Comparative Effects of Capsicum annuum-Derived Selenium Nanoparticles and Sodium Selenite on Reproductive Performance, Egg Quality, and Male Sexual Behavior in Japanese Quails
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Birds, Design and Diets
2.2. Synthesis of Selenium Nanoparticles
2.3. Quantification of Selenium Concentration
2.4. Estimation of Productive Performance
2.5. Estimation of Egg Quality Parameters
2.6. Estimation of Reproductive Performance
2.7. Incubation and Hatching
2.8. Sexual Behavior
- Wing flapping: The male raises his wings above the level of his back and flaps them.
- Waltzing: The male walks around the hen and extends his wings away from her.
- Mounting: The male climbs onto the hen’s back and uses his claws to grab her wing feather.
- Tidbitting: The male invites their mates by simulating the discovery of food in the litter
- Rear approach: The male grasps the hen’s neck feathers with his beak.
- Treading: The male takes small steps with his foot before mounting and making cloacal contact.
2.9. Statistical Analysis
3. Results
3.1. Effects of Se-NPs and SS Supplementation on Productive Performance of Japanese Quails
3.2. Impact of Se-NPs and SS Supplementation on the Egg Quality Indices of Japanese Quails
3.3. Influence of Se-NPs and SS Supplementation on the Reproductive Performance of Japanese Quails
3.4. Effects of Se-NPs and SS Supplementation on the Sexual Behavior Frequencies of Male Japanese Quails
3.5. Poisson Regression Analysis of the Impact of Se-NPs and SS Supplementation on Male Sexual Behavior in Quails
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bagh, J.; Panigrahi, B.; Panda, N.; Pradhan, C.R.; Mallik, B.K.; Majhi, B.; Rout, S.S. Body weight, egg production, and egg quality traits of gray, brown, and white varieties of Japanese quail (Coturnix coturnix japonica) in coastal climatic condition of Odisha. Vet. World 2016, 9, 832–836. [Google Scholar] [CrossRef]
- Khan, S.H.; Naseer, J.; Tahir, M.N.; Anjum, K.; Khan, M.H.; Nadeem, A.; Latif, A. Evaluating the effects of processed pigeon pea seed meal on growth performance and digestibility in Japanese quails (Coturnix japonica). Trends Anim. Poult. Sci. 2023, 1, 43–47. [Google Scholar]
- Al-Khalaifah, H.; Naz, S.; Al-Atiyat, R.; Khan, R.U.; Abudabos, A.; Alhidary, I.A. Eco-Friendly Selenium nanoparticles from Capsicum annuum: Impact on growth efficiency, blood biochemistry, immune response, intestinal morphology, and profitability in broiler chickens. Poult. Sci. 2025, 104, 105915. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.Y.; An, Y.C.; Zhang, S.Y.; Qiu, S.J.; Yang, Y.Y.; Liu, W.C. Metabolomic analysis reveals biogenic selenium nanoparticles improve the meat quality of thigh muscle in heat-stressed broilers is related to the regulation of ferroptosis pathway. Poult. Sci. 2024, 103, 103554. [Google Scholar] [CrossRef]
- Surai, P.F.; Kochish, I.I.; Fisinin, V.I.; Velichko, O.A. Selenium in poultry nutrition: From sodium selenite to organic selenium sources. J. Poult. Sci. 2018, 55, 79–93. [Google Scholar] [CrossRef]
- Ye, X.Q.; Zhu, Y.R.; Yang, Y.Y.; Qiu, S.J.; Liu, W.C. Biogenic selenium nanoparticles synthesized with alginate oligosaccharides alleviate heat stress-induced oxidative damage to organs in broilers through activating Nrf2-mediated anti-oxidation and anti-ferroptosis pathways. Antioxidants 2023, 12, 1973. [Google Scholar] [CrossRef]
- Nabi, F.; Arain, M.A.; Hassan, F.; Umar, M.; Rajput, N.; Alagawany, M.; Syed, S.F.; Soomro, J.; Somroo, F.; Liu, J. Nutraceutical role of selenium nanoparticles in poultry nutrition: A review. J. World’s Poult. Sci. 2020, 76, 459–471. [Google Scholar] [CrossRef]
- Yang, Y.Y.; An, Y.C.; Zhang, S.Y.; Huang, M.Y.; Ye, X.Q.; Zhao, Z.H.; Liu, W.C. Biogenic selenium nanoparticles synthesized using alginate oligosaccharides attenuate heat stress-induced impairment of breast meat quality via regulating oxidative stress, metabolome and ferroptosis in broilers. Antioxidants 2023, 12, 2032. [Google Scholar] [CrossRef] [PubMed]
- Abudabos, A.M.; Al-Atiyat, R.M.; Stanley, D.; Aljassim, R.; Albatshan, H.A. The effect of corn distiller’s dried grains with solubles (DDGS) fortified with enzyme on growth performance of broiler. Environ. Sci. Pollut. Res. Int. 2017, 24, 21412–21421. [Google Scholar] [CrossRef]
- Chand, N.; Naz, S.; Irfan, M.; Khan, R.U.; Rehman, Z.U. Effect of sea buckthorn (Hippophae rhamnoides L.) seed supplementation on egg quality and cholesterol of Rhode Island Red × Fayoumi laying hens. Korean J. Food Sci. Anim. Resour. 2018, 38, 468–475. [Google Scholar]
- Rahman, Z.; Naz, S.; Khan, R.U.; Tahir, M. An update on the potential application of L-carnitine in poultry. World’s Poult. Sci. J. 2017, 73, 823–830. [Google Scholar] [CrossRef]
- Swain, P.S.; Prusty, S.; Rao, S.B.N.; Rajendran, D.; Patra, A.K. Essential nanominerals and other nanomaterials in poultry nutrition and production. In Advances in Poultry Nutrition Research; IntechOpen: London, UK, 2021. [Google Scholar] [CrossRef]
- Çiçek, S.; Özoğul, F. Effects of selenium nanoparticles on growth performance, hematological, serum biochemical parameters, and antioxidant status in fish. Anim. Feed Sci. Technol. 2021, 281, 115099. [Google Scholar] [CrossRef]
- Naz, S.; Bibi, G.; Nadeem, R.; Alhidary, I.; Dai, S.; Israr, M.; Khan, R.U. Evaluation of biological selenium nanoparticles on growth performance, histopathology of vital organs and genotoxicity in Japanese quails (Coturnix coturnix japonica). Vet. Q. 2024, 44, 1–10. [Google Scholar] [CrossRef]
- Zhou, W.; Miao, S.; Zhu, M.; Dong, X.; Zou, X. Effect of glycine nano-selenium supplementation on production performance, egg quality, serum biochemistry, oxidative status, and intestinal morphology in laying hens. Biol. Trace Elem. Res. 2021, 199, 4273–4283. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Sun, K.; Ni, L.; Wang, X.; Wang, D.; Zhang, J. Sodium selenosulfate at an innocuous dose markedly prevents cisplatin-induced gastrointestinal toxicity. Toxicol. Appl. Pharmacol. 2012, 258, 376–383. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.A.; Soliman, E.S.; Hamad, R.T.; El-Borad, O.M.; Hassan, R.A.; Helal, M.S. Preventive, behavioral, productive, and tissue modification using green synthesized selenium nanoparticles in the drinking water of two broiler breeds under microbial stress. Braz. J. Poult. Sci. 2020, 22, eRBCA-2019-1129. [Google Scholar] [CrossRef]
- Reda, F.M.; El-Saadony, M.T.; Elnesr, S.S.; Alagawany, M.; Tufarelli, V. Effect of dietary supplementation of biological curcumin nanoparticles on growth and carcass traits, antioxidant status, immunity and caecal microbiota of Japanese quails. Animals 2020, 10, 754. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, R.; Salama, B.; Safhi, F.A.; Pet, I.; Pet, E.; Ateya, A. Assessing the impacts of different levels of nano-selenium on growth performance, serum metabolites, and gene expression in heat-stressed growing quails. Vet. Sci. 2024, 11, 228. [Google Scholar] [CrossRef]
- Batool, S.; Khan, M.A.; Naz, S.; Shah, M.; Alrefai, A.F.; Ibiwoye, D.I.; Momand, N.K.; Khan, R.U. Anticoccidial effect of bitter apple (Citrullus colocynthis) seed powder and organic selenium nanoparticles in mitigating Eimeria tenellainduced challenge in quails. J. Appl. Anim. Res. 2025, 53, 2526393. [Google Scholar] [CrossRef]
- Khan, R.U.; Al-Khalaifah, H.; Usama, M.; Naz, S.; Khan, S.; Batool, S.; Alrefaei, A.F.; Konca, Y.; Abdelrahman, S.; Selvaggi, M.; et al. Effect of dietary supplementation of biosynthesized nano-selenium particles on growth, blood indices, antioxidant status, immune response and histological features of intestine in broilers. Food Agric. Immunol. 2025, 36, 2529315. [Google Scholar] [CrossRef]
- Elnaggar, A.S.; Ghazalah, A.; Elsayed, A.H.; Abdelalem, A. Impact of selenium sources on productive and physiological performance of broilers. Egypt. Poult. Sci. J. 2020, 40, 577–597. [Google Scholar] [CrossRef]
- Rana, T. Nano-selenium on reproduction and immunocompetence: An emerging progress and prospect in the productivity of poultry research. Trop. Anim. Health Prod. 2021, 53, 324. [Google Scholar] [CrossRef] [PubMed]
- El-Kazaz, S.E.; Abo-Samaha, M.I.; Hafez, M.H.; El-Shobokshy, S.A.; Wirtu, G. Dietary supplementation of nano-selenium improves reproductive performance, sexual behavior and deposition of selenium in the testis and ovary of Japanese quail. J. Adv. Vet. Anim. Res. 2020, 7, 597–607. [Google Scholar] [CrossRef] [PubMed]
- Meng, T.; Liu, Y.L.; Xie, C.Y.; Zhang, B.; Huang, Y.Q.; Zhang, Y.W.; Wu, X. Effects of different selenium sources on laying performance, egg selenium concentration, and antioxidant capacity in laying hens. Biol. Trace Elem. Res. 2019, 189, 548–555. [Google Scholar] [CrossRef]
- Shokraneh, M.; Sadeghi, A.A.; Mousavi, S.N.; Esmaeilkhanian, S.; Chamani, M. Effects of in ovo injection of nano-selenium and nano-zinc oxide and high eggshell temperature during late incubation on antioxidant activity, thyroid and glucocorticoid hormones and some blood metabolites in broiler hatchlings. Acta Sci. Anim. Sci. 2020, 42, e46029. [Google Scholar] [CrossRef]
- Khalil, W.A.; El-Harairy, M.A.; Zeidan, A.E.; Hassan, M.A. Impact of selenium nanoparticles in semen extender on bull sperm quality after cryopreservation. Theriogenology 2019, 126, 121–127. [Google Scholar] [CrossRef]
- Salimi, T.; Hajarian, H.; Karamishabankareh, H.; Soltani, L. Effects of sodium selenite, cysteamine, bacterially synthesized Se-NPs, and cysteamine loaded on Se-NPs on ram sperm cryopreservation. Sci. Rep. 2024, 14, 852. [Google Scholar] [CrossRef]
- Nassef, E.; Saker, O.; Shukry, M. Effect of Se sources and concentrations on performance, antioxidant defense, and functional egg quality of laying Japanese quail (Coturnix japonica). Environ. Sci. Pollut. Res. 2020, 27, 37677–37683. [Google Scholar] [CrossRef]
- Lukanov, H.; Pavlova, I.; Genchev, A. Effect of the quail’s productive type on the incubation characteristics of domestic quail eggs (Coturnix japonica domestica). Bulg. J. Agric. Sci. 2020, 26, 90–96. [Google Scholar]
- Randal, M.; Bolla, G. Raising Japanese quail. Primefacts 2008, 602, 1–5. [Google Scholar]
- Bean, T.G.; Beasley, V.R.; Berny, P.; Eisenreich, K.M.; Elliott, J.E.; Eng, M.L.; Rattner, B.A. Toxicological effects assessment for wildlife in the 21st century: Review of current methods and recommendations for a path forward. Integr. Environ. Assess. Manag. 2024, 20, 699–724. [Google Scholar] [CrossRef]
- NRC (National Research Council). Nutrient Requirements of Poultry, 9th Rev. ed.; National Academy Press: Washington, DC, USA, 1994. [Google Scholar]
- Batra, G.; Gortzi, O.; Lalas, S.I.; Galidi, A.; Alibade, A.; Nanos, G.D. Enhanced antioxidant activity of Capsicum annuum, L. and Moringa oleifera L. extracts after encapsulation in microemulsions. Chem. Eng. 2017, 1, 15. [Google Scholar] [CrossRef]
- Sarmiento-García, A.; Sevim, B.; Olgun, O.; Ahmet-Gökmen, S. Effects of different inorganic selenium levels in laying quails (Coturnix coturnix japonica) diets on performance, egg quality, and serum biochemical parameters. Vet. México OA 2022, 9, e1046. [Google Scholar] [CrossRef]
- Khan, M.M.; Hossain, M.N.; Baset, M.A.; Uddin, M.N. Effect of organic selenium supplementation on productive and reproductive performances of Japanese quails. J. Sylhet Agric. Univ. 2018, 5, 113–119. [Google Scholar]
- Elkhateeb, F.S.; Ghazalah, A.A.; Lohakare, J.; Abdel-Wareth, A.A. Selenium nanoparticle inclusion in broiler diets for enhancing sustainable production and health. Sci. Rep. 2024, 14, 18557. [Google Scholar] [CrossRef]
- Alagawany, M.; Qattan, S.Y.; Attia, Y.A.; El-Saadony, M.T.; Elnesr, S.S.; Mahmoud, M.A.; Reda, F.M. Use of chemical nano-selenium as an antibacterial and antifungal agent in quail diets and its effect on growth, carcasses, antioxidant, immunity, and caecal microbes. Animals 2021, 11, 3027. [Google Scholar] [CrossRef] [PubMed]
- Zakaria, A.H.; Omar, O.H. Egg laying pattern, egg weight, body weight at hatch, and sex ratio bias relative to oviposition time of young- and mid-age broiler breeders. Anim. Reprod. Sci. 2013, 141, 80–85. [Google Scholar] [CrossRef]
- Elfiky, A.A.; Enab, A.A.; Zanaty, G.A.; Morsy, A.S.; Sewalem, H.Z. Productive performance and egg quality traits of laying hens fed on diets treated with nano-selenium under hot desert conditions. Menoufia J. Anim. Poult. Fish Prod. 2021, 5, 71–81. [Google Scholar] [CrossRef]
- Köhrle, J.; Frädrich, C. Deiodinases control local cellular and systemic thyroid hormone availability. Free Radic. Biol. Med. 2022, 193, 59–79. [Google Scholar] [CrossRef] [PubMed]
- Mojadadi, A.; Au, A.; Salah, W.; Witting, P.; Ahmad, G. Role for selenium in metabolic homeostasis and human reproduction. Nutrients 2021, 13, 3256. [Google Scholar] [CrossRef]
- England, A.D.; Gharib-Naseri, K.; Kheravii, S.K.; Wu, S.B. Rearing broilers as mixed or single-sex: Relevance to performance, coefficient of variation, and flock uniformity. Poult. Sci. 2022, 101, 102176. [Google Scholar] [CrossRef]
- Mengistu, S.B.; Mulder, H.A.; Benzie, J.A.; Komen, H. A systematic literature review of the major factors causing yield gap by affecting growth, feed conversion ratio, and survival in Nile tilapia (Oreochromis niloticus). Rev. Aquac. 2020, 12, 524–541. [Google Scholar] [CrossRef]
- Duman, M.; Şekeroğlu, A.; Yıldırım, A.; Eleroğlu, H.A.; Camcı, Ö. Relation between egg shape index and egg quality characteristics. Eur. Poult. Sci. 2016, 80, 117. [Google Scholar] [CrossRef]
- Drabik, K.; Batkowska, J.; Vasiuk, K.; Pluta, A. The impact of eggshell colour on the quality of table and hatching eggs derived from Japanese Quail. Animals 2020, 10, 264. [Google Scholar] [CrossRef] [PubMed]
- Orellana Galindo, L. Effect of Eggshell Translucency and Color on Broiler Egg Hatchability and Chick Quality and Its Relationship with Other Eggshell Quality Parameters. Master’s Thesis, Auburn University, Auburn, AL, USA, 2023. [Google Scholar]
- Patra, A.; Lalhriatpuii, M. Progress and prospect of essential mineral nanoparticles in poultry nutrition and feeding—A review. Biol. Trace Elem. Res. 2020, 197, 233–253. [Google Scholar] [CrossRef]
- Alig, B.N.; Malheiros, R.D.; Anderson, K.E. Evaluation of physical egg quality parameters of commercial brown laying hens housed in five production systems. Animals 2023, 13, 716. [Google Scholar] [CrossRef]
- Satti, S.; Naz, S.; Khan, R.U.; Alrefaei, A.F.; Almutairi, M.; Momand, N.K.; Ibiwoye, D.I. Comparative effects of selenium nanoparticles and sodium selenite on selenium bioaccumulation in quail tissues and its transfer to progeny. J. Appl. Anim. Res. 2025, 53, 2497329. [Google Scholar] [CrossRef]
- Mohammadsadeghi, F.; Afsharmanesh, M.; Salarmoini, M.; Bami, M.K. The effect of replacing sodium selenite with selenium-chitosan in laying hens on production performance, egg quality, egg selenium concentration, microbial population, immunological response, antioxidant enzymes, and fatty acid composition. Poult. Sci. 2023, 102, 102983. [Google Scholar] [CrossRef] [PubMed]
- Urso, U.R.; Dahlke, F.; Maiorka, A.; Bueno, I.J.M.; Schneider, A.F.; Surek, D.; Rocha, C. Vitamin E and selenium in broiler breeder diets: Effect on live performance, hatching process, and chick quality. Poult. Sci. 2015, 94, 976–983. [Google Scholar] [CrossRef]
- Surai, P.F.; Fisinin, V.I. Selenium in poultry breeder nutrition. An update. Anim. Feed Sci. Technol. 2014, 191, 1–15. [Google Scholar] [CrossRef]
- Zhang, F.; Li, X.; Wei, Y. Selenium and selenoproteins in health. Biomolecules 2023, 13, 799. [Google Scholar] [CrossRef]
- Shalaby, O.E.; Ahmed, Y.H.; Mekkawy, A.M.; Mahmoud, M.Y.; Elbargeesy, G.A. The ameliorative effect of selenium-loaded chitosan nanoparticles against silver nanoparticles-induced ovarian toxicity in female albino rats. J. Ovarian Res. 2025, 18, 4. [Google Scholar] [CrossRef]
- Muthukumaran, D.; Shanmugam, R. Nanoparticle-based interventions for polycystic ovary syndrome: A review of mechanisms and therapeutic potential. J. Drug Deliv. Sci. Technol. 2024, 102, 106348. [Google Scholar] [CrossRef]
- Mathur, P.; Jha, S.; Ramteke, S.; Jain, N.K. Pharmaceutical aspects of silver nanoparticles. Artif. Cells Nanomed. Biotechnol. 2018, 46, 115–126. [Google Scholar] [CrossRef] [PubMed]
- Unterweger, H.; Lyer, S.; Janko, C.; Friedrich, R.P.; Cicha, I.; Tietze, R.; Alexiou, C. Nanomedicine for infectious diseases. Nanomedicine 2020, 15, 1263–1267. [Google Scholar] [CrossRef]
- Zubair, M.; Martyniuk, C.J.; Partyka, A.; Saleemi, M.K. Dietary use of selenium: A review of the antioxidant and scavenging effects on the poultry male reproductive system. World’s Poult. Sci. J. 2023, 79, 713–729. [Google Scholar] [CrossRef]
- Qazi, I.H.; Angel, C.; Yang, H.; Zoidis, E.; Pan, B.; Wu, Z.; Ming, Z.; Zeng, C.J.; Meng, Q.; Han, H.; et al. Role of selenium and selenoproteins in male reproductive function: A review of past and present evidence. Antioxidants 2019, 8, 268. [Google Scholar] [CrossRef] [PubMed]
- Patel, K.D.; Keskin-Erdogan, Z.; Sawadkar, P.; Sharifulden, N.S.A.N.; Shannon, M.R.; Patel, M.; Kim, H.W. Oxidative stress modulating nanomaterials and their biochemical roles in nanomedicine. Nanoscale Horiz. 2024, 9, 1630–1682. [Google Scholar] [CrossRef]
- Yuan, S.; Zhang, Y.; Dong, P.Y.; Yan, Y.M.C.; Liu, J.; Zhang, B.Q.; Zhang, X.F. A comprehensive review on potential role of selenium, selenoproteins, and selenium nanoparticles in male fertility. Heliyon 2024, 10, e34975. [Google Scholar] [CrossRef]
- Zambonino, M.C.; Quizhpe, E.M.; Mouheb, L.; Rahman, A.; Agathos, S.N.; Dahoumane, S.A. Biogenic selenium nanoparticles in biomedical sciences: Properties, current trends, novel opportunities, and emerging challenges in theranostic nanomedicine. Nanomaterials 2023, 13, 424. [Google Scholar] [CrossRef]
- Zhou, C.; Zhang, H.; Wu, Y.; Ahmed, N. Effect of nano-selenium on exosomes secretion associated with sperm maturation within the epididymis. Micron 2023, 175, 103545. [Google Scholar] [CrossRef]
- Khalaf, A.A.; Ahmed, W.M.S.; Moselhy, W.A.; Abdel-Halim, B.R.; Ibrahim, M.A. Protective effects of selenium and nano-selenium on bisphenol-induced reproductive toxicity in male rats. Hum. Exp. Toxicol. 2019, 38, 398–408. [Google Scholar] [CrossRef]
- Jerysz, A.; Lukaszewicz, E. Effect of dietary selenium and vitamin E on ganders’ response to semen collection and ejaculate characteristics. Biol. Trace Elem. Res. 2013, 153, 196–204. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, G.B.; Abdel-Raheem, S.M.; Hussein, H.A. Effect of combination of vitamin E and selenium injections on reproductive performance and blood parameters of Ossimi rams. Small Rumin. Res. 2013, 113, 103–118. [Google Scholar] [CrossRef]
- Alrashidi, M.; Gomaa, H. The protective effect of selenium nanoparticles against mono-sodium glutamate-induced alterations in male albino rats: The effect of nano-selenium against MSG-toxicity. J. Qassim Univ. Sci. 2023, 2, 122–132. [Google Scholar]
| Group | Treatment Description | Diet Supplement | Se Source | Se Dose (mg/kg) |
|---|---|---|---|---|
| 1 | Control | Basal diet only | – | 0 |
| 2 | Se-NPs Low Dose | Basal diet + Se-NPs | Se-NPs | 0.20 |
| 3 | Se-NPs High Dose | Basal diet + Se-NPs | Se-NPs | 0.40 |
| 4 | Sodium Selenite (SS) Low Dose | Basal diet + SS | SS | 0.20 |
| 5 | Sodium Selenite (SS) High Dose | Basal diet + SS | SS | 0.40 |
| Treatment Group | Feed Se (mg/kg DM) | Excreta Se (mg/kg DM) | Apparent Retention Index (%) |
|---|---|---|---|
| Control (basal premix) | 0.03 | 0.02 | 33.3 |
| Se-NPs (0.2 mg/kg) | 0.23 | 0.08 | 65.2 |
| Se-NPs (0.4 mg/kg) | 0.43 | 0.15 | 65.1 |
| SS (0.2 mg/kg) | 0.23 | 0.12 | 47.8 |
| SS (0.4 mg/kg) | 0.43 | 0.28 | 34.9 |
| Ingredients | Contents (%) |
|---|---|
| Yellow Corn | 49.25 |
| Soya bean meal | 32.18 |
| Starch | 10.15 |
| Limestone | 6.50 |
| Di-Calcium Phosphate | 1.16 |
| Salt (NaCl) | 0.30 |
| Alfalfa leaf powder | 0.16 |
| Vitamin and mineral premixture * | 0.30 |
| Calculated analysis * | |
| ME, Kcal/kg | 2830 |
| Crude protein | 19.63 |
| Crude Fiber | 2.21 |
| Ether Extract | 2.19 |
| Calcium | 2.82 |
| Phosphorous | 0.33 |
| Methionine + cystine | 0.72 |
| Methionine | 0.44 |
| Lysine | 1.01 |
| Performance Traits | Weeks | Control | Se-NPs (0.2 mg/kg) | Se-NPs (0.4 mg/kg) | SS (0.2 mg/kg) | SS (0.4 mg/kg) | Total Mean | SEM | p Value | ||
|---|---|---|---|---|---|---|---|---|---|---|---|
| T | t | T × t | |||||||||
| Feed Intake (g) | 9th | 18.50 | 19.30 | 20.00 | 18.50 | 19.00 | 19.06 c | 0.10 | 0.000 | 0.000 | 0.007 |
| 11th | 21.00 | 21.50 | 23.00 | 21.00 | 21.17 | 21.53 a | 0.10 | ||||
| 13th | 20.05 | 20.16 | 22.43 | 19.12 | 20.10 | 20.37 b | 0.10 | ||||
| Total Mean | 19.85 bc | 20.32 b | 21.81 a | 19.54 c | 20.09 b | 20.32 | 0.06 | ||||
| HDEP % | 9th | 60.00 | 68.00 | 68.00 | 71.00 | 70.00 | 67.40 c | 0.19 | 0.000 | 0.000 | 0.000 |
| 11th | 70.00 | 73.00 | 74.00 | 73.00 | 72.00 | 72.40 a | 0.19 | ||||
| 13th | 71.00 | 70.00 | 72.00 | 69.00 | 65.17 | 69.43 b | 0.19 | ||||
| Total Mean | 67.00 d | 70.33 b | 71.33 a | 71.00 ab | 69.05 c | 69.74 | 0.11 | ||||
| Egg weight (g) | 9th | 8.21 | 10.20 | 9.00 | 8.20 | 7.92 | 8.70 c | 0.02 | 0.000 | 0.000 | 0.000 |
| 11th | 8.58 | 10.61 | 9.40 | 8.62 | 8.68 | 9.18 a | 0.02 | ||||
| 13th | 8.38 | 10.40 | 9.20 | 8.32 | 8.60 | 8.98 b | 0.02 | ||||
| Total Mean | 8.40 c | 10.40 a | 9.20 b | 8.38 c | 8.40 c | 8.95 | 0.01 | ||||
| Egg Mass (g) | 9th | 5.60 | 6.27 | 7.40 | 5.90 | 5.78 | 6.19 b | 0.01 | 0.000 | 0.000 | 0.000 |
| 11th | 5.80 | 6.53 | 7.50 | 6.17 | 6.00 | 6.40 a | 0.01 | ||||
| 13th | 5.60 | 6.52 | 7.30 | 6.00 | 5.60 | 6.20 b | 0.01 | ||||
| Total Mean | 5.67 e | 6.44 b | 7.40 a | 6.02 c | 5.79 d | 6.26 | 0.01 | ||||
| FCR | 9th | 3.53 | 3.17 | 2.94 | 3.32 | 3.37 | 3.26 b | 0.01 | 0.000 | 0.000 | 0.000 |
| 11th | 3.13 | 3.00 | 2.92 | 3.00 | 3.30 | 3.07 c | 0.01 | ||||
| 13th | 3.68 | 3.22 | 2.97 | 3.35 | 3.57 | 3.35 a | 0.01 | ||||
| Total Mean | 3.45 a | 3.13 c | 2.94 d | 3.22 b | 3.41 a | 3.23 | 0.01 | ||||
| Egg Quality | Weeks | Control | Se-NPs (0.2 mg/kg) | Se-NPs (0.4 mg/kg) | SS (0.2 mg/kg) | SS (0.4 mg/kg) | Total Mean | SEM | p Value | ||
|---|---|---|---|---|---|---|---|---|---|---|---|
| T | T | T × t | |||||||||
| Shape Index | 9th | 66.10 | 69.94 | 68.83 | 65.50 | 68.00 | 67.67 c | 0.10 | 0.000 | 0.000 | 0.007 |
| 11th | 74.83 | 80.00 | 72.50 | 73.00 | 71.00 | 74.26 a | 0.10 | ||||
| 13th | 63.70 | 75.00 | 68.47 | 66.03 | 69.20 | 68.48 b | 0.10 | ||||
| Total Mean | 68.21 d | 75.98 a | 69.93 b | 68.18 d | 69.40 c | 70.14 | 0.06 | ||||
| Shell Ratio | 9th | 16.00 | 14.00 | 18.50 | 15.50 | 16.20 | 16.04 b | 0.17 | 0.000 | 0.000 | 0.763 |
| 11th | 18.50 | 16.00 | 21.20 | 17.90 | 18.00 | 18.32 a | 0.17 | ||||
| 13th | 15.00 | 12.00 | 17.00 | 14.00 | 15.00 | 14.60 c | 0.17 | ||||
| Total Mean | 16.50 b | 14.00 c | 18.90 a | 15.80 b | 16.40 b | 16.32 | 0.10 | ||||
| Albumen weight (g) | 9th | 4.50 | 4.30 | 3.67 | 4.10 | 4.40 | 4.19 b | 0.03 | 0.000 | 0.000 | 0.000 |
| 11th | 4.97 | 4.75 | 4.17 | 4.70 | 4.70 | 4.65 a | 0.03 | ||||
| 13th | 4.00 | 4.00 | 3.92 | 3.20 | 4.10 | 3.84 c | 0.03 | ||||
| Total Mean | 4.49 a | 4.35 a | 3.92 b | 4.00 b | 4.40 a | 4.23 | 0.02 | ||||
| Yolk Ratio | 9th | 35.08 | 35.33 | 42.58 | 35.00 | 36.55 | 36.55 b | 0.08 | 0.000 | 0.000 | 0.008 |
| 11th | 36.42 | 36.50 | 43.22 | 35.33 | 37.38 | 37.37 a | 0.08 | ||||
| 13th | 34.00 | 34.00 | 40.83 | 34.00 | 35.25 | 35.25 c | 0.08 | ||||
| Total Mean | 35.17 bc | 35.27 b | 42.21 a | 35.00 c | 34.53 c | 36.39 | 0.05 | ||||
| Albumen Ratio | 9th | 31.00 | 38.00 | 31.50 | 35.00 | 33.00 | 33.70 b | 0.09 | 0.000 | 0.000 | 0.000 |
| 11th | 31.42 | 39.17 | 32.00 | 36.00 | 34.40 | 34.59 a | 0.09 | ||||
| 13th | 30.00 | 37.00 | 30.00 | 33.33 | 30.83 | 32.23 c | 0.09 | ||||
| Total Mean | 30.81 d | 38.01 a | 31.17 d | 34.78 b | 32.74 b | 33.51 | 0.05 | ||||
| Yolk Index | 9th | 36.17 | 43.13 | 58.50 | 45.33 | 39.50 | 44.54 b | 0.09 | 0.000 | 0.000 | 0.000 |
| 11th | 36.25 | 43.50 | 59.00 | 47.00 | 41.13 | 45.37 a | 0.09 | ||||
| 13th | 35.00 | 42.00 | 57.33 | 44.50 | 38.20 | 43.40 c | 0.09 | ||||
| Total Mean | 35.80 e | 42.87 c | 58.27 a | 45.64 b | 39.61 d | 44.44 | 0.05 | ||||
| Albumen Index | 9th | 7.42 | 10.10 | 7.60 | 7.50 | 7.30 | 7.98 b | 0.06 | 0.000 | 0.000 | 0.000 |
| 11th | 8.50 | 11.00 | 7.88 | 7.70 | 7.85 | 8.58 a | 0.06 | ||||
| 13th | 7.00 | 9.42 | 7.50 | 7.00 | 7.17 | 7.61 c | 0.06 | ||||
| Total Mean | 7.64 b | 10.17 a | 7.66 b | 7.40 b | 7.44 b | 8.06 | 0.03 | ||||
| Haugh Unit | 9th | 64.60 | 72.80 | 74.33 | 63.00 | 65.50 | 68.04 b | 0.08 | 0.000 | 0.000 | 0.000 |
| 11th | 65.20 | 73.40 | 75.30 | 64.00 | 67.00 | 68.98 a | 0.08 | ||||
| 13th | 64.00 | 71.02 | 74.00 | 62.00 | 65.00 | 67.20 c | 0.08 | ||||
| Total Mean | 64.60 d | 72.40 b | 74.54 a | 63.00 e | 65.83 c | 68.08 | 0.04 | ||||
| Variables | Weeks | Control | Se-NPs (0.2 mg/kg) | Se-NPs (0.4 mg/kg) | SS (0.2 mg/kg) | SS (0.4 mg/kg) | Total Mean | SEM | p Value | ||
|---|---|---|---|---|---|---|---|---|---|---|---|
| T | T | T × t | |||||||||
| Fertility % | 9th | 77.17 | 80.00 | 80.83 | 78.00 | 76.00 | 78.40 b | 0.17 | 0.000 | 0.000 | 0.199 |
| 11th | 80.20 | 82.00 | 82.73 | 81.08 | 79.50 | 81.10 a | 0.17 | ||||
| 13th | 75.00 | 78.00 | 79.00 | 77.00 | 75.00 | 76.80 c | 0.17 | ||||
| Total Mean | 77.46 d | 80.00 b | 80.86 a | 78.69 c | 76.83 d | 78.77 | 0.10 | ||||
| Hatchability % | 9th | 75.00 | 80.77 | 81.94 | 76.20 | 74.00 | 77.58 b | 0.09 | 0.000 | 0.000 | 0.000 |
| 11th | 76.08 | 82.58 | 85.20 | 78.00 | 75.10 | 79.39 a | 0.09 | ||||
| 13th | 74.20 | 79.50 | 80.00 | 75.00 | 72.00 | 76.14 c | 0.09 | ||||
| Total Mean | 75.09 d | 80.95 b | 82.38 a | 76.40 c | 73.70 e | 77.71 | 0.05 | ||||
| Embryo mortality % | 9th | 25.00 | 19.23 | 18.06 | 23.80 | 26.00 | 22.42 b | 0.09 | 0.000 | 0.000 | 0.000 |
| 11th | 23.92 | 17.42 | 14.80 | 22.00 | 24.90 | 20.61 c | 0.09 | ||||
| 13th | 25.80 | 20.50 | 20.00 | 25.00 | 28.00 | 23.86 a | 0.09 | ||||
| Total Mean | 24.91 b | 19.05 d | 17.62 e | 23.60 | 26.30 a | 22.29 c | 0.05 | ||||
| Variables | Parameters | B | SE | 95% Wald confidence Interval | Wald Chi Square | p-value | |||||
| Lower | Upper | ||||||||||
| Fertility % | (Intercept) | 0.547 | 1.37 | −2.17 | 3.26 | 0.16 | 0.693 | ||||
| Se-NPs (0.2 mg/kg) | 1.325 | 0.66 | 0.37 | 2.61 | 4.07 | 0.044 | |||||
| Se-NPs (0.4 mg/kg) | 2.093 | 0.82 | 0.48 | 3.71 | 6.45 | 0.011 | |||||
| SS (0.2 mg/kg) | 0.465 | 0.56 | −0.63 | 1.56 | 0.69 | 0.407 | |||||
| SS (0.4 mg/kg) | −0.278 | 0.53 | −1.31 | 0.76 | 0.28 | 0.598 | |||||
| Control group | 0 a’ | - | |||||||||
| Weeks | −2.00 | 0.12 | −0.24 | 0.23 | 0.00 | 1.000 | |||||
| Hatchability % | (Intercept) | −0.153 | 1.31 | −2.72 | 2.41 | 0.01 | 0.907 | ||||
| Se-NPs (0.2 mg/kg) | 1.476 | 0.62 | 0.28 | 2.68 | 5.83 | 0.016 | |||||
| Se-NPs (0.4 mg/kg) | 2.064 | 0.71 | −0.67 | 3.46 | 8.45 | 0.004 | |||||
| SS (0.2 mg/kg) | 0.413 | 0.53 | −0.62 | 1.45 | 0.62 | 0.433 | |||||
| SS (0.4 mg/kg) | −0.267 | 0.52 | −1.28 | 0.74 | 0.27 | 0.606 | |||||
| Control group | 0 a’ | ||||||||||
| Weeks | 0.026 | 0.11 | −0.19 | 0.25 | 0.05 | 0.819 | |||||
| Sexual Behavior | Weeks | Control | Se-NPs (0.2 mg/kg) | Se-NPs (0.4 mg/kg) | SS (0.2 mg/kg) | SS (0.4 mg/kg) | Total Mean | SEM | p Value | ||
|---|---|---|---|---|---|---|---|---|---|---|---|
| T | t | T × t | |||||||||
| Wing flapping | 9th | 60.00 | 80.98 | 88.50 | 67.17 | 61.00 | 71.53 b | 0.20 | 0.000 | 0.000 | 0.004 |
| 11th | 62.00 | 83.00 | 88.50 | 68.83 | 62.00 | 72.87 a | 0.20 | ||||
| 13th | 59.00 | 80.00 | 87.50 | 66.00 | 62.00 | 70.90 b | 0.20 | ||||
| Total Mean | 60.33 e | 81.33 b | 88.17 a | 67.33 c | 61.67 d | 71.77 | 0.12 | ||||
| Waltzing | 9th | 8.00 | 11.00 | 13.00 | 8.00 | 8.00 | 9.60 b | 0.16 | 0.000 | 0.000 | 0.167 |
| 11th | 10.00 | 12.00 | 15.00 | 10.00 | 9.00 | 11.20 a | 0.16 | ||||
| 13th | 6.00 | 10.00 | 12.00 | 7.00 | 7.00 | 8.40 c | 0.16 | ||||
| Total Mean | 8.00 c | 11.00 b | 13.33 a | 8.33 c | 8.00 c | 9.73 | 0.10 | ||||
| Mounting | 9th | 49.00 | 65.00 | 65.83 | 51.17 | 50.00 | 56.20 b | 0.12 | 0.000 | 0.000 | 0.124 |
| 11th | 50.00 | 65.83 | 68.00 | 53.00 | 52.00 | 57.76 a | 0.12 | ||||
| 13th | 47.00 | 62.67 | 64.83 | 50.00 | 48.00 | 54.66 c | 0.12 | ||||
| Total Mean | 48.67 e | 64.50 b | 66.22 a | 51.39 c | 50.28 d | 56.21 | 0.07 | ||||
| Tidbitting | 9th | 1.00 | 3.00 | 4.00 | 1.00 | 0.00 | 1.8 b | 0.07 | 0.000 | 0.000 | 0.000 |
| 11th | 2.00 | 5.00 | 5.00 | 1.00 | 1.00 | 2.8 a | 0.07 | ||||
| 13th | 0.00 | 2.00 | 2.00 | 2.00 | 3.00 | 1.8 b | 0.07 | ||||
| Total Mean | 1.00 b | 3.33 a | 3.67 a | 1.33 b | 1.33 b | 2.13 | 0.04 | ||||
| Rear approach | 9th | 56.00 | 74.93 | 77.00 | 60.00 | 60.00 | 65.59 c | 0.09 | 0.000 | 0.000 | 0.000 |
| 11th | 58.33 | 78.33 | 80.83 | 64.67 | 60.83 | 68.60 a | 0.09 | ||||
| 13th | 57.00 | 76.11 | 77.83 | 61.00 | 60.00 | 66.39 b | 0.09 | ||||
| Total Mean | 57.11 e | 76.45 b | 78.56 a | 61.89 c | 60.28 d | 66.89 | 0.05 | ||||
| Treading | 9th | 65.00 | 82.00 | 86.83 | 71.00 | 71.00 | 75.17 b | 0.26 | 0.000 | 0.000 | 0.155 |
| 11th | 67.00 | 84.00 | 88.00 | 74.00 | 72.00 | 77.00 a | 0.26 | ||||
| 13th | 62.00 | 80.00 | 86.00 | 69.00 | 68.00 | 73.00 c | 0.24 | ||||
| Total Mean | 64.67 d | 82.00 b | 86.94 a | 71.33 c | 70.33 c | 75.05 | 0.12 | ||||
| Sexual Behaviors | Groups | B (Estimate) | SE | 95% Wald Confidence Interval | p-Value | Exp (B) | 95% Wald Confidence Interval for Exp (B) | ||
|---|---|---|---|---|---|---|---|---|---|
| Lower | Upper | Lower | Upper | ||||||
| Wing Flapping | (Intercept) | 4.12 | 0.02 | 4.06 | 4.18 | 0.000 | 61.80 | 58.31 | 65.51 |
| Se-NPs (0.2 mg/kg) | 0.29 | 0.01 | 0.27 | 0.32 | 0.000 | 1.34 | 1.31 | 1.38 | |
| Se-NPs (0.4 mg/kg) | 0.37 | 0.01 | 0.35 | 0.41 | 0.000 | 1.46 | 1.42 | 1.49 | |
| SS (0.2 mg/kg) | 0.11 | 0.01 | 0.08 | 0.13 | 0.003 | 1.11 | 1.08 | 1.14 | |
| SS (0.4 mg/kg) | 0.02 | 0.01 | −0.01 | 0.05 | 0.124 | 1.02 | 0.99 | 1.05 | |
| Control group | 0 a | 1 | |||||||
| Weeks | −0.00 | 0.00 | −0.007 | 0.00 | 0.388 | 0.99 | 0.99 | 1.00 | |
| Waltzing | (Intercept) | 2.41 | 0.08 | 2.26 | 2.57 | 0.000 | 11.21 | 9.58 | 13.13 |
| Se-NPs (0.2 mg/kg) | 0.31 | 0.03 | 0.24 | 0.39 | 0.000 | 1.37 | 1.28 | 1.47 | |
| Se-NPs (0.4 mg/kg) | 0.51 | 0.03 | 0.44 | 0.58 | 0.000 | 1.66 | 1.55 | 1.78 | |
| SS (0.2 mg/kg) | 0.04 | 0.03 | −0.03 | 0.11 | 0.294 | 1.04 | 0.96 | 1.12 | |
| SS (0.4 mg/kg) | −9.27 | 0.03 | −0.07 | 0.07 | 1.000 | 1.00 | 0.92 | 1.08 | |
| Control group | 0 a | 1 | |||||||
| Weeks | −0.03 | 0.00 | −0.04 | −0.01 | 0.000 | 0.97 | 0.95 | 0.98 | |
| Mounting | (Intercept) | 3.96 | 0.03 | 3.89 | 4.02 | 0.000 | 52.45 | 49.12 | 56.01 |
| Se-NPs (0.2 mg/kg) | 0.28 | 0.01 | 0.25 | 0.31 | 0.000 | 1.32 | 1.28 | 1.36 | |
| Se-NPs (0.4 mg/kg) | 0.30 | 0.01 | 0.27 | 0.33 | 0.000 | 1.36 | 1.32 | 1.40 | |
| SS (0.2 mg/kg) | 0.05 | 0.01 | 0.02 | 0.08 | 0.001 | 1.05 | 1.02 | 1.08 | |
| SS (0.4 mg/kg) | 0.03 | 0.01 | 0.00 | 0.06 | 0.039 | 1.03 | 1.00 | 1.06 | |
| Control group | 0 a | 1 | |||||||
| Weeks | −0.00 | 0.00 | −0.01 | −0.00 | 0.017 | 0.99 | 0.98 | 0.99 | |
| Tidbitting | (Intercept) | −2.48 | 0.18 | −0.35 | 0.35 | 1.000 | 1.00 | 0.70 | 1.42 |
| Se-NPs (0.2 mg/kg) | 1.20 | 0.08 | 1.02 | 1.38 | 0.000 | 3.33 | 2.79 | 3.97 | |
| Se-NPs (0.4 mg/kg) | 1.29 | 0.08 | 1.12 | 1.47 | 0.000 | 3.66 | 3.08 | 4.36 | |
| SS (0.2 mg/kg) | 0.28 | 0.10 | 0.08 | 0.49 | 0.006 | 1.33 | 1.08 | 1.63 | |
| SS (0.4 mg/kg) | 0.28 | 0.10 | 0.08 | 0.49 | 0.006 | 1.33 | 1.08 | 1.63 | |
| Control group | 0 a | 1 | |||||||
| Weeks | 2.258 × 10−16 | 0.01 | −0.02 | 0.02 | 1.000 | 1.00 | 0.97 | 1.02 | |
| Rear approach | (Intercept) | 3.92 | 0.03 | 3.86 | 3.98 | 0.000 | 50.44 | 47.48 | 53.58 |
| Se-NPs (0.2 mg/kg) | 0.29 | 0.01 | 0.26 | 0.31 | 0.000 | 1.33 | 1.30 | 1.37 | |
| Se-NPs (0.4 mg/kg) | 0.31 | 0.01 | 0.29 | 0.34 | 0.000 | 1.37 | 1.33 | 1.41 | |
| SS (0.2 mg/kg) | 0.08 | 0.01 | 0.05 | 0.10 | 0.000 | 1.08 | 1.05 | 1.11 | |
| SS (0.4 mg/kg) | 0.05 | 0.01 | 0.02 | 0.08 | 0.000 | 1.05 | 1.02 | 1.08 | |
| Control group | 0 a | 1 | |||||||
| Weeks | 0.01 | 0.00 | 0.00 | 0.01 | 0.000 | 1.01 | 1.00 | 1.01 | |
| Treading | (Intercept) | 4.24 | 0.02 | 4.19 | 4.30 | 0.000 | 70.00 | 66.14 | 74.09 |
| Se-NPs (0.2 mg/kg) | 0.23 | 0.01 | 0.21 | 0.26 | 0.000 | 1.26 | 1.23 | 1.30 | |
| Se-NPs (0.4 mg/kg) | 0.29 | 0.01 | 0.27 | 0.32 | 0.000 | 1.34 | 1.31 | 1.37 | |
| SS (0.2 mg/kg) | 0.09 | 0.01 | 0.07 | 0.12 | 0.000 | 1.10 | 1.07 | 1.13 | |
| SS (0.4 mg/kg) | 0.08 | 0.01 | 0.05 | 0.11 | 0.000 | 1.08 | 1.05 | 1.11 | |
| Control group | 0 a | 1 | |||||||
| Weeks | −0.00 | 0.00 | −0.01 | −0.00 | 0.004 | 0.99 | 0.98 | 0.99 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Khalaifah, H.; Satti, S.; Alonaizan, R.; Naz, S.; Arooj, S.; Haseeb, A.; Khan, R.U.; Abudabos, A. Comparative Effects of Capsicum annuum-Derived Selenium Nanoparticles and Sodium Selenite on Reproductive Performance, Egg Quality, and Male Sexual Behavior in Japanese Quails. Animals 2025, 15, 3379. https://doi.org/10.3390/ani15233379
Al-Khalaifah H, Satti S, Alonaizan R, Naz S, Arooj S, Haseeb A, Khan RU, Abudabos A. Comparative Effects of Capsicum annuum-Derived Selenium Nanoparticles and Sodium Selenite on Reproductive Performance, Egg Quality, and Male Sexual Behavior in Japanese Quails. Animals. 2025; 15(23):3379. https://doi.org/10.3390/ani15233379
Chicago/Turabian StyleAl-Khalaifah, Hanan, Sania Satti, Rasha Alonaizan, Shabana Naz, Sajida Arooj, Azka Haseeb, Rifat Ullah Khan, and Ala Abudabos. 2025. "Comparative Effects of Capsicum annuum-Derived Selenium Nanoparticles and Sodium Selenite on Reproductive Performance, Egg Quality, and Male Sexual Behavior in Japanese Quails" Animals 15, no. 23: 3379. https://doi.org/10.3390/ani15233379
APA StyleAl-Khalaifah, H., Satti, S., Alonaizan, R., Naz, S., Arooj, S., Haseeb, A., Khan, R. U., & Abudabos, A. (2025). Comparative Effects of Capsicum annuum-Derived Selenium Nanoparticles and Sodium Selenite on Reproductive Performance, Egg Quality, and Male Sexual Behavior in Japanese Quails. Animals, 15(23), 3379. https://doi.org/10.3390/ani15233379

