Evaluating the Effects of Strategic Use of High Phytase Levels on Growth Performance and Carcass Characteristics of Late-Finishing Pigs Exposed to Limited Floor Space
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design and Animal Management
2.2. Experimental Diets and Manufacturing
2.3. Sampling and Measurements
2.4. Statistical Analyses
3. Results
3.1. Analysis of Experimental Diets
3.2. Growth Performance, Feed Efficiency, and Carcass Characteristics
3.3. Serum Chemistry
3.4. Inositol Analysis
3.5. Glucose Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- DeDecker, J.M.; Ellis, M.; Wolter, B.F.; Corrigan, B.P.; Curtis, S.E.; Parr, E.N.; Webel, D.M. Effects of proportion of pigs removed from a group and subsequent floor space on growth performance of finishing pigs. J. Anim. Sci. 2005, 83, 449–454. [Google Scholar] [CrossRef] [PubMed]
- Gonyou, H.W.; Brumm, M.C.; Bush, E.; Deen, J.; Edwards, S.A.; Fangman, T.; McGlone, J.J.; Meunier-Salaün, M.; Morrison, R.B.; Spoolder, H.; et al. Application of broken-line analysis to assess floor space requirements of nursery and grower-finisher pigs expressed on an allometric basis. J. Anim. Sci. 2006, 84, 229–235. [Google Scholar] [CrossRef] [PubMed]
- Gonyou, H.W.; Stricklin, W.R. Effects of floor area allowance and group size on the productivity of growing/finishing pigs. J. Anim. Sci. 1998, 76, 1326–1330. [Google Scholar] [CrossRef] [PubMed]
- Carpenter, C.B.; Holder, C.J.; Wu, F.; Woodworth, J.C.; DeRouchey, J.M.; Tokach, M.D.; Goodband, R.D.; Dritz, S.S. Effects of increasing space allowance by removing a pig or gate adjustment on finishing pig growth performance. J. Anim. Sci. 2018, 96, 2659–2664. [Google Scholar] [CrossRef]
- Flohr, J.R.; Tokach, M.D.; DeRouchey, J.M.; Woodworth, J.C.; Goodband, R.D.; Dritz, S.S. Evaluating the removal of pigs from a group and subsequent floor space allowance on the growth performance of heavy-weight finishing pigs. J. Anim. Sci. 2016, 94, 4388–4400. [Google Scholar] [CrossRef]
- Lerner, A.B.; Rice, E.A.; Tokach, M.D.; DeRouchey, J.M.; Dritz, S.S.; Goodband, R.D.; Woodworth, J.C.; O’Quinn, T.G.; Gonzalez, J.M.; Allerson, M.W.; et al. Effects of space allowance and marketing strategy on growth performance of pigs raised to 165 kg. Transl. Anim. Sci. 2020, 4, 1252–1262. [Google Scholar] [CrossRef]
- Wu, F.; Vierck, K.R.; DeRouchey, J.M.; O’Quinn, T.G.; Tokach, M.D.; Goodband, R.D.; Dritz, S.S.; Woodworth, J.C. A review of heavy weight market pigs: Status of knowledge and future needs assessment. Transl. Anim. Sci. 2017, 1, 1–15. [Google Scholar] [CrossRef]
- Ravindran, V.; Cowieson, A.J.; Selle, P.H. Influence of dietary electrolyte balance and microbial phytase on growth performance, nutrient utilization, and excreta quality of broiler chickens. Poult. Sci. 2008, 87, 677–688. [Google Scholar] [CrossRef]
- Braña, D.V.; Ellis, M.; Castaneda, E.O.; Sands, J.S.; Baker, D.H. Effect of a novel phytase on growth performance, bone ash, and mineral digestibility in nursery and grower-finisher pigs. J. Anim. Sci. 2006, 84, 1839–1849. [Google Scholar] [CrossRef]
- Cowieson, A.J.; Bedford, M.R. Phytic acid and phytase: Implications for protein utilization by poultry. Poult. Sci. 2006, 85, 878–885. [Google Scholar] [CrossRef]
- Kies, A.K.; Kemme, P.A.; Sebek, L.B.J.; Th, J.; van Diepen, M.; Jongbloed, A.W. Effect of graded doses and a high dose of microbial phytase on the digestibility of various minerals in weaner pigs. J. Anim. Sci. 2006, 84, 1169–1175. [Google Scholar] [CrossRef]
- Adeola, O.; Cowieson, A.J. Board-Invited Review: Opportunities and challenges in using exogenous enzymes to improve nonruminant animal production. J. Anim. Sci. 2011, 89, 3189–3218. [Google Scholar] [CrossRef] [PubMed]
- Walk, C.L.; Santos, T.T.; Bedford, M.R. Influence of superdoses of a novel microbial phytase on growth performance, tibia ash, and gizzard phytate and inositol in young broilers. Poult. Sci. 2014, 93, 1172–1177. [Google Scholar] [CrossRef] [PubMed]
- Holloway, C.L.; Boyd, R.D.; Zier-Rush, C.E.; Walk, C.L.; Patience, J.F. Impact on growth performance and carcass characteristics of super-dosing phytase in growing pig diets. J. Anim. Sci. 2016, 94 (Suppl. S2), 113. [Google Scholar] [CrossRef]
- Slade, R.D.; Taylor, A.E. High dietary inclusion levels of phytase in grower-finisher pigs. J. Anim. Sci. 2016, 94, 121–124. [Google Scholar] [CrossRef]
- Laird, S. The Effects of Super-Dosing Phytase in the Growing Pig. Ph.D. Thesis, University of Leeds, Leeds, UK, 2016. [Google Scholar]
- Cowieson, A.J.; Ptak, A.; Mackowiak, P.; Sassek, M.; Pruszynska-Oszmalek, E.; Zyla, K.; Swiatkiewicz, S.; Kaczmarek, S.; Józefiak, D. The effect of microbial phytase and myo-inositol on performance and blood biochemistry of broiler chickens fed wheat/corn-based diets. Poult. Sci. 2013, 92, 2124–2134. [Google Scholar] [CrossRef]
- Cowieson, A.J.; Guggenbuhl, P.; Fru-Nji, F. Possible involvement of myo-inositol in the physiological response of broilers to high doses of microbial phytase. Anim. Prod. Sci. 2015, 55, 710–719. [Google Scholar] [CrossRef]
- Lei, X.G.; Weaver, J.D.; Mullaney, E.; Ullah, A.H.; Azain, M.J. Phytase, a new life for an “old” enzyme. Annu. Rev. Anim. Biosci. 2013, 1, 283–309. [Google Scholar] [CrossRef]
- Walk, C.L.; Bedford, M.R.; Olukosi, O.A. Effect of phytase on growth performance, phytate degradation and gene expression of myo-inositol transporters in the small intestine, liver and kidney of 21-day-old broilers. Poult. Sci. 2018, 97, 1155–1162. [Google Scholar] [CrossRef]
- Cowieson, A.J.R.; Ruckebusch, J.; Wilson, J.W.; Guggenbuhl, P.; Lu, H.; Ajuwon, K.M.; Adeola, O. Time-series responses of swine plasma metabolites to ingestion of diets containing myo-inositol or phytase. J. Anim. Sci. 2019, 97, 3898–3906. [Google Scholar]
- Chatree, S.; Thongmaen, N.; Tantivejkul, K.; Sitticharoon, C.; Vucenik, I. Role of inositols and inositol phosphates in energy metabolism. Molecules 2020, 25, 5079. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.A.; Bedford, M.R. Inositol—An effective growth promotor? Worlds Poult. Sci. J. 2016, 72, 743–760. [Google Scholar] [CrossRef]
- Augspurger, N.R.; Baker, D.H. High dietary phytase levels maximize phytate-phosphorus utilization but do not affect protein utilization in chicks fed phosphorus or amino acid-deficient diets. J. Anim. Sci. 2004, 82, 1100–1107. [Google Scholar] [CrossRef] [PubMed]
- Shirley, R.B.; Edwards, H.M. Graded levels of phytase past industry standards improves broiler performance. Poult. Sci. 2003, 82, 671–680. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Z.K.; Wang, D.; Piao, X.S.; Li, P.F.; Zhang, H.Y.; Shi, C.X.; Yu, S.K. Effects of adding super dose phytase to the phosphorus-deficient diets of young pigs on growth performance, bone quality, minerals and amino acids digestibilities. Asian-Australas. J. Anim. Sci. 2014, 27, 237–246. [Google Scholar] [CrossRef]
- Santos, T.T.; Walk, C.L.; Wilcock, P.; Cordero, G.; Chewning, J. Performance and bone characteristics of growing pigs fed diets marginally deficient in available phosphorus and a novel microbial phytase. Can. J. Anim. Sci. 2014, 94, 493–497. [Google Scholar] [CrossRef]
- Gonzalez-Uarquin, F.; Kenez, A.; Rodehutscord, M.; Huber, K. Dietary phytase and myo-inositol supplementation are associated with distinct plasma metabolome profile in broiler chickens. Anim. Prod. Sci. 2020, 14, 549–559. [Google Scholar] [CrossRef]
- Holloway, C.L.; Boyd, R.D.; Koehler, D.; Gould, S.A.; Li, Q.; Patience, J.F. The impact of “super-dosing” phytase in pig diets on growth performance during the nursery and grow-out periods. Transl. Anim. Sci. 2019, 3, 419–428. [Google Scholar] [CrossRef]
- Lu, H.; Cowieson, A.J.; Wilson, J.W.; Ajuwon, K.M.; Adeola, O. Effect of phytase on intestinal phytate breakdown, plasma inositol concentrations, and glucose transporter type 4 abundance in muscle membranes of weanling pigs. J. Anim. Sci. 2019, 97, 3907–3919. [Google Scholar] [CrossRef]
- Yu, S.; Cowieson, A.; Gilbert, C.; Plumstead, P.; Dalsgaard, S. Interactions of phytate and myo-inositol phosphate esters (IP1–5) including IP5 isomers with dietary protein and iron and inhibition of pepsin. J. Anim. Sci. 2012, 90, 1824–1832. [Google Scholar] [CrossRef]
- Krings, E.; Krumbach, K.; Bathe, B.; Kelle, R.; Wendisch, V.F.; Sahm, H.; Eggeling, L. Characterization of myo-inositol utilization by Corynebacterium glutamicum: The stimulon, identification of transporters, and influence on lysine formation. J. Bacteriol. 2006, 188, 8054–8061. [Google Scholar] [CrossRef] [PubMed]
- Ogunribido, T.Z.; Bedford, M.R.; Adeola, O.; Ajuwon, K.M. Effects of supplemental myo-inositol on growth performance and apparent total tract digestibility of weanling piglets fed reduced protein high-phytate diets and intestinal epithelial cell proliferation and function. J. Anim. Sci. 2022, 100, skac187. [Google Scholar] [CrossRef] [PubMed]
- Ramp, P.; Pfleger, C.; Dittrich, J.; Mack, C.; Gohlke, H.; Bott, M. Physiological, biochemical, and structural bioinformatic analysis of the multiple inositol dehydrogenases from Corynebacterium glutamicum. Microbiol. Spectr. 2022, 10, e0195022. [Google Scholar] [CrossRef] [PubMed]
- Gardner, A.H.; Myer, R.; Browanrich, M.; Brush, P. Fermentation and nutrient digestibility in pigs with reduced dietary phytate intake through microbial phytase inclusion. Poult. Sci. 2020, 99, 750–759. [Google Scholar]
- Lu, H.; Cowieson, A.J.; Wilson, J.W.; Ajuwon, K.M.; Adeola, O. Extra-phosphoric effects of super dosing phytase on growth performance of pigs is not solely due to release of myo-inositol. J. Anim. Sci. 2019, 97, 3898–3906. [Google Scholar] [CrossRef]
- Moran, K.; Wilcock, P.; Elsbernd, A.; Zier-Rush, C.; Boyd, R.D.; van Heugten, E. Effects of super-dosing phytase and inositol on growth performance and blood metabolites of weaned pigs housed under commercial conditions. J. Anim. Sci. 2019, 97, 3007–3015. [Google Scholar] [CrossRef]
- Park, C.S.; Adeola, O. Enzymes and enzyme supplementation of swine diets. In Sustainable Swine Nutrition, 1st ed.; John Wiley & Sons: Hoboken, NJ, USA, 2022; pp. 445–469. [Google Scholar]
- Sands, J.S.; Ragland, D.; Baxter, C.; Joern, B.C.; Sauber, T.E.; Adeola, O. Phosphorus bioavailability, growth performance, and nutrient balance in pigs fed high available phosphorus corn and phytase. J. Anim. Sci. 2001, 79, 2134–2142. [Google Scholar] [CrossRef]
- Croze, M.L.; Soulage, C.O. Potential role and therapeutic interests of myo-inositol in metabolic diseases. Biochimie 2013, 95, 1811–1827. [Google Scholar] [CrossRef]
- NRC. Nutrient Requirements of Swine, 11th ed.; National Academies Press: Washington, DC, USA, 2012. [Google Scholar]
- Brooks, M.A.; Grimes, J.L.; Lloyd, K.E.; Krafka, K.; Lamptey, A.; Spears, J.W. Chromium propionate in broilers: Effect on insulin sensitivity. Poult. Sci. 2016, 95, 1096–1104. [Google Scholar] [CrossRef]
- Wilcock, P.; Bradley, L.; Chewning, J.J.; Walk, C.L. The effect of superdosing phytase on inositol and phytate concentration in the gastrointestinal tract and its effect on pig performance. J. Anim. Sci. 2014, 92 (Suppl. S1), 383. [Google Scholar]
- Buzek, A.; Zaworska-Zakrzewska, A.; Muzolf-Panek, M.; Łodyga, D.; Lisiak, D.; Kasprowicz-Potocka, M. Phytase supplementation of growing-finishing pig diets with extruded soya seeds and rapeseed meal improves bone mineralization and carcass and meat quality. Life 2023, 13, 1275. [Google Scholar] [CrossRef]
- Moran, E.T.; Bedford, M.R. Basis for the diversity and extent in loss of digestible nutrients created by dietary phytin: Emphasis on fowl and swine. Anim. Nutr. 2024, 16, 422–428. [Google Scholar] [CrossRef]
- van Heugten, E. Improving Pig Performance and Economic Return by the Application of Ultra-High Doses of Phytase in Finishing Pigs; NPB Project Report 17-106; Pork Checkoff, National Pork Board: Des Moines, IA, USA, 2018. [Google Scholar]
- Zyla, K.; Mika, M.; Stodolak, B.; Wikiera, A.; Koreleski, J.; Swiatkiewicz, S. Towards complete dephosphorylation and total conversion of phytates in poultry feeds. Poult. Sci. 2004, 83, 1175–1186. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Shin, S.; Kuehn, I.; Bedford, M.; Rodehutscord, M.; Adeola, O.; Ajuwon, K.M. Effect of phytase on nutrient digestibility and expression of intestinal tight junction and nutrient transporter genes in pigs. J. Anim. Sci. 2020, 98, skaa206. [Google Scholar] [CrossRef] [PubMed]
- Sommerfeld, V.; Künzel, S.; Schollenberger, M.; Kühn, I.; Rodehutscord, M. Influence of phytase or myo-inositol supplements on performance and phytate degradation products in the crop, ileum, and blood of broiler chickens. Poult. Sci. 2018, 97, 920–929. [Google Scholar] [CrossRef] [PubMed]
- Pirgozliev, V.; Brearley, C.A.; Rose, S.P.; Mansbridge, S.C. Manipulation of plasma myo-inositol in broiler chickens: Effect on growth performance, dietary energy, nutrient availability, and hepatic function. Poult. Sci. 2019, 98, 260–268. [Google Scholar] [CrossRef]
- Edmonds, M.S.; Bergstrom, J.R.; Weber, T.E. Efficacy of phytase and/or chromium tripicolinate supplementation on dry matter and nitrogen digestibility and blood metabolites in grower pigs. J. Anim. Sci. 2024, 102, skae336. [Google Scholar] [CrossRef]
- Karadas, F.; Pirgozliev, V.; Pappas, A.C.; Acamovic, T.; Bedford, M.R. Effects of different dietary phytase activities on the concentration of antioxidants in the liver of growing broilers. J. Anim. Physiol. Anim. Nutr. 2010, 94, 519–526. [Google Scholar] [CrossRef]
- Whalan, J.E. A Toxicologist’S Guide to Clinical Pathology in Animals: Hematology, Clinical Chemistry, Urinalysis; Springer International Publishing AG: Cham, Switzerland, 2015. [Google Scholar] [CrossRef]
- Fielder, S.E. Serum biochemical analysis reference ranges. In Merck Veterinary Manual; Merck and Co., Inc.: Rahway, NJ, USA, 2024; Available online: https://www.merckvetmanual.com/reference-values-and-conversion-tables/reference-guides/serum-biochemical-analysis-reference-ranges (accessed on 22 September 2025).

| Ingredient | Phytase | |
|---|---|---|
| 2500 FTU/kg | 5000 FTU/kg | |
| Corn, yellow dent | 86.70 | 86.67 |
| Soybean meal, 47.5% CP | 10.20 | 10.20 |
| Poultry fat | 1.000 | 1.000 |
| L-lysine·HCl | 0.290 | 0.290 |
| DL-methionine | 0.001 | 0.001 |
| L-threonine | 0.064 | 0.064 |
| L-tryptophan | 0.018 | 0.018 |
| Monocalcium phosphate, 21% P | 0.191 | 0.191 |
| Limestone | 0.852 | 0.852 |
| Salt | 0.400 | 0.400 |
| Finisher trace mineral premix 1 | 0.150 | 0.150 |
| Finisher vitamin premix 2 | 0.050 | 0.050 |
| Phytase 3 | 0.025 | 0.050 |
| Xylanase 4 | 0.010 | 0.010 |
| Colorant 5 | 0.050 | 0.050 |
| Calculated Composition | ||
| Metabolizable energy, kcal/kg | 3406 | 3406 |
| Net energy, kcal/kg | 2604 | 2604 |
| Crude protein, % | 12.23 | 12.23 |
| Total lysine, % | 0.770 | 0.770 |
| Calcium, % 6 | 0.551 | 0.551 |
| Total phosphorus, % | 0.335 | 0.335 |
| Available phosphorus, % 6 | 0.240 | 0.240 |
| Standardized ileal digestible amino acids 6 | ||
| Lys, % | 0.680 | 0.680 |
| Thr, % | 0.449 | 0.449 |
| Met, % | 0.198 | 0.198 |
| Met + Cys, % | 0.408 | 0.408 |
| Trp, % | 0.129 | 0.129 |
| Ile, % | 0.425 | 0.425 |
| Val, % | 0.502 | 0.502 |
| Analyzed Composition | ||
| Phytase, FTU/kg | 2970 | 6560 |
| Crude protein, % | 11.86 | 12.51 |
| Calcium, % | 0.610 | 0.480 |
| Total phosphorus, % | 0.340 | 0.320 |
| Phytase, FTU/kg | Adequate (0.85 m2/Pig) | Restricted (0.66 m2/Pig) | SEM | p Value | |||
|---|---|---|---|---|---|---|---|
| 2500 | 5000 | 2500 | 5000 | Diet | Space | ||
| Body Weight, kg | |||||||
| Day 0 | 94.57 | 94.27 | 94.02 | 94.82 | * | * | * |
| Day 7 | 102.70 | 102.14 | 102.11 | 101.87 | 0.224 | 0.195 | 0.164 |
| Day 14 | 110.84 | 109.99 | 110.25 | 109.38 | 0.336 | 0.064 | 0.194 |
| Day 21 | 118.61 | 118.09 | 117.24 | 116.23 | 0.367 | 0.132 | 0.002 |
| Day 28 | 125.55 | 125.32 | 124.04 | 123.07 | 0.480 | 0.361 | 0.007 |
| Day 35 | 129.33 | 126.34 | 126.18 | 124.86 | 0.918 | 0.091 | 0.071 |
| Day 42 | 136.63 | 134.00 | 133.90 | 132.06 | 0.953 | 0.089 | 0.078 |
| Overall Marketed | 135.62 | 135.10 | 134.03 | 132.56 | 0.559 | 0.194 | 0.009 |
| Average daily gain, kg | |||||||
| Day 0 to 7 | 1.162 | 1.083 | 1.047 | 1.042 | 0.028 | 0.282 | 0.045 |
| Day 7 to 14 | 1.144 | 1.121 | 1.107 | 1.083 | 0.034 | 0.609 | 0.427 |
| Day 14 to 21 | 1.110 | 1.161 | 1.000 | 1.005 | 0.027 | 0.441 | 0.001 |
| Day 21 to 28 | 0.998 | 1.038 | 0.978 | 0.986 | 0.044 | 0.685 | 0.549 |
| Day 28 to 35 | 1.306 | 1.235 | 1.270 | 1.177 | 0.061 | 0.321 | 0.571 |
| Day 35 to 42 | 1.069 | 1.084 | 1.094 | 1.029 | 0.035 | 0.578 | 0.746 |
| Day 0 to 28 | 1.104 | 1.102 | 1.034 | 1.032 | 0.014 | 0.919 | 0.001 |
| Day 28 to 42 | 1.190 | 1.159 | 1.182 | 1.099 | 0.034 | 0.220 | 0.462 |
| Day 0 to 42 | 1.125 | 1.121 | 1.070 | 1.054 | 0.013 | 0.568 | 0.001 |
| Average daily feed intake, kg | |||||||
| Day 0 to 7 | 3.340 | 3.364 | 3.190 | 3.220 | 0.034 | 0.578 | 0.002 |
| Day 7 to 14 | 3.531 | 3.495 | 3.329 | 3.330 | 0.038 | 0.713 | 0.001 |
| Day 14 to 21 | 3.530 | 3.571 | 3.315 | 3.330 | 0.036 | 0.564 | <0.001 |
| Day 21 to 28 | 3.670 | 3.630 | 3.210 | 3.383 | 0.050 | 0.342 | <0.001 |
| Day 28 to 35 | 3.797 | 3.736 | 3.609 | 3.511 | 0.078 | 0.456 | 0.058 |
| Day 35 to 42 | 3.745 | 3.742 | 3.606 | 3.510 | 0.060 | 0.547 | 0.027 |
| Day 0 to 28 | 3.510 | 3.496 | 3.257 | 3.311 | 0.030 | 0.664 | <0.001 |
| Day 28 to 42 | 3.768 | 3.690 | 3.610 | 3.507 | 0.059 | 0.258 | 0.038 |
| Day 0 to 42 | 3.574 | 3.563 | 3.337 | 3.359 | 0.034 | 0.908 | <0.001 |
| Gain-to-feed ratio, kg/kg | |||||||
| Day 0 to 7 | 0.349 | 0.332 | 0.327 | 0.325 | 0.007 | 0.371 | 0.168 |
| Day 7 to 14 | 0.325 | 0.322 | 0.335 | 0.325 | 0.009 | 0.586 | 0.631 |
| Day 14 to 21 | 0.315 | 0.326 | 0.302 | 0.302 | 0.008 | 0.601 | 0.078 |
| Day 21 to 28 | 0.273 | 0.286 | 0.304 | 0.295 | 0.011 | 0.907 | 0.205 |
| Day 28 to 35 | 0.344 | 0.328 | 0.351 | 0.339 | 0.014 | 0.466 | 0.660 |
| Day 35 to 42 | 0.284 | 0.286 | 0.303 | 0.292 | 0.008 | 0.663 | 0.231 |
| Day 0 to 28 | 0.315 | 0.315 | 0.321 | 0.314 | 0.003 | 0.408 | 0.622 |
| Day 28 to 42 | 0.316 | 0.309 | 0.326 | 0.317 | 0.009 | 0.339 | 0.302 |
| Day 0 to 42 | 0.315 | 0.315 | 0.321 | 0.314 | 0.004 | 0.408 | 0.622 |
| Carcass characteristics | |||||||
| Back fat thickness, cm | 2.876 | 2.791 | 2.689 | 2.760 | 0.043 | 0.878 | 0.062 |
| Loin eye area, mm2 | 66.28 | 66.65 | 65.93 | 67.60 | 0.497 | 0.140 | 0.655 |
| Phytase, FTU/kg | Adequate (0.85 m2/Pig) | Restricted (0.66 m2/Pig) | SEM | p Value | |||
|---|---|---|---|---|---|---|---|
| 2500 | 5000 | 2500 | 5000 | Diet | Space | ||
| Total protein, g/dL | 6.65 | 6.58 | 6.87 | 6.68 | 0.09 | 0.156 | 0.076 |
| Albumin, g/dL | 3.61 | 3.49 | 3.60 | 3.54 | 0.09 | 0.309 | 0.868 |
| Globulin, g/dL | 3.03 | 3.09 | 3.28 | 3.14 | 0.13 | 0.736 | 0.227 |
| Aspartate aminotransferase, IU/L | 36.16 | 32.65 | 59.95 | 33.91 | 7.19 | 0.038 | 0.078 |
| Alanine aminotransferase, IU/L | 39.27 | 36.36 | 40.36 | 38.65 | 1.29 | 0.070 | 0.185 |
| Alkaline phosphatase, IU/L | 151.65 | 149.85 | 153.06 | 138.85 | 8.67 | 0.347 | 0.573 |
| Serum urea nitrogen, mg/dL | 9.71 | 10.05 | 9.34 | 9.17 | 0.42 | 0.841 | 0.134 |
| Creatinine, mg/dL | 1.55 | 1.55 | 1.55 | 1.53 | 0.04 | 0.681 | 0.758 |
| Glucose, mg/dL | 83.68 | 87.27 | 83.31 | 86.43 | 1.74 | 0.051 | 0.723 |
| P, mg/dL | 7.78 x | 8.10 y | 8.01 xy | 7.81 x | 0.12 | 0.617 | 0.748 |
| Ca, mg/dL | 10.50 | 10.48 | 10.44 | 10.38 | 0.09 | 0.636 | 0.380 |
| Mg, mEq/L | 1.56 | 1.50 | 1.55 | 1.55 | 0.02 | 0.213 | 0.315 |
| Na, mEq/L | 144.43 | 144.47 | 143.80 | 144.47 | 0.38 | 0.347 | 0.406 |
| K, mEq/L | 5.52 | 5.71 | 5.75 | 5.80 | 0.14 | 0.373 | 0.244 |
| Cl, mEq/L | 100.30 | 100.22 | 100.18 | 100.59 | 0.32 | 0.597 | 0.692 |
| Cholesterol, mg/dL | 98.37 | 96.87 | 97.99 | 93.66 | 2.73 | 0.276 | 0.502 |
| Creatinine phosphokinase, IU/L | 1530 | 1819 | 3505 | 1705 | 588 | 0.192 | 0.108 |
| ϒ-glutamyl transferase, IU/L | 32.97 | 33.18 | 30.73 | 33.01 | 3.21 | 0.693 | 0.702 |
| Triglyceride, mg/dL | 36.15 | 36.62 | 41.70 | 41.33 | 3.09 | 0.987 | 0.093 |
| Amylase, IU/L | 1162 | 1084 | 1164 | 1087 | 59.03 | 0.184 | 0.960 |
| Pancreas specific lipase, U/L | 8.58 | 7.39 | 8.51 | 7.76 | 0.61 | 0.109 | 0.802 |
| Phytase, FTU/kg | Adequate (0.85 m2/Pig) | Restricted (0.66 m2/Pig) | SEM | p Value | |||
|---|---|---|---|---|---|---|---|
| 2500 | 5000 | 2500 | 5000 | Diet | Space | ||
| Inositol, µM 1 | 40.61 | 55.42 | 43.97 | 48.60 | 3.18 | 0.003 | 0.594 |
| Glucose, mg/dL 2 | 111.27 | 104.76 | 104.88 | 113.91 | 3.80 | 0.813 | 0.799 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuneff, I.B.; Wilcock, P.; van Heugten, E. Evaluating the Effects of Strategic Use of High Phytase Levels on Growth Performance and Carcass Characteristics of Late-Finishing Pigs Exposed to Limited Floor Space. Animals 2025, 15, 3280. https://doi.org/10.3390/ani15223280
Kuneff IB, Wilcock P, van Heugten E. Evaluating the Effects of Strategic Use of High Phytase Levels on Growth Performance and Carcass Characteristics of Late-Finishing Pigs Exposed to Limited Floor Space. Animals. 2025; 15(22):3280. https://doi.org/10.3390/ani15223280
Chicago/Turabian StyleKuneff, Izadora Batista, Pete Wilcock, and Eric van Heugten. 2025. "Evaluating the Effects of Strategic Use of High Phytase Levels on Growth Performance and Carcass Characteristics of Late-Finishing Pigs Exposed to Limited Floor Space" Animals 15, no. 22: 3280. https://doi.org/10.3390/ani15223280
APA StyleKuneff, I. B., Wilcock, P., & van Heugten, E. (2025). Evaluating the Effects of Strategic Use of High Phytase Levels on Growth Performance and Carcass Characteristics of Late-Finishing Pigs Exposed to Limited Floor Space. Animals, 15(22), 3280. https://doi.org/10.3390/ani15223280
