The Efficacy of Fisheries Management: A Length-Based Stock Assessment of Eight Fish Species in Xingkai Lake, China
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Sources
2.2. Description of the LBB Method
2.3. Assessment Criteria
3. Results
3.1. H. leucisculus
3.2. H. lucidus
3.3. Ca. gibelio
3.4. A. macropterus
3.5. Cu. alburnus
3.6. Ch. mongolicus
3.7. Ch. abramoides
3.8. Ch. erythropterus
4. Discussion
4.1. Effectiveness and Limitations of the Uniform Mesh-Size Policy
4.2. Ecosystem Impacts and Community Restructuring
4.3. Drivers of Resource Decline
4.4. Management Implications and Future Perspectives
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wilson, J.A.; Giske, J.; Brown, C. Overfishing Social Fish. Fish Fish. 2025, 26, 278–290. [Google Scholar] [CrossRef]
- Darimont, C.T.; Cooke, R.; Bourbonnais, M.L.; Bryan, H.M.; Carlson, S.M.; Estes, J.A.; Galetti, M.; Levi, T.; MacLean, J.L.; McKechnie, I.; et al. Humanity’s diverse predatory niche and its ecological consequences. Commun. Biol. 2023, 6, 609. [Google Scholar] [CrossRef]
- Ayyamperumal, R.; Huang, X.; Li, F.; Zhang, C.; Chellaiah, G.; Gopalakrishnan, G.; Senapathi, V.; Perumal, R.; Antony, J.K. Investigation of microplastic contamination in the sediments of Noyyal River-Southern India. J. Hazard. Mater. Adv. 2022, 8, 100198. [Google Scholar] [CrossRef]
- Dudgeon, D.; Strayer, D.L. Bending the curve of global freshwater biodiversity loss: What are the prospects? Biol. Rev. 2025, 100, 205–226. [Google Scholar] [CrossRef] [PubMed]
- Costello, C.; Ovando, D.; Hilborn, R.; Gaines, S.D.; Deschenes, O.; Lester, S.E. Status and Solutions for the World’s Unassessed Fisheries. Science 2012, 338, 517–520. [Google Scholar] [CrossRef]
- Sharma, R.; Barange, M.; Agostini, V.; Barros, P.; Gutierrez, N.L.; Vasconcellos, M.; Fernandez Reguera, D.; Tiffay, C.; Levontin, P. Review of the State of World Marine Fishery Resources—2025; FAO Fisheries and Aquaculture Technical Paper; FAO Fisheries and Aquaculture: Rome, Italy, 2025. [Google Scholar] [CrossRef]
- Östman, Ö.; Bergström, L.; Leonardsson, K.; Gårdmark, A.; Casini, M.; Sjöblom, Y.; Haas, F.; Olsson, J. Analyses of structural changes in ecological time series (ASCETS). Ecol. Indic. 2020, 166, 106469. [Google Scholar] [CrossRef]
- Carruthers, T.R.; Punt, A.E.; Walters, C.J.; MacCall, A.; McAllister, M.K.; Dick, E.J.; Cope, J. Evaluating methods for setting catch limits in data-limited fisheries. Fish. Res. 2014, 153, 48–68. [Google Scholar] [CrossRef]
- Alam, M.S.; Liu, Q.; Monwar, M.M.; Hoque, M.E.; Barua, S.; Hassan, M.L.; Munzer, A. Assessing the pomfret stock for setting catch limits in the northern Bay of Bengal, Bangladesh. Aquac. Fish. 2024, 9, 324–335. [Google Scholar] [CrossRef]
- Amorim, P.; Sousa, P.; Menezes, G.M. Sustainability status of the grouper fishery in the Azores archipelago: A length-based approach. Mar. Policy 2021, 130, 104562. [Google Scholar] [CrossRef]
- Froese, R.; Winker, H.; Coro, G.; Demirel, N.; Tsikliras, A.C.; Dimarchopoulou, D.; Scarcella, G.; Probst, W.N.; Dureuil, M.; Pauly, D. A new approach for estimating stock status from length frequency data. ICES J. Mar. Sci. 2018, 75, 2004–2015. [Google Scholar] [CrossRef]
- Medeiros-Leal, W.; Santos, R.; Peixoto, U.I.; Casal-Ribeiro, M.; Novoa-Pabon, A.; Sigler, M.F.; Pinho, M. Performance of length-based assessment in predicting small-scale multispecies fishery sustainability. Rev. Fish Biol. Fish. 2023, 33, 819–852. [Google Scholar] [CrossRef]
- Wang, M.; Wang, X.; Du, F.; Sun, D.; Wang, Y.; Chen, X.; Qiu, Y. Estimation of the population parameters of Trachurus japonicus in the Beibu Gulf based on the LBB method. J. Shanghai Ocean Univ. 2022, 31, 212–222. [Google Scholar] [CrossRef]
- Zou, Y.; Wang, G.; Grace, M.; Lou, X.; Yu, X.; Lu, X. Response of Two Dominant Boreal Freshwater Wetland Plants to Manipulated Warming and Altered Precipitation. PLoS ONE 2014, 9, e104454. [Google Scholar] [CrossRef]
- Li, X.; Wang, Q.; Xing, M.; Ma, Z.; Li, Y.; Zhou, X. Typical scaled food web structure and total mercury enrichment characteristics in Xingkai Lake, China. Environ. Sci. Pollut. Res. 2022, 29, 58297–58311. [Google Scholar] [CrossRef]
- Xing, M.; Wang, Q.; Li, X.; Li, Y.; Zhou, X. Selection of keystone species based on stable carbon and nitrogen isotopes to construct a typical food web on the shore of Xingkai Lake, China. Ecol. Indic. 2021, 132, 108263. [Google Scholar] [CrossRef]
- Yang, F.; Lu, X.; Lou, Y.; Lou, X. Fish Resources on Xingkai Lake National Nature Reserve, Heilongjiang Province, China. Chin. J. Zool. 2012, 47, 44–53. [Google Scholar] [CrossRef]
- Wang, C.; Yu, H. The Variation in Fish Community Structure and Fishery Utilization in Xingkai Lake. Chin. J. Fish. 2013, 26, 47–52. [Google Scholar] [CrossRef]
- Alam, M.S.; Liu, Q.; Nabi, M.R.; Chowdhury, M.Z.R.; Nguyen, D.H.T. Length-based indicators for the sustainability of small-scale fisheries in the Northern Bay of Bengal Coast, Bangladesh. Reg. Stud. Mar. Sci. 2022, 51, 102177. [Google Scholar] [CrossRef]
- Wo, J.; Xu, B.; Ji, Y.; Zhang, C.; Xue, Y.; Ren, Y. Species portfolio schemes buffering the risk of overexploitation in mixed fisheries management. Fish. Res. 2024, 274, 106980. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, L.; Chen, X.; Gao, Y.; Xie, S.; Mi, J. GLC_FCS30: Global land-cover product with fine classification system at 30 m using time-series Landsat imagery. Earth Syst. Sci. Data 2021, 13, 2753–2776. [Google Scholar] [CrossRef]
- Amorim, P.; Sousa, P.; Jardim, E.; Menezes, G.M. Sustainability Status of Data-Limited Fisheries: Global Challenges for Snapper and Grouper. Front. Mar. Sci. 2019, 6, 654. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Liu, S.; Liang, C.; Zhang, H.; Xian, W. Stock Assessment Using LBB Method for Eight Fish Species from the Bohai and Yellow Seas. Front. Mar. Sci. 2020, 7, 164. [Google Scholar] [CrossRef]
- Baldé, B.S.; Brehmer, P.; Diaw, P.D. Length-based assessment of five small pelagic fishes in the Senegalese artisanal fisheries. PLoS ONE 2022, 17, e0279768. [Google Scholar] [CrossRef]
- Hasan, M.; Hossain, M.; Mawa, Z.; Hossain, M. Reproductive biology of Heteropneustes fossilis in a wetland ecosystem (Gajner Beel, Bangladesh) in relation to eco-climatic factors: Suggesting a sustainable policy for aquaculture, management and conservation. Saudi J. Biol. Sci. 2022, 29, 1160–1174. [Google Scholar] [CrossRef] [PubMed]
- de Juan, S.; Delius, G.; Maynou, F. A model of size-spectrum dynamics to estimate the effects of improving fisheries selectivity and reducing discards in Mediterranean mixed demersal fisheries. Fish. Res. 2023, 266, 106764. [Google Scholar] [CrossRef]
- Neubauer, P.; Jensen, O.P.; Hutchings, J.A.; Baum, J.K. Resilience and Recovery of Overexploited Marine Populations. Science 2013, 340, 347–349. [Google Scholar] [CrossRef]
- Wang, Z.; Tang, H.; Xu, L.; Zhang, J. A review on fishing gear in China: Selectivity and application. Aquac. Fish. 2022, 7, 345–358. [Google Scholar] [CrossRef]
- Hilborn, R.; Amoroso, R.O.; Anderson, C.M.; Baum, J.K.; Branch, T.A.; Costello, C.; de Moor, C.L.; Faraj, A.; Hively, D.; Jensen, O.P.; et al. Effective fisheries management instrumental in improving fish stock status. Proc. Natl. Acad. Sci. USA 2020, 117, 2218–2224. [Google Scholar] [CrossRef]
- Sun, M.; Li, Y.; Suatoni, L.; Kempf, A.; Taylor, M.; Fulton, E.; Szuwalski, C.; Spedicato, M.T.; Chen, Y. Status and Management of Mixed Fisheries: A Global Synthesis. Rev. Fish. Sci. Aquac. 2023, 31, 458–482. [Google Scholar] [CrossRef]
- Lavin, C.P.; Pauly, D.; Dimarchopoulou, D.; Liang, C.; Costello, M.J. Fishery catch is affected by geographic expansion, fishing down food webs and climate change in Aotearoa, New Zealand. PeerJ 2023, 11, e16070. [Google Scholar] [CrossRef]
- Rijnsdorp, A.D.; Bolam, S.G.; Garcia, C.; Hiddink, J.G.; Hintzen, N.T.; van Denderen, P.D.; van Kooten, T. Estimating sensitivity of seabed habitats to disturbance by bottom trawling based on the longevity of benthic fauna. Ecol. Appl. 2018, 28, 1302–1312. [Google Scholar] [CrossRef]
- Scharnweber, K. Morphological and trophic divergence of lake and stream minnows (Phoxinus phoxinus). Ecol. Evol. 2020, 10, 8358–8367. [Google Scholar] [CrossRef]
- Cao, H.; Zhang, K.; Deng, D.; Qi, H.; Li, J.; Cao, Y.; Jin, Q.; Zhao, Y.; Wang, Y.; Wu, Z.; et al. Environmental heterogeneity affecting spatial distribution of phytoplankton community structure and functional groups in a large eutrophic lake, Lake Chaohu, China. Environ. Sci. Pollut. Res. 2023, 30, 7900179014. [Google Scholar] [CrossRef]
- Pu, H.; Yuan, Y.; Qin, L.; Liu, X. pH Drives Differences in Bacterial Community β-Diversity in Hydrologically Connected Lake Sediments. Microorganisms 2023, 11, 676. [Google Scholar] [CrossRef] [PubMed]
- Brain, R.A.; Prosser, R.S. Human induced fish declines in North America, how do agricultural pesticides compare to other drivers? Environ. Sci. Pollut. Res. 2022, 29, 66010–66040. [Google Scholar] [CrossRef]
- Aljahdali, M.O.; Molla, M.H.R. Population dynamics and fecundity estimates of Long-spined Black Sea Urchin Diadema savignyi (Audouin, 1890) from the Red Sea, Saudi Arabia. Saudi J. Biol. Sci. 2022, 29, 103395. [Google Scholar] [CrossRef] [PubMed]
- Song, K.; Wang, Z.; Li, L.; Tedesco, L.; Li, F.; Jin, C.; Du, J. Wetlands shrinkage, fragmentation and their links to agriculture in the Muleng–Xingkai Plain, China. J. Environ. Manag. 2012, 111, 120–132. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.; Zhan, W.; Cheng, N.; Yang, H.; Wu, Y. A Framework to Calculate Annual Landscape Ecological Risk Index Based on Land Use/Land Cover Changes: A Case Study on Shengjin Lake Wetland. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 11926–11935. [Google Scholar] [CrossRef]
- Nash, J.P.; Kime, D.E.; Van der Ven, L.T.M.; Wester, P.W.; Brion, F.; Maack, G.; Stahlschmidt-Allner, P.; Tyler, C.R. Long-Term Exposure to Environmental Concentrations of the Pharmaceutical Ethynylestradiol Causes Reproductive Failure in Fish. Environ. Health Perspect. 2005, 112, 1725–1733. [Google Scholar] [CrossRef]
- Wang, W.; Wang, D.; Liu, Q.; Lin, L.; Xie, Y.; Du, C. Distribution Characteristics and Risk Assessment of 57 Pesticides in Farmland Soil and the Surrounding Water. Toxics 2024, 12, 85. [Google Scholar] [CrossRef]
- Subaramaniyam, U.; Allimuthu, R.S.; Vappu, S.; Ramalingam, D.; Balan, R.; Paital, B.; Panda, N.; Rath, P.K.; Ramalingam, N.; Sahoo, D.K. Effects of microplastics, pesticides and nano-materials on fish health, oxidative stress and antioxidant defense mechanism. Front. Physiol. 2023, 14, 1217666. [Google Scholar] [CrossRef] [PubMed]
- Mundy, P.C.; Huff Hartz, K.E.; Fulton, C.A.; Lydy, M.J.; Brander, S.M.; Hung, T.C.; Fangue, N.A.; Connon, R.E. Exposure to permethrin or chlorpyrifos causes differential dose- and time-dependent behavioral effects at early larval stages of an endangered teleost species. Endanger. Species Res. 2021, 44, 89–103. [Google Scholar] [CrossRef]
- Tomar, S.S.; Khairnar, K. Challenges of SARS-CoV-2 genomic surveillance in India during low positivity rate scenario. Front. Public Health 2023, 11, 1117602. [Google Scholar] [CrossRef] [PubMed]
- Dickinson, H. Caviar matter(s): The material politics of the European caviar grey market. Polit. Geogr. 2022, 99, 102737. [Google Scholar] [CrossRef]
- Vasilakopoulos, P.; Maravelias, C.D.; Tserpes, G. Caviar matter(s): The Alarming Decline of Mediterranean Fish Stocks. Curr. Biol. 2014, 24, 1643–1648. [Google Scholar] [CrossRef] [PubMed]


| Scientist Name | Year | Min (cm) | Max (cm) | Class Interval | Numbers | Linf Prior (cm) | Z/K Prior | M/K Prior | F/K Prior | Lc Prior (cm) | Alpha Prior |
|---|---|---|---|---|---|---|---|---|---|---|---|
| H. leucisculus | 2019 | 5.5 | 18.5 | 0.5 | 396 | 19.5 | 2.4 | 1.5 | 0.94 | 10.7 | 12.5 |
| 2024 | 5.5 | 18.0 | 0.5 | 444 | 18.4 | 1.9 | 1.5 | 0.36 | 11.0 | 14.7 | |
| H. lucidus | 2019 | 5.5 | 18.5 | 0.5 | 631 | 18.5 | 3.1 | 1.5 | 1.56 | 11.2 | 16.4 |
| 2024 | 6.5 | 20.0 | 0.5 | 439 | 20.0 | 2.3 | 1.5 | 0.75 | 15.0 | 35.3 | |
| Ca. gibelio | 2019 | 5.0 | 27.0 | 1.0 | 292 | 27.0 | 2.4 | 1.5 | 0.87 | 11.2 | 17.9 |
| 2024 | 5.0 | 27.0 | 1.0 | 251 | 27.0 | 1.7 | 1.5 | 0.16 | 10.7 | 21.0 | |
| A. macropterus | 2019 | 4.2 | 10.2 | 0.3 | 169 | 12.2 | 3.0 | 1.5 | 1.46 | 6.9 | 48.0 |
| 2024 | 5.4 | 11.7 | 0.3 | 347 | 11.7 | 2.5 | 1.5 | 0.96 | 6.9 | 39.7 | |
| Cu. alburnus | 2019 | 8.0 | 51.0 | 2.0 | 266 | 51.6 | 1.7 | 1.5 | 0.22 | 22.4 | 8.4 |
| 2024 | 8.0 | 51.0 | 2.0 | 192 | 50.9 | 2.7 | 1.5 | 1.19 | 25.5 | 8.9 | |
| Ch. mongolicus | 2019 | 8.0 | 35.0 | 1.0 | 342 | 41.2 | 5.9 | 1.5 | 4.43 | 15.8 | 46.4 |
| 2024 | 8.0 | 35.0 | 1.0 | 349 | 41.0 | 4.7 | 1.5 | 3.24 | 15.8 | 35.5 | |
| Ch. abramoides | 2019 | 6.0 | 29.0 | 1.0 | 342 | 29.0 | 4.1 | 1.5 | 2.55 | 12.8 | 17.8 |
| 2024 | 6.0 | 31.0 | 1.0 | 343 | 31.7 | 4.3 | 1.5 | 2.79 | 12.8 | 20.4 | |
| Ch. erythropterus | 2019 | 5.5 | 29.5 | 1.0 | 267 | 33.9 | 5.0 | 1.5 | 3.54 | 11.7 | 38.1 |
| 2024 | 4.5 | 30.5 | 1.0 | 415 | 34.9 | 4.7 | 1.5 | 3.19 | 12.8 | 23.2 |
| Scientist Name | Year | B/B0 | B/Bmsy | F/M | Z/K | Y/R′ | E | Linf (cm) | Lc/Lc_opt | Lmean/Lopt | L95th/Linf | Stock Status |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| H. leucisculus | 2019 | 0.22 | 0.59 | 2.87 | 6.03 | 0.041 | 0.73 | 19.9 | 1.20 | 1.20 | 0.93 | overfished |
| 2024 | 0.67 | 1.90 | 0.52 | 3.22 | 0.010 | 0.34 | 19.1 | 1.70 | 1.40 | 0.94 | healthy | |
| H. lucidus | 2019 | 0.23 | 0.64 | 2.69 | 6.08 | 0.037 | 0.73 | 19.2 | 1.20 | 1.20 | 0.94 | overfished |
| 2024 | 0.42 | 1.20 | 1.40 | 5.50 | 0.011 | 0.59 | 20.9 | 1.60 | 1.50 | 0.93 | healthy | |
| Ca. gibelio | 2019 | 0.25 | 0.67 | 1.27 | 3.09 | 0.050 | 0.57 | 27.1 | 0.71 | 0.81 | 0.85 | overfished |
| 2024 | 0.51 | 1.40 | 0.48 | 2.34 | 0.033 | 0.32 | 27.2 | 0.79 | 0.84 | 0.88 | healthy | |
| A. macropterus | 2019 | 0.23 | 0.64 | 1.81 | 4.67 | 0.041 | 0.65 | 12.3 | 0.99 | 0.99 | 0.78 | overfished |
| 2024 | 0.80 | 2.10 | 0.19 | 1.55 | 0.020 | 0.16 | 10.3 | 1.30 | 1.10 | 0.99 | healthy | |
| Cu. alburnus | 2019 | 0.27 | 0.69 | 1.40 | 2.35 | 0.084 | 0.59 | 53.6 | 0.84 | 0.91 | 0.95 | overfished |
| 2024 | 0.30 | 0.78 | 1.46 | 2.70 | 0.072 | 0.59 | 52.4 | 0.99 | 0.99 | 0.93 | overfished | |
| Ch. mongolicus | 2019 | 0.06 | 0.17 | 4.44 | 8.74 | 0.009 | 0.82 | 41.4 | 0.64 | 0.73 | 0.77 | collapsed |
| 2024 | 0.14 | 0.40 | 1.98 | 4.75 | 0.022 | 0.66 | 42.7 | 0.62 | 0.73 | 0.82 | grossly overfished | |
| Ch. abramoides | 2019 | 0.15 | 0.44 | 2.85 | 7.65 | 0.020 | 0.74 | 29.9 | 1.00 | 1.00 | 0.90 | grossly overfished |
| 2024 | 0.17 | 0.46 | 2.06 | 5.07 | 0.027 | 0.68 | 32.9 | 0.79 | 0.85 | 0.94 | grossly overfished | |
| Ch. erythropterus | 2019 | 0.09 | 0.26 | 2.76 | 5.90 | 0.014 | 0.75 | 34.6 | 0.60 | 0.70 | 0.82 | grossly overfished |
| 2024 | 0.14 | 0.39 | 1.99 | 4.46 | 0.023 | 0.67 | 35.8 | 0.62 | 0.73 | 0.85 | grossly overfished |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, C.; Gao, Z.; Wang, X.; Wang, W.; Wang, H.; Wang, L.; Huo, T. The Efficacy of Fisheries Management: A Length-Based Stock Assessment of Eight Fish Species in Xingkai Lake, China. Animals 2025, 15, 3350. https://doi.org/10.3390/ani15223350
Zhao C, Gao Z, Wang X, Wang W, Wang H, Wang L, Huo T. The Efficacy of Fisheries Management: A Length-Based Stock Assessment of Eight Fish Species in Xingkai Lake, China. Animals. 2025; 15(22):3350. https://doi.org/10.3390/ani15223350
Chicago/Turabian StyleZhao, Chen, Zhongsi Gao, Xuehao Wang, Wanting Wang, Huibo Wang, Le Wang, and Tangbin Huo. 2025. "The Efficacy of Fisheries Management: A Length-Based Stock Assessment of Eight Fish Species in Xingkai Lake, China" Animals 15, no. 22: 3350. https://doi.org/10.3390/ani15223350
APA StyleZhao, C., Gao, Z., Wang, X., Wang, W., Wang, H., Wang, L., & Huo, T. (2025). The Efficacy of Fisheries Management: A Length-Based Stock Assessment of Eight Fish Species in Xingkai Lake, China. Animals, 15(22), 3350. https://doi.org/10.3390/ani15223350
