm) | Crypt Depth (µm) | V/C Ratio |
|---|---|---|---|---|---|
| CON + H | 7556.96 a | 0.60 ab | 708.00 | 150.47 | 5.12 |
| MOS + H | 6603.87 bc | 0.54 bc | 668.81 | 152.04 | 4.88 |
| GT + H | 4804.70 bc | 0.50 bc | 596.06 | 156.14 | 4.25 |
| PS + H | 7412.93 ab | 0.70 a | 653.88 | 143.35 | 5.01 |
| CON + A | 4380.76 c | 0.63 ab | 634.45 | 193.43 | 3.97 |
| MOS + A | 4992.40 abc | 0.43 c | 649.08 | 151.50 | 4.71 |
| GT + A | 4310.32 c | 0.54 bc | 677.45 | 184.56 | 4.33 |
| PS + A | 4454.76 c | 0.43 c | 646.46 | 176.89 | 4.11 |
| Heat × Diet p-value | 0.485 | 0.010 | 0.225 | 0.478 | 0.493 |
| Main Effect Heat | |||||
| Heat Stress | 6594.61 a | 0.59 a | 656.69 | 150.50 b | 4.82 |
| Ambient | 4534.56 b | 0.50 b | 651.86 | 176.60 a | 4.28 |
| p-value | 0.003 | 0.026 | 0.875 | 0.016 | 0.138 |
| Main Effect Diet | |||||
| CON | 5968.86 | 0.62 | 671.22 | 171.95 | 4.54 |
| MOS | 5798.13 | 0.48 | 658.95 | 151.77 | 4.80 |
| GT | 4557.51 | 0.52 | 636.76 | 170.35 | 4.29 |
| PS | 5933.84 | 0.56 | 650.17 | 160.12 | 4.56 |
| p-value | 0.415 | 0.054 | 0.819 | 0.468 | 0.682 |
| SEM | 353.59 | 0.02 | 13.09 | 5.14 | 0.16 |
| Treatment * | Feed Consumption (kg; d 0–35) | Feed Conversion Ratio (d 0–35) | Body Weight (kg; d 35) | Mortality (%, d 0–35) |
|---|---|---|---|---|
| CON + H | 120.27 bc | 1.61 | 2.67 c | 2.08 |
| MS + H | 118.00 c | 1.50 | 2.80 bc | 0.00 |
| EO1 + H | 117.90 c | 1.54 | 2.74 c | 4.17 |
| EO2 + H | 120.18 bc | 1.57 | 2.74 c | 0.00 |
| CON + A | 132.43 a | 1.57 | 3.01 ab | 2.08 |
| MS + A | 129.91 ab | 1.52 | 3.07 a | 2.08 |
| EO1 + A | 131.64 a | 1.54 | 3.05 a | 2.08 |
| EO2 + A | 132.42 a | 1.50 | 3.10 a | 4.17 |
| Heat × Diet p-value | 0.993 | 0.587 | 0.909 | 0.410 |
| Main Effect Heat | ||||
| Heat Stress | 119.09 b | 1.55 | 2.74 b | 1.56 |
| Ambient | 131.60 a | 1.53 | 3.06 a | 2.60 |
| p-value | <0.001 | 0.338 | <0.001 | 0.446 |
| Main Effect Diet | ||||
| CON | 126.35 | 1.59 | 2.84 | 2.08 |
| MS | 123.95 | 1.51 | 2.94 | 1.04 |
| EO1 | 124.77 | 1.54 | 2.90 | 3.13 |
| EO2 | 126.30 | 1.54 | 2.92 | 2.08 |
| p-value | 0.877 | 0.113 | 0.622 | 0.754 |
| SEM | 1.58 | 0.01 | 0.04 | 0.65 |
| Treatment * | Plasma CORT (pg/mL; d 35) | Heterophil/ Lymphocyte Ratio (d 35) | Villus Length (µm) | Crypt Depth (µm) | V/C Ratio |
|---|---|---|---|---|---|
| CON + H | 12,515.3 | 0.48 b | 660.46 bc | 246.61 a | 3.81 b |
| MS + H | 10,668.2 | 0.62 ab | 784.73 a | 183.60 ab | 4.67 ab |
| EO1 + H | 12,453.4 | 0.82 a | 646.57 b | 142.05 b | 5.04 a |
| EO2 + H | 11,114.7 | 0.45 b | 666.82 bc | 132.47 b | 5.32 a |
| CON + A | 11,405.6 | 0.61 ab | 711.55 abc | 157.22 b | 4.95 a |
| MS + A | 14,621.4 | 0.61 ab | 765.92 ab | 185.77 ab | 4.93 a |
| EO1 + A | 15,700.4 | 0.53 b | 776.26 a | 153.45 b | 5.45 a |
| EO2 + A | 13,252.7 | 0.62 ab | 761.87 ab | 155.62 b | 5.35 a |
| Heat × Diet p-value | 0.535 | 0.012 | 0.242 | 0.063 | 0.442 |
| Main Effect Heat | |||||
| Heat Stress | 11,687.9 | 0.60 | 689.65 b | 176.18 | 4.71 |
| Ambient | 13,745.0 | 0.59 | 753.90 a | 163.01 | 5.17 |
| p-value | 0.118 | 0.977 | 0.018 | 0.421 | 0.069 |
| Main Effect Diet | |||||
| CON | 11,960.4 | 0.55 | 686.01 | 201.91 a | 4.38 b |
| MS | 12,644.8 | 0.62 | 775.33 | 184.68 ab | 4.80 ab |
| EO1 | 14,076.9 | 0.67 | 711.41 | 147.75 b | 5.24 a |
| EO2 | 12,183.7 | 0.54 | 714.35 | 144.04 b | 5.33 a |
| p-value | 0.657 | 0.262 | 0.123 | 0.034 | 0.032 |
| SEM | 651.92 | 0.03 | 17.80 | 8.74 | 0.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Domel, J.R.; Sobotik, E.B.; House, G.M.; Archer, G.S. Comparison of Impacts of Essential Oils, Green Tea Powder, Betaine, Probiotics, and Other Dietary Supplements on Growth and Well-Being of Heat-Stressed White Pekin Ducks. Animals 2025, 15, 3382. https://doi.org/10.3390/ani15233382
Domel JR, Sobotik EB, House GM, Archer GS. Comparison of Impacts of Essential Oils, Green Tea Powder, Betaine, Probiotics, and Other Dietary Supplements on Growth and Well-Being of Heat-Stressed White Pekin Ducks. Animals. 2025; 15(23):3382. https://doi.org/10.3390/ani15233382
Chicago/Turabian StyleDomel, Jill R., Eric B. Sobotik, Gabrielle M. House, and Gregory S. Archer. 2025. "Comparison of Impacts of Essential Oils, Green Tea Powder, Betaine, Probiotics, and Other Dietary Supplements on Growth and Well-Being of Heat-Stressed White Pekin Ducks" Animals 15, no. 23: 3382. https://doi.org/10.3390/ani15233382
APA StyleDomel, J. R., Sobotik, E. B., House, G. M., & Archer, G. S. (2025). Comparison of Impacts of Essential Oils, Green Tea Powder, Betaine, Probiotics, and Other Dietary Supplements on Growth and Well-Being of Heat-Stressed White Pekin Ducks. Animals, 15(23), 3382. https://doi.org/10.3390/ani15233382

