The Use of Platelet-Rich Plasma in Wildlife Veterinary Medicine
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Reptiles
3.2. Birds
3.3. Fish
3.4. Aquatic Mammals
3.5. Terrestrial Mammals
| Species Examples | Clinical Application | Type of Application | PRP Protocol | Main Conclusion | Reference |
|---|---|---|---|---|---|
| Rabbit (Oryctolagus cuniculus) | Skin flaps | Subcutaneous infiltration at the flap | Autologous PRP | Improved flap viability and vascularization | [26] |
| Rabbit (Oryctolagus cuniculus) | Dermal wounds | Topical PRP gel applied | Heterologous PRP gel | Enhanced healing; epithelialization and collagen deposition | [25] |
| Rabbit (Oryctolagus cuniculus) | Haematological validation | Not applicable (haematological validation) | Pure PRP (P-PRP) | Effective manual method for PRP in rabbits | [45] |
| Rabbit (Oryctolagus cuniculus) | Calvarial bone defects | PRP-seeded into the calvarial defect | PRP + HA-β-TCP scaffold | Enhanced osteoconduction and defect healing | [46] |
| Rabbit (Oryctolagus cuniculus) | Knee osteoarthritis (surgery-induced model) | Intra-articular injections | Autologous PRP | PRP+ ozone prevented cartilage destruction, improved weight-bearing symmetry, and improved type II collagen | [28] |
| Rabbit (Oryctolagus cuniculus) | Orthopedic cartilage/bone repair | Repeated intra-articular and intra-osseous infiltrations; intradiscal injection (per protocol) | PRGF; repeated infiltrations at predefined intervalsdouble-spin | Improved repair quality, elastic fiber organization | [32] |
| Rabbit (Oryctolagus cuniculus) | Cartilage regeneration | In vitro supplementation of culture medium with inactive PRP | Inactive PRP in culture medium; combined with TGF-β1 transfection | RP plus TGF-β1 enhanced and accelerated chondrogenic differentiation of rabbit dental pulp–derived MSCs | [31] |
| Rabbit (Oryctolagus cuniculus) | Veterinary ophthalmic surgery (corneal repair) | Topical corneal application of PRP gel | Autologous PRP gel | PRP gel was safe and promoted angiogenesis with subsequent vessel regression and faster clarity | [29] |
| Rabbit (Oryctolagus cuniculus) | Dermal wound healing/soft-tissue regeneration | Topical application and perilesional infiltrations | PRGF (plasma rich in growth factors) topical/infiltration | PRGF significantly accelerated epithelialization, collagen deposition and angiogenesis, reducing inflammation | [30] |
| Rabbit (Oryctolagus cuniculus) | Intradiscal biologic for degenerative disc disease | Intradiscal injection | Autologous Lp-PRP (leukocyte-poor) vs. Lr-PRP (leukocyte-rich) | Lp-PRP produced superior structural and histologic disc outcomes vs. Lr-PRP at mid-term | [33] |
| Mouse (Mus musculus) | PRP | Intravenous injections | Osteonecrosis | Stimulated angiogenesis and tissue repair | [47] |
| Mouse (Mus musculus) | Autologous PRP | PRP-loaded hydrogel scaffold applied to cutaneous wounds | Skin wound healing | PRP hydrogel scaffold enhanced angiogenesis and tissue repair | [48] |
| Mouse (Mus musculus) | Autologous PRP | Intramuscular injection in a contusion model | Muscle contusion injury | Intramuscular injection of PRP in rat model of contusion | [27] |
| Rat (Rattus norvegicus) | Autologous PRP | Topical PRP gel applied post-debridement | MRSA-infected surgical wounds | Topical PRP gel used post-debridement, improved healing vs. controls | [49] |
| Rat (Rattus nor-ve-gicus) | Spine—disc regeneration | Intradiscal injection | Composite hydrogel containing PRP + ferulic acid (FA); intradiscal injection | PRP–FA hydrogel showed the highest growth-factor release, good cytocompatibility, and superior restoration of disc matrix | [36] |
| Rat (Rattus norve-gicus) | Gastric surgery and leak management | Perilesional injections at gastric leak margins | MSCs and autologous PRP; injected perilesionally at leak edges | Accelerated mucosal regeneration and fibrosis/remodelling at the leak site | [38] |
| Rat (Rattus norve-gicus) | Calcaneal (Achilles) tendon transection model | Single intralesional injection | Treatment with fresh vs. frozen autologous PRP; single 50 µL intralesional injection 2 h post-op | Fresh PRP showed higher ultimate tensile strength at day 20, but groups converged by day 40, supporting frozen PRP as a practical option when multiple injections are needed | [37] |
| Guinea Pig (Cavia porcellus) | Knee osteoarthritis | Intra-articular PRP injections | PRP vs low-intensity pulsed ultrasound (LIPUS); intra-articular PRP, daily LIPUS | PRP improved boundary lubrication; LIPUS produced superior improvements in cartilage mechanical properties; both modalities beneficial | [35] |
| Guinea Pig (Cavia porcellus) | Primary knee osteoarthritis | Serial intra-articular injections | Allogenic PRP (double-spin); serial intra-articular injections | PRP reduced chondrocyte apoptosis and increased aggrecan; histological chondroprotection at mid-term follow-up | [34] |
| Armadillo (Chaetophractus Villosus) | Autologous PRP | Not applicable (no clinical administration) | Not specified (haematologic characterization) | Morphological analysis of platelets to explore regenerative potential | [50] |
| Pangolin (Manis pentadactyla) | Modified PRF | Topical application | Traumatic wounds (spine and limbs) | Topical PRF applied, reduced healing time and infection risk | [41] |
| Blackbuck (Antilope cervicapra) | Autologous PRP + Hydroxyapatite | PRP-seeded hydroxyapatite graft implanted at the fracture site with plate-rod fixation | Orthopedic fracture (tibia) | PRP-seeded scaffold with plate-rod fixation, radiographic union at 8 weeks | [39] |
| Formosan sambar deer (Rusa unicolor swinhoei) | Autologous PRP | Repeated perilesional injections | Perineal wound (maternal over-grooming) | Perilesional PRP injections, rapid closure in 20 days | [40] |
| Donkey (Equus asinus) | Autologous PRP | Intrauterine infusion during estrus | Endometritis/endometrosis | Simple centrifugation method to treat uterine inflammation | [51] |
| Llama (Lama glama) and Alpaca (Lama alpacos) | Autologous PRP | Not applicable (no clinical administration) | Standardization and characterization | Comparison of PRP preparation and activation methods | [44] |
| Elephant (Loxodonta africana and Elephas maximus) | Autologous PRP-based product | Topical application of PRP-based product (PLTfix®) | Complex skin lesions (foot pad, trunk) | PLTfix® with DMSO led to rapid granulation and horn regrowth | [43] |
| Pig (Sus domesticus) | Autologous PRP | Topical PRP gel applied to debrided burn wounds | Partial-thickness burns | PRP used in burn healing model, assessed for re-epithelialization | [52] |
4. Discussion
4.1. Benefits of Using Platelet-Rich Plasma in Non-Domestic Animals
4.1.1. Clinical Use
4.1.2. Wildlife Medicine Logistics
4.1.3. Basic and Translational Research
4.2. Limitations on the Use of Platelet-Rich Plasma in Non-Domestic Animals
4.3. The Future of PRP Use in Non-Domestic Animals
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| PRP | Platelet-Rich Plasma |
| LR-PRP | Leukocyte-Rich Platelet-Rich Plasma |
| P-PRP | Pure Platelet-Rich Plasma |
| PRF | Platelet-Rich Fibrin |
| TLRP | Thrombocyte- and Leukocyte-Rich Plasma |
| PRGF | Plasma Rich in Growth Factors |
| hLLE | Homologous Lyophilised Leukocyte Extract |
| PDGF | Platelet-Derived Growth Factor |
| TGF-β | Transforming Growth Factor Beta |
| VEGF | Vascular Endothelial Growth Factor |
| bFGF | Basic Fibroblast Growth Factor |
| IGF-1 | Insulin-Like Growth Factor 1 |
| EGF | Epidermal Growth Factor |
| HGF | Hepatocyte Growth Factor |
| CTGF | Connective Tissue Growth Factor |
| MSCs | Mesenchymal Stem Cells |
| ASCs | Adipose-Derived Stem Cells |
| LLLT | Low-Level Laser Therapy |
| DMSO | Dimethyl Sulfoxide |
| BMPs | Bone Morphogenetic Proteins |
| IL-1Ra | Interleukin-1 Receptor Antagonist |
| IL-1 | Interleukin 1 |
| TNF-α | Tumor Necrosis Factor Alpha |
References
- Anitua, E.; Andia, I.; Ardanza, B.; Nurden, P.; Nurden, A.T. Autologous Platelets as a Source of Proteins for Healing and Tissue Regeneration. Thromb. Haemost. 2004, 91, 4–15. [Google Scholar] [CrossRef]
- Borzini, P.; Mazzucco, I. Platelet-Rich Plasma (PRP) and Platelet Derivatives for Topical Therapy. What Is True from the Biologic View Point? ISBT Sci. Ser. 2007, 2, 272–281. [Google Scholar] [CrossRef]
- Mazzucco, L.; Balbo, V.; Cattana, E.; Borzini, P. Platelet-Rich Plasma and Platelet Gel Preparation Using Plateltex®. Vox Sang. 2008, 94, 202–208. [Google Scholar] [CrossRef] [PubMed]
- Tambella, A.M.; Martin, S.; Cantalamessa, A.; Serri, E.; Attili, A.R. Platelet-Rich Plasma and Other Hemocomponents in Veterinary Regenerative Medicine. Wounds 2018, 30, 329–336. [Google Scholar]
- Catarino, J.; Carvalho, P.; Santos, S.; Martins, Â.; Requicha, J. Treatment of Canine Osteoarthritis with Allogeneic Platelet-Rich Plasma: Review of Five Cases. Open Vet. J. 2020, 10, 226–231. [Google Scholar] [CrossRef] [PubMed]
- Fahie, M.A.; Ortolano, G.A.; Guercio, V.; Schaffer, J.A.; Johnston, G.; Au, J.; Hettlich, B.A.; Phillips, T.; Allen, M.J.; Bertone, A.L. A Randomized Controlled Trial of the Efficacy of Autologous Platelet Therapy for the Treatment of Osteoarthritis in Dogs. J. Am. Vet. Med. Assoc. 2013, 243, 1291–1297. [Google Scholar] [CrossRef]
- Montano, C.; Auletta, L.; Greco, A.; Costanza, D.; Coluccia, P.; Del Prete, C.; Meomartino, L.; Pasolini, M.P. The Use of Platelet-Rich Plasma for Treatment of Tenodesmic Lesions in Horses: A Systematic Review and Meta-Analysis of Clinical and Experimental Data. Animals 2021, 11, 793. [Google Scholar] [CrossRef]
- Morón-Elorza, P.; Rojo-Solís, C.; Soriano-Navarro, M.; Álvaro-Álvarez, T.; Valls-Torres, M.; García-Párraga, D. Optimizing a Platelet-Rich Plasma Concentration Protocol for South American Sea Lions (Otaria flavescens). J. Zoo. Wildl. Med. 2021, 52, 956–965. [Google Scholar] [CrossRef]
- Sharun, K.; Banu, S.A. Minimum Reporting Guidelines for Platelet-Rich Plasma in Veterinary Regenerative Medicine. Vet. Res. Commun. 2025, 49, 111. [Google Scholar] [CrossRef]
- Reyes, F.; Echeverry, D. Protocolos de elaboración de Plasma Rico en Plaquetas en especies domésticas y silvestres. Revisión bibliográfica. Rev. Investig. Vet. Perú 2024, 35, e27549. [Google Scholar] [CrossRef]
- Colomer-Selva, R.; Tvarijonavciute, A.; Franco-Martínez, L.; Hernández-Guerra, Á.M.; Carrillo, J.M.; Rubio, M.; Sopena, J.J.; Satué, K. Physiological Factors Affecting Platelet-Rich Plasma Variability in Human and Veterinary Medicine. Front. Vet. Sci. 2025, 12, 1571373. [Google Scholar] [CrossRef] [PubMed]
- Bardi, E.; Vetere, A.; Aquaro, V.; Lubian, E.; Lauzi, S.; Giuliano, R.; Zani, D.; Manfredi, M.; Tecilla, M.; Roccabianca, P.; et al. Use of Thrombocyte-Leukocyte Rich Plasma to Treat Chronic Oral Cavity Disorders in Reptiles: Two Case Reports. J. Exot. Pet. Med. 2018, 29, 32–39. [Google Scholar] [CrossRef]
- Di Ianni, F.; Merli, E.; Burtini, F.; Conti, V.; Pelizzone, I.; Di Lecce, R.; Parmigiani, E.; Squassino, G.P.; Del Bue, M.; Lucarelli, E.; et al. Preparation and Application of an Innovative Thrombocyte/Leukocyte-Enriched Plasma to Promote Tissue Repair in Chelonians. PLoS ONE 2015, 10, e0122595. [Google Scholar] [CrossRef] [PubMed]
- Izeta Miño, E.E.; Fenoy, I.M.; Maruri, A. Effective Treatment of a Severe Neck Wound in a Greylag Goose (Anser anser) Using Autologous Thrombocyte-rich Plasma and Xenogeneic Fibrin Mesh. Vet. Rec. Case Rep. 2024, 12, e823. [Google Scholar] [CrossRef]
- Vetere, A.; Bardi, E. Treatment of a Degloving Lesion in a Green Bush Rat Snake (Gonyosoma prasinum) with Surgical Approach and Single Application of Thrombocyte-Leukocyte Rich Plasma. Riv. Uff. Della SCIVAC 2020, 34, 93–98. [Google Scholar]
- Vetere, A.; Simonini, C.; Masi, M.; Nardini, G. Treatment of a Degloving Lesion in a Green Tree Python (Morelia viridis) with Surgical Approach Adjuved by Laser Therapy and Single Application of Thrombocyte-Leukocyte Rich. Riv. Uff. Della SCIVAC 2021, 35, 257–263. [Google Scholar]
- Masi, M.; Selleri, P. Oral Cavity Disorders in Reptiles. Vet. Clin. N. Am. Exot. Anim. Pract. 2025, 28, 521–535. [Google Scholar] [CrossRef] [PubMed]
- Algorta, A.; Fumagalli, F.; Ferrando, V.; Sorriba, V.; Carzoli, A.; Yaneselli, K. Preparation and Clinical Application of Thrombocyte-Leukocyte Rich Plasma in Green Turtles (Chelonia mydas). Rev. Científica Fac. Cienc. Vet. 2025, 35, 1. [Google Scholar] [CrossRef]
- Fernandes, L.L.; Rahal, S.C.; Fabro, A.T.; Batah, S.S.; Hippólito, A.G.; Bisca, J.M.; Hirot, I.N.; Teixeira, C.R. Production and Evaluation of Leukocyte- and Thrombocyte-Rich Fibrin Membranes in Birds. Acta Vet. Hung. 2019, 67, 296–306. [Google Scholar] [CrossRef]
- Vetere, A.; Casali, S.; Strada, L.; Gerosa, S. Treatment of a Bumblefoot Disease in a Mute Swan (Cygnus olor) with Surgical Approach and a Single Application of Thrombocyte-Leucocyte Rich Plasma. In Proceedings of the ICARE 2019 Conference, London, UK, 28 April–2 May 2019. [Google Scholar]
- Fleming, G.J.; Corwin, A.; McCoy, A.J.; Stamper, M.A. Treatment Factors Influencing the Use of Recombinant Platelet-Derived Growth Factor (Regranex®) for Head and Lateral Line Erosion Syndrome in Ocean Surgeonfish (Acanthurus bahianus). J. Zoo. Wildl. Med. 2008, 39, 155–160. [Google Scholar] [CrossRef]
- Simeone, C.A.; Traversi, J.P.; Meegan, J.M.; LeBert, C.; Colitz, C.M.H.; Jensen, E.D. Clinical Management of Candida Albicans Keratomycosis in a Bottlenose Dolphin (Tursiops truncatus). Vet. Ophthalmol. 2018, 21, 298–304. [Google Scholar] [CrossRef]
- Canales, R.; Sánchez-Okrucky, R.; Bustamante, L.; Álvaro, T.; García-Párraga, D. Treatment of Skin and Oral Open Wounds with Single Platelet-Rich Plasma Injection in Bottlenose Dolphins (Tursiops truncatus). In Proceedings of the IAAAM 2017 Conference, Cancun, Mexico, 20–24 May 2017; Available online: https://www.vin.com/apputil/content/defaultadv1.aspx?pId=18363&meta=Generic&id=7977697 (accessed on 1 August 2025).
- Griffeth, R.J.; García-Párraga, D.; Mellado-López, M.; Crespo-Picazo, J.L.; Soriano-Navarro, M.; Martinez-Romero, A.; Moreno-Manzano, V. Platelet-Rich Plasma and Adipose-Derived Mesenchymal Stem Cells for Regenerative Medicine-Associated Treatments in Bottlenose Dolphins (Tursiops truncatus). PLoS ONE 2014, 9, e108439. [Google Scholar] [CrossRef]
- Abegão, K.G.B.; Bracale, B.N.; Delfim, I.G.; Santos, E.S.D.; Laposy, C.B.; Nai, G.A.; Giuffrida, R.; Nogueira, R.M.B. Effects of Heterologous Platelet-Rich Plasma Gel on Standardized Dermal Wound Healing in Rabbits. Acta Cir. Bras. 2015, 30, 209–215. [Google Scholar] [CrossRef] [PubMed]
- Aragón-Urrego, C.; Barbosa, I.X.; Aristizabal, O.L. Efecto de un concentrado autólogo de plaquetas en colgajos cutáneos en conejos. Rev. Investig. Vet. Perú 2018, 29, 1184–1194. [Google Scholar] [CrossRef]
- Delos, D.; Leineweber, M.J.; Chaudhury, S.; Alzoobaee, S.; Gao, Y.; Rodeo, S.A. The Effect of Platelet-Rich Plasma on Muscle Contusion Healing in a Rat Model. Am. J. Sports Med. 2014, 42, 2067–2074. [Google Scholar] [CrossRef] [PubMed]
- Huang, P.; Wang, R.; Pang, X.; Yang, Y.; Guan, Y.; Zhang, D. Platelet-Rich Plasma Combined with Ozone Prevents Cartilage Destruction and Improves Weight-Bearing Asymmetry in a Surgery-Induced Osteoarthritis Rabbit Model. Ann. Palliat. Med. 2022, 11, 44251–44451. [Google Scholar] [CrossRef]
- Choi, S.-Y.; Kim, S.; Park, K.-M. Initial Healing Effects of Platelet-Rich Plasma (PRP) Gel and Platelet-Rich Fibrin (PRF) in the Deep Corneal Wound in Rabbits. Bioengineering 2022, 9, 405. [Google Scholar] [CrossRef]
- Chicharro, D.; Carrillo, J.M.; Rubio, M.; Cugat, R.; Cuervo, B.; Guil, S.; Forteza, J.; Moreno, V.; Vilar, J.M.; Sopena, J. Combined Plasma Rich in Growth Factors and Adipose-Derived Mesenchymal Stem Cells Promotes the Cutaneous Wound Healing in Rabbits. BMC Vet. Res. 2018, 14, 288. [Google Scholar] [CrossRef]
- Salkın, H.; Gönen, Z.B.; Özcan, S.; Bahar, D.; Lekesizcan, A.; Taheri, S.; Kütük, N.; Alkan, A. Effects of Combination TGF-B1 Transfection and Platelet Rich Plasma (PRP) on Three-Dimension Chondrogenic Differentiation of Rabbit Dental Pulp-Derived Mesenchymal Stem Cells. Connect. Tissue Res. 2021, 62, 226–237. [Google Scholar] [CrossRef]
- Torres-Torrillas, M.; Damia, E.; Romero, A.D.; Pelaez, P.; Miguel-Pastor, L.; Chicharro, D.; Carrillo, J.M.; Rubio, M.; Sopena, J.J. Intra-Osseous Plasma Rich in Growth Factors Enhances Cartilage and Subchondral Bone Regeneration in Rabbits with Acute Full Thickness Chondral Defects: Histological Assessment. Front. Vet. Sci. 2023, 10, 1131666. [Google Scholar] [CrossRef]
- Zhang, B.; Dong, B.; Wang, L.; Wang, Y.; Gao, Z.; Li, Y.; Wang, H.; Lu, X. Comparison of the Efficacy of Autologous Lp-PRP and Lr-PRP for Treating Intervertebral Disc Degeneration: In Vitro and in Vivo Study. J. Orthop. Surg. Res. 2024, 19, 731. [Google Scholar] [CrossRef]
- Patel, S.; Mishra, N.P.; Chouhan, D.K.; Nahar, U.; Dhillon, M.S. Chondroprotective Effects of Multiple PRP Injections in Osteoarthritis by Apoptosis Regulation and Increased Aggrecan Synthesis- Immunohistochemistry Based Guinea Pig Study. J. Clin. Orthop. Trauma. 2022, 25, 101762. [Google Scholar] [CrossRef] [PubMed]
- Tavakoli, J.; Torkaman, G.; Ravanbod, R.; Abroun, S. Regenerative Effect of Low-Intensity Pulsed Ultrasound and Platelet-Rich Plasma on the Joint Friction and Biomechanical Properties of Cartilage: A Non-Traumatic Osteoarthritis Model in the Guinea Pig. Ultrasound Med. Biol. 2022, 48, 862–871. [Google Scholar] [CrossRef]
- Chai, Q.; Zhang, B.; Da, Y.; Wang, W.; Gao, Y.; Yao, M.; Zhu, H.; Yang, X.; Zhu, Y. Enhancement and Repair of Degenerative Intervertebral Disc in Rats Using Platelet-Rich Plasma/Ferulic Acid Hydrogel. Cartilage 2023, 14, 506–515. [Google Scholar] [CrossRef]
- Kaux, J.-F.; Libertiaux, V.; Dupont, L.; Colige, A.; Denoël, V.; Lecut, C.; Hego, A.; Gustin, M.; Duwez, L.; Oury, C.; et al. Platelet-Rich Plasma (PRP) and Tendon Healing: Comparison between Fresh and Frozen-Thawed PRP. Platelets 2020, 31, 221–225. Available online: https://pubmed.ncbi.nlm.nih.gov/30915890/ (accessed on 1 August 2025). [PubMed]
- Benois, M.; Lecorgne, E.; Kassir, R.; Piche, M.; Amor, V.B.; Chenaitia, H.; Gal, J.; Skhiri, T.; Gugenheim, J.; Gaggioli, C.; et al. Mesenchymal Stem Cells and PRP Therapy Favorize Leak Closure After Sleeve Gastrectomy in Zucker Rats. Obes. Surg. 2022, 32, 1251–1260. [Google Scholar] [CrossRef] [PubMed]
- Bharathidasan, M.; Prasad, A.; William, B.; Thirumurugan, R.; George, R.; Sivashankar, R.; Rao, G.; Rao, G. Plate-Rod Technique with Engraftment of Platelet Rich Plasma Seeded Hydroxyapatite for Fracture Management of Tibia in a Blackbuck (Antelope Cervicapra). Int. J. Livest. Res. 2015, 5, 90. [Google Scholar] [CrossRef]
- Hsu, H.-Y.; Thongrueang, N.; Ke, G.-M.; Lee, H.-H. A Successful Platelet-Rich Plasma Treatment in a Fawn with over-Mothering Wound in the Perineal Area. Taiwan. Vet. J. 2023, 48, 21–26. [Google Scholar] [CrossRef]
- Chen, T.-Y. Wound Management with and without Modified Choukroun’s Platelet-Rich Fibrin in Rescued Formosan Pangolins (Manis Pentadactyla Pentadactyla). J. Zoo. Wildl. Med. 2021, 52, 779–786. [Google Scholar] [CrossRef]
- Chen, T.-Y.; Deem, S. Clinical Management of an Intranasal Abscess in a Captive Elongate Tortoise (Indotestudo Elongata) by Using Modified Choukroun’s Platelet-Rich Fibrin. J. Herpetol. Med. Surg. 2019, 29, 87. [Google Scholar] [CrossRef]
- Wouters, G.; Behlert, O.; Teschner, K.; Guldentops, D. The Use of a New Autologous Regenerative Blood-Derived Product for Wound and Lesion Healing in Elephants. J. Veterinar. Sci. Technolo. 2015, 6, 5. [Google Scholar] [CrossRef]
- Semevolos, S.A.; Youngblood, C.D.; Grissom, S.K.; Gorman, M.E.; Larson, M.K. Evaluation of Two Platelet-Rich Plasma Processing Methods and Two Platelet-Activation Techniques for Use in Llamas and Alpacas. Am. J. Vet. Res. 2016, 77, 1288–1294. [Google Scholar] [CrossRef]
- Barbosa, I.; Barragan, I.; Aristtizabal, O.; Bonilla, A. Evaluation of the effectiveness of platelet-rich plasma in surgical epidermal wounds in rabbits. ResearchGate 2025, 21, 147–153. [Google Scholar] [CrossRef]
- El Backly, R.M.; Zaky, S.H.; Canciani, B.; Saad, M.M.; Eweida, A.M.; Brun, F.; Tromba, G.; Komlev, V.S.; Mastrogiacomo, M.; Marei, M.K.; et al. Platelet Rich Plasma Enhances Osteoconductive Properties of a Hydroxyapatite-β-Tricalcium Phosphate Scaffold (SkeliteTM) for Late Healing of Critical Size Rabbit Calvarial Defects. J. Cranio-Maxillofac. Surg. 2014, 42, e70–e79. [Google Scholar] [CrossRef]
- Tong, S.; Yin, J.; Liu, J. Platelet-Rich Plasma Has Beneficial Effects in Mice with Osteonecrosis of the Femoral Head by Promoting Angiogenesis. Exp. Ther. Med. 2018, 15, 1781–1788. [Google Scholar] [CrossRef]
- Garcia-Orue, I.; Santos-Vizcaino, E.; Sanchez, P.; Gutierrez, F.B.; Aguirre, J.J.; Hernandez, R.M.; Igartua, M. Bioactive and Degradable Hydrogel Based on Human Platelet-Rich Plasma Fibrin Matrix Combined with Oxidized Alginate in a Diabetic Mice Wound Healing Model. Biomater. Adv. 2022, 135, 112695. [Google Scholar] [CrossRef]
- Cetinkaya, R.A.; Yilmaz, S.; Ünlü, A.; Petrone, P.; Marini, C.; Karabulut, E.; Urkan, M.; Kaya, E.; Karabacak, K.; Uyanik, M.; et al. The Efficacy of Platelet-Rich Plasma Gel in MRSA-Related Surgical Wound Infection Treatment: An Experimental Study in an Animal Model. Eur. J. Trauma. Emerg. Surg. 2018, 44, 859–867. [Google Scholar] [CrossRef]
- Bermúdez, P.M.; Polini, N.N.; Casanave, E.B. A Study of Platelets in the Armadillo Chaetophractus Villosus (Xenarthra, Dasypodidae). Platelets 2004, 15, 279–285. [Google Scholar] [CrossRef] [PubMed]
- Fantini, P.; Jiménez, R.; Vilés, K.; Iborra, A.; Palhares, M.S.; Catalán, J.; Prades, M.; Miró, J. Simple Tube Centrifugation Method for Platelet-Rich Plasma (PRP) Preparation in Catalonian Donkeys as a Treatment of Endometritis-Endometrosis. Animals 2021, 11, 2918. [Google Scholar] [CrossRef]
- Singer, A.J.; Toussaint, J.; Chung, W.; McClain, S.; Osman, N.; Raut, V. 365 The Effects of Platelet-Rich Plasma on Healing of Partial Thickness Burns in a Porcine Model. J. Burn. Care Res. 2018, 39, S153. [Google Scholar] [CrossRef]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.J.; Horsley, T.; Weeks, L.; et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef]
- Latney, L. Monitor Medicine and Surgery. In Proceedings of the NAVC Conference, Orlando, FL, USA, 6 January 2016. [Google Scholar]
- Ortiz, M.; Esteban, M.Á. Biology and Functions of Fish Thrombocytes: A Review. Fish. Shellfish. Immunol. 2024, 148, 109509. [Google Scholar] [CrossRef]
- Johnson, V.A. Review of Current and Potential Applications of Mesenchymal Stem Cells in Exotic Animal Species. J. Am. Vet. Med. Assoc. 2024, 262, S131–S140. [Google Scholar] [CrossRef]
- Stosik, M.; Tokarz-Deptuła, B.; Deptuła, W. Characterisation of Thrombocytes in Osteichthyes. J. Vet. Res. 2019, 63, 123–131. [Google Scholar] [CrossRef]
- Corteze, A.d.A. Plasma rico em Trombócitos (PRT) em Galinhas Adultas (Gallus Gallus Domesticus). Ph.D. Thesis, Federal University of Minas Gerais, Belo Horizonte, Brazil, February 2019. Available online: https://repositorio.ufmg.br/items/07e47a72-9b01-4497-ac7f-c353963dd919 (accessed on 1 August 2025).
- Martinez Silvestre, A.; Lavin, S.; Cuenca, R. Hematología y Citología Sanguínea En Reptiles. Clin. Vet. Pequeños Anim. 2011, 31, 131–141. [Google Scholar]
- Arnold, J.E.; Delaune, A. Hematology of Elasmobranchs. In Schalm’s Veterinary Hematology; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2022; pp. 1166–1175. ISBN 978-1-119-50053-7. [Google Scholar]
- Mudroňová, D.; Kožár, M.; Molnár, L.; Trbolová, A. Viability and Discrimination of Avian Peripheral Blood Mononuclear Cells and Thrombocytes Intended for Improvement of Wound Healing in Birds. Acta Vet. Hung. 2014, 62, 334–339. [Google Scholar] [CrossRef]
- Lasta, C.S.; Hlavac, N.; Marcondes, N.A.; de Almeida Lacerda, L.; de Faria Valle, S.; González, F.H.D. Blood Bank Quality Control: pH Assessment Methods in Platelet Concentrates. Vet. Res. Commun. 2024, 48, 4129–4132. [Google Scholar] [CrossRef]
- Sharun, K.; Chandran, D.; Manjusha, K.M.; Mankuzhy, P.D.; Kumar, R.; Pawde, A.M.; Dhama, K.; El-Husseiny, H.M. Amarpal Advances and Prospects of Platelet-Rich Plasma Therapy in Veterinary Ophthalmology. Vet. Res. Commun. 2023, 47, 1031–1045. [Google Scholar] [CrossRef]
- Dohan Ehrenfest, D.M.; Rasmusson, L.; Albrektsson, T. Classification of Platelet Concentrates: From Pure Platelet-Rich Plasma (P-PRP) to Leucocyte- and Platelet-Rich Fibrin (L-PRF). Trends Biotechnol. 2009, 27, 158–167. [Google Scholar] [CrossRef]
- Harrison, P.; Subcommittee on Platelet Physiology. The Use of Platelets in Regenerative Medicine and Proposal for a New Classification System: Guidance from the SSC of the ISTH. J. Thromb. Haemost. 2018, 16, 1895–1900. [Google Scholar] [CrossRef]

| Species Examples | Clinical Application | Type of Application | PRP Protocol | Main Conclusion | Reference |
|---|---|---|---|---|---|
| Reptiles | |||||
| Green Bush Rat Snake (Gonyosoma prasinum) | Degloving lesion | Topical application over the wound bed following surgical debridement | Single topical TLRP | Accelerated healing, reduced infection. Complete healing in 21 days | [15] |
| Green Tree Python (Morelia viridis) | Soft tissue wound | Topical application adjunctive to surgery and low-level laser therapy | Surgery + LLLT and Single TLRP | Accelerated healing. Healing in 18 days, minimal scarring | [16] |
| Red-eared slider (Trachemys scripta elegans) | Traumatic injuries (fractures of shell and penetrating injuries) | Perilesional injections and topical PRP gel applications | TLRP injected in some cases, and TLRP gel in others | Accelerated healing. induced the formation of a hardened tissue providing a mechanical protection against bacterial and/or mycotic contamination and tissue dehydration and desiccation | [13] |
| Mediterranean tortoises (Testudo spp.) | |||||
| Veiled chameleon (Chamaeleo calyptratus) | Maxillary osteolysis secondary to chronic periodontal disease | Direct intra-lesional injection into the necrotic maxillary bone | Heterologous TLRP | Accelerated healing. TLRP was obtained from a healthy conspecific and injected with a 26G syringe directly into the necrotic bone | [12] |
| Ball python (Python regius) | Chronic facial cellulitis | TLRP topical irrigation | |||
| Green turtle (Chelonia mydas) | Cutaneous lesions and abscesses (jaw and forelimbs) during rehabilitation | Perilesional and intralesional injections; gelified TLRP placed into the wound bed and retained with nylon film after surgical debridement | Autologous thrombocyte-leukocyte-rich plasma | Favourable wound-healing progression over two months with no adverse reactions reported | [18] |
| Birds | |||||
| Greylag goose (Anser anser) | Severe cervical wound | Fibrin mesh sutured over the defect with local autologous thrombocyte-rich plasma | Autologous thrombocyte-rich plasma + fibrin mesh | Near-complete healing in 25 days; preserved feather follicles | [14] |
| Chicken (Gallus gallus domesticus) | Soft tissue regeneration (experimental fibrin membranes) | Topical application of leukocyte- and thrombocyte-rich fibrin membranes (experimental scaffold preparation; in vivo route not described). | Leukocyte- and thrombocyte-rich fibrin membranes | Feasible PRP preparation; potential for clinical use | [19] |
| Mute swan (Cygnus olor) | Chronic plantar pododermatitis (bumblefoot) | Single topical application to the lesion following surgical debridement | Thrombocyte–leukocyte-rich plasma (TLRP) | Granulation tissue formation; reduced recurrence | [20] |
| Species Examples | Clinical Application | Type of Application | PRP Protocol | Main Conclusion | Reference |
|---|---|---|---|---|---|
| Fish species | |||||
| Ocean surgeonfish (Acanthurus bahianus) | Head and lateral line erosion syndrome | Single topical application | Topical recombinant human PDGF-BB (Regranex®) | Improved healing; full recovery when housed in controlled aquatic systems | [21] |
| Aquatic mammal species | |||||
| Bottlenose dolphin (Tursiops truncatus) | Corneal keratomycosis | Subconjunctival injections | Autologous PRP + stem cell therapy | Improved re-epithelialization; reduced inflammation | [22] |
| Bottlenose dolphin (Tursiops truncatus) | Traumatic soft tissue wounds | Perilesional autologous PRP injections after surgical debridement | Peri-lesional autologous PRP injections | Accelerated granulation; reduced necrosis; less daily care required | [23] |
| Bottlenose dolphin (Tursiops truncatus) | Stem cell proliferation (in vitro) | in vitro supplementation of culture medium with PRP | PRP supplement in culture | Enhanced MSC proliferation and activity | [24] |
| South American sea lion (Otaria flavescens) | PRP production protocol optimization | Not applicable (laboratory protocol optimization) | Centrifugation protocol: 900 rpm × 3 min (1-step) or +2000 rpm × 6 min (2-step) | Max platelet concentration ~4.73; platelet integrity preserved | [8] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fuertes-Recuero, M.; Encinas Cerezo, T.; Morón-Elorza, P. The Use of Platelet-Rich Plasma in Wildlife Veterinary Medicine. Animals 2025, 15, 3352. https://doi.org/10.3390/ani15223352
Fuertes-Recuero M, Encinas Cerezo T, Morón-Elorza P. The Use of Platelet-Rich Plasma in Wildlife Veterinary Medicine. Animals. 2025; 15(22):3352. https://doi.org/10.3390/ani15223352
Chicago/Turabian StyleFuertes-Recuero, Manuel, Teresa Encinas Cerezo, and Pablo Morón-Elorza. 2025. "The Use of Platelet-Rich Plasma in Wildlife Veterinary Medicine" Animals 15, no. 22: 3352. https://doi.org/10.3390/ani15223352
APA StyleFuertes-Recuero, M., Encinas Cerezo, T., & Morón-Elorza, P. (2025). The Use of Platelet-Rich Plasma in Wildlife Veterinary Medicine. Animals, 15(22), 3352. https://doi.org/10.3390/ani15223352

