Establishment of a Single-Oocyte Culture System for Pigs and Its Validation Using Curcumin as a Model Antioxidant for Oocyte Maturation
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Approval
2.2. In Vitro Maturation (IVM)
2.3. Analysis of Oocyte Nuclear Maturation and DNA Fragmentation
2.4. In Vitro Fertilization, In Vitro Culture, and Assessment
2.5. Statistical Analyses
3. Results
4. Discussion
5. Conclussions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| CC | Condensed chromatin |
| COC | Cumulus-oocyte complexes |
| DAPI | 4′,6-diamidino-2-phenylindole |
| GV | Germinal vesicle |
| IVC | In vitro culture |
| IVF | In vitro fertilization |
| IVM | In vitro maturation |
| PBM | Porcine blastocyst medium |
| PFM | Porcine fertilization medium |
| PLSD | Protected least significant difference |
| PZM | Porcine zygote medium |
| ROS | Reactive oxygen species |
References
- Isobe, T.; Ikebata, Y.; Do, L.T.; Tanihara, F.; Taniguchi, M.; Otoi, T. In vitro development of OPU-derived bovine embryos cultured either individually or in groups with the silk protein sericin and the viability of frozen-thawed embryos after transfer. Anim. Sci. J. 2015, 86, 661–665. [Google Scholar] [CrossRef] [PubMed]
- Ebner, T.; Shebl, O.; Moser, M.; Mayer, R.B.; Arzt, W.; Tews, G. Group culture of human zygotes is superior to individual culture in terms of blastulation, implantation and life birth. Reprod. Biomed. Online 2010, 21, 762–768. [Google Scholar] [CrossRef] [PubMed]
- O’Doherty, E.M.; Wade, M.G.; Hill, J.L.; Boland, M.P. Effects of culturing bovine oocytes either singly or in groups on development to blastocysts. Theriogenology 1997, 48, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Berthelot, F.; Terqui, M. Effects of oxygen, CO2/pH and medium on the in vitro development of individually cultured porcine one- and two-cell embryos. Reprod. Nutr. Dev. 1996, 36, 241–251. [Google Scholar] [CrossRef][Green Version]
- Goovaerts, I.G.; Leroy, J.L.; Jorssen, E.P.; Bols, P.E. Noninvasive bovine oocyte quality assessment: Possibilities of a single oocyte culture. Theriogenology 2010, 74, 1509–1520. [Google Scholar] [CrossRef]
- Tatemoto, H.; Sakurai, N.; Muto, N. Protection of porcine oocytes against apoptotic cell death caused by oxidative stress during in vitro maturation: Role of cumulus cells. Biol. Reprod. 2000, 63, 805–810. [Google Scholar] [CrossRef]
- Yang, H.W.; Hwang, K.J.; Kwon, H.C.; Kim, H.S.; Choi, K.W.; Oh, K.S. Detection of reactive oxygen species (ROS) and apoptosis in human fragmented embryos. Hum. Reprod. 1998, 13, 998–1002. [Google Scholar] [CrossRef]
- Nagahara, M.; Namula, Z.; Lin, Q.; Takebayashi, K.; Torigoe, N.; Liu, B.; Tanihara, F.; Otoi, T.; Hirata, M. Effects of ergothioneine supplementation on meiotic competence and porcine oocyte development. Vet. World 2024, 17, 1748–1752. [Google Scholar] [CrossRef]
- Phan, T.-T.; See, P.; Lee, S.-T.; Chan, S.-Y. Protective effects of curcumin against oxidative damage on skin cells in vitro: Its implication for wound healing. J. Trauma Acute Care Surg. 2001, 51, 927–931. [Google Scholar] [CrossRef]
- Namula, Z.; Sato, Y.; Wittayarat, M.; Le, Q.A.; Nguyen, N.T.; Lin, Q.; Hirata, M.; Tanihara, F.; Otoi, T. Curcumin supplementation in the maturation medium improves the maturation, fertilisation and developmental competence of porcine oocytes. Acta Vet. Hung. 2020, 68, 298–304. [Google Scholar] [CrossRef]
- Feng, Z.; Song, J.; Lin, C.; Wu, S.; Wang, Y.; Hui, Q.; Pan, Y.; Zou, Y.; Zeng, C.; Guo, J.; et al. Enhancing porcine oocyte quality and embryo development through natural antioxidants. Theriogenology 2025, 232, 96–108. [Google Scholar] [CrossRef] [PubMed]
- Nakanishi, T.; Tonai, S.; Ichikawa, H.; Mori, S.; Ishihara, S.; Chang, Y.; Yamashita, Y. Curcumin Suppresses ROS Production and Increases Mitochondrial Activity in Cumulus Cells and Oocytes of COCs Derived from Non-Vascularized Follicles in Pigs. Anim. Sci. J. 2025, 96, e70032. [Google Scholar] [CrossRef] [PubMed]
- Namula, Z.; Tanihara, F.; Wittayarat, M.; Hirata, M.; Nguyen, N.T.; Hirano, T.; Le, Q.A.; Nii, M.; Otoi, T. Effects of Tris (hydroxymethyl) aminomethane on the quality of frozen-thawed boar spermatozoa. Acta Vet. Hung. 2019, 67, 106–114. [Google Scholar] [CrossRef] [PubMed]
- Goovaerts, I.G.; Leroy, J.L.; Van Soom, A.; De Clercq, J.B.; Andries, S.; Bols, P.E. Effect of cumulus cell coculture and oxygen tension on the in vitro developmental competence of bovine zygotes cultured singly. Theriogenology 2009, 71, 729–738. [Google Scholar] [CrossRef]
- Ward, F.A.; Lonergan, P.; Enright, B.P.; Boland, M.P. Factors affecting recovery and quality of oocytes for bovine embryo production in vitro using ovum pick-up technology. Theriogenology 2000, 54, 433–446. [Google Scholar] [CrossRef]
- Travaglione, A.; Candela, A.; De Gregorio, V.; Genovese, V.; Cimmino, M.; Barbato, V.; Talevi, R.; Gualtieri, R. Individually Cultured Bovine Zygotes Successfully Develop to the Blastocyst Stage in an Extremely Confined Environment. Cells 2024, 13, 868. [Google Scholar] [CrossRef]
- Yuan, Y.; Spate, L.D.; Redel, B.K.; Tian, Y.; Zhou, J.; Prather, R.S.; Roberts, R.M. Quadrupling efficiency in production of genetically modified pigs through improved oocyte maturation. Proc. Natl. Acad. Sci. USA 2017, 114, E5796–E5804. [Google Scholar] [CrossRef]
- Mastroianni, L.; Jones, R. Oxygen tension within the rabbit fallopian tube. Reproduction 1965, 9, 99–102. [Google Scholar] [CrossRef]
- Fowler, C.J.; Callingham, B.A. Substrate-selective activation of rat liver mitochondrial mono amine oxidase by oxygen. Biochem. Pharmacol. 1978, 27, 1995–2000. [Google Scholar] [CrossRef]
- Hussein, T.S.; Thompson, J.G.; Gilchrist, R.B. Oocyte-secreted factors enhance oocyte developmental competence. Dev. Biol. 2006, 296, 514–521. [Google Scholar] [CrossRef]
- de Lamirande, E.; Jiang, H.; Zini, A.; Kodama, H.; Gagnon, C. Reactive oxygen species and sperm physiology. Rev. Reprod. 1997, 2, 48–54. [Google Scholar] [CrossRef]
- Jayaprakasha, G.; Rao, L.J.; Sakariah, K. Antioxidant activities of curcumin, demethoxycurcumin and bisdemethoxycurcumin. Food Chem. 2006, 98, 720–724. [Google Scholar] [CrossRef]
- Hsuuw, Y.D.; Chang, C.K.; Chan, W.H.; Yu, J.S. Curcumin prevents methylglyoxal-induced oxidative stress and apoptosis in mouse embryonic stem cells and blastocysts. J. Cell. Physiol. 2005, 205, 379–386. [Google Scholar] [CrossRef] [PubMed]
- Current, J.Z.; Mentler, M.; Whitaker, B.D. Linoleic and linolenic acids reduce the effects of heat stress-induced damage in pig oocytes during maturation in vitro. In Vitro Cell Dev. Biol. Anim. 2022, 58, 599–609. [Google Scholar] [CrossRef]
- Hao, Y.; Lai, L.; Mao, J.; Im, G.S.; Bonk, A.; Prather, R.S. Apoptosis and in vitro development of preimplantation porcine embryos derived in vitro or by nuclear transfer. Biol. Reprod. 2003, 69, 501–507. [Google Scholar] [CrossRef]
- Fukui, Y.; Kikuchi, Y.; Kondo, H.; Mizushima, S. Fertilizability and developmental capacity of individually cultured bovine oocytes. Theriogenology 2000, 53, 1553–1565. [Google Scholar] [CrossRef] [PubMed]
- Yoshioka, K.; Uchikura, K.; Suda, T.; Matoba, S. Production of piglets from in vitro-produced blastocysts by ultrasound-guided ovum pick-up from live donors. Theriogenology 2020, 141, 113–119. [Google Scholar] [CrossRef]
| Curcumin (µM) | No. of Examined Oocytes | No. (%) of Oocytes with ** | |||||||
|---|---|---|---|---|---|---|---|---|---|
| GV | CC | M I | AT | M II | DG | DNA-Fragmented Nuclei *** | |||
| Single culture | Control | 105 | 2 (1.6 ± 0.9) | 9 (8.4 ± 2.1) | 21 (22.1 ± 4.6) a,b | 6 (5.0 ± 1.7) | 65 (61.2 ± 1.7) c,b | 2 (1.6 ± 0.9) | 11 (11.9 ± 3.5) |
| 0 | 109 | 4 (4.1 ± 1.6) | 14 (12.0 ± 1.8) | 20 (20.8 ± 5.0) a,b | 1 (0.8 ± 0.8) | 67 (60.0 ± 4.5) a,b,c | 3 (2.4 ± 1.5) | 8 (9.3 ± 4.1) | |
| 5 | 103 | 2 (1.7 ± 1.0) | 12 (11.1 ± 4.3) | 12 (13.3 ± 4.9) a,b | 0 (0) | 77 (74.0 ± 1.8) a | 0 (0) | 4 (5.5 ± 3.4) | |
| 10 | 104 | 2 (1.6 ± 0.9) | 5 (5.2 ± 2.2) | 9 (9.6 ± 2.8) b | 3 (2.5 ± 0.8) | 83 (79.4 ± 1.7) a | 2 (1.7 ± 1.7) | 1 (0.8 ± 0.8) | |
| 20 | 105 | 2 (1.7 ± 1.7) | 10 (9.2 ± 1.6) | 15 (16.3 ± 4.4) a,b | 1 (1.8 ± 1.8) | 74 (68.6 ± 4.4) a,b,c | 3 (2.5 ± 1.6) | 2 (1.7 ± 1.7) | |
| Group culture | Control | 97 | 4 (3.9 ± 1.6) | 6 (7.1 ± 2.7) | 28 (28.9 ± 1.2) a | 2 (2.0 ± 2.0) | 53 (54.3 ± 2.0) c | 4 (3.8 ± 2.3) | 12 (12.4 ± 2.4) |
| 10 | 115 | 3 (2.5 ± 1.5) | 8 (7.0 ± 1.5) | 14 (10.6 ± 3.2) b | 0 (0) | 85 (75.5 ± 3.5) a,b | 5 (4.4 ± 3.0) | 5 (3.9 ± 1.6) | |
| Curcumin (µM) | No. of Examined Oocytes | No. (%) of Oocytes ** | No. of Examined Oocytes | No. (%) of Embryos | Total Cell Number of the Blastocyst | DNA-Fragmentation Index *** | |||
|---|---|---|---|---|---|---|---|---|---|
| Fertilized | Monospermy | Cleaved | Developed to Blastocysts | ||||||
| Single culture | Control | 106 | 33 (34.4 ± 6.5) | 28 (83.7 ± 9.3) | 264 | 147 (55.8 ± 2.1) b | 6 (2.3 ± 0.3) c | 40.9 ± 1.0 | 18.5 ± 4.5 |
| 0 | 104 | 25 (30.5 ± 12.1) | 23 (93.8 ± 6.3) | 257 | 129 (50.5 ± 2.3) b | 4 (1.4 ± 0.6) c | 37.7 ± 2.2 | 18.4 ± 2.1 | |
| 5 | 102 | 39 (43.7 ± 9.7) | 33 (83.4 ± 7.0) | 256 | 174 (67.0 ± 7.3) a,b | 10 (3.8 ± 0.8) b,c | 40.3 ± 3.2 | 17.9 ± 5.0 | |
| 10 | 102 | 42 (46.2 ± 9.0) | 34 (80.4 ± 2.0) | 256 | 193 (74.5 ± 7.0) a,b | 18 (7.0 ± 0.6) a,b | 41.3 ± 1.9 | 12.5 ± 3.8 | |
| 20 | 103 | 32 (34.3 ± 6.8) | 26 (81.2 ± 9.0) | 251 | 155 (62.4 ± 6.5) a,b | 6 (2.4 ± 0.4) c | 41.0 ± 2.4 | 11.1 ± 1.4 | |
| Group culture | Control | 93 | 41 (43.9 ± 2.9) | 29 (70.3 ± 2.6) | 232 | 146 (63.0 ± 1.5) b | 10 (4.3 ± 0.6) a,c | 37.7 ± 1.3 | 14.8 ± 0.8 |
| 10 | 95 | 52 (56.2 ± 3.4) | 37 (71.2 ± 3.9) | 226 | 170 (75.2 ± 2.4) a | 26 (11.4 ± 1.6) a | 37.8 ± 2.3 | 10.4± 0.7 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Namula, Z.; Otoi, T.; Tharasanit, T.; Chatdarong, K.; Nagahara, M.; Widodo, O.S.; Nakai, A.; Nguyen, S.T.; Nakayama, Y.; Hirata, M.; et al. Establishment of a Single-Oocyte Culture System for Pigs and Its Validation Using Curcumin as a Model Antioxidant for Oocyte Maturation. Animals 2025, 15, 3295. https://doi.org/10.3390/ani15223295
Namula Z, Otoi T, Tharasanit T, Chatdarong K, Nagahara M, Widodo OS, Nakai A, Nguyen ST, Nakayama Y, Hirata M, et al. Establishment of a Single-Oocyte Culture System for Pigs and Its Validation Using Curcumin as a Model Antioxidant for Oocyte Maturation. Animals. 2025; 15(22):3295. https://doi.org/10.3390/ani15223295
Chicago/Turabian StyleNamula, Zhao, Takeshige Otoi, Theerawat Tharasanit, Kaywalee Chatdarong, Megumi Nagahara, Oky Setyo Widodo, Aya Nakai, Suong Thi Nguyen, Yuichiro Nakayama, Maki Hirata, and et al. 2025. "Establishment of a Single-Oocyte Culture System for Pigs and Its Validation Using Curcumin as a Model Antioxidant for Oocyte Maturation" Animals 15, no. 22: 3295. https://doi.org/10.3390/ani15223295
APA StyleNamula, Z., Otoi, T., Tharasanit, T., Chatdarong, K., Nagahara, M., Widodo, O. S., Nakai, A., Nguyen, S. T., Nakayama, Y., Hirata, M., & Tanihara, F. (2025). Establishment of a Single-Oocyte Culture System for Pigs and Its Validation Using Curcumin as a Model Antioxidant for Oocyte Maturation. Animals, 15(22), 3295. https://doi.org/10.3390/ani15223295

