Effects of Ganoderma lucidum Polysaccharides on Dexameth-Asone-Induced Immune Injury in Goslings
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Ethics Guidelines
2.2. Experimental Feeding and Management
2.3. Determination of Growth Performance
2.4. Serum Collection
2.5. Determination of Immune Organ Indices
2.6. HE Staining of Immune Organs
2.7. Morphology of Immune Organs
2.8. Tight Junction Protein Real-Time PCR
2.9. Intestinal Microbiota Sequencing
2.10. Data Analysis
3. Result
3.1. Growth Performance
3.2. Immune Organ Indices
3.3. Serum Immue Parameters
3.4. Immune Organ Morphology
3.5. Immune Organ Morphology Indexes
3.6. Tight Junction Protein mRNA Expression
3.7. Intestinal Microbiota
3.8. Species Composition Differences
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Abdel-Moneam, D.A.; Khalefa, H.S.; Rashad, M.M.; Ali, G.E.; Ahmed, Y.H.; Ragab, E.; Mahmoud, S.B. Thyme-synthesized silver nanoparticles mitigate immunosuppression, oxidative damage, and histopathological alterations induced by multidrug-resistant Enterococcus faecalis in Oreochromis niloticus: In vitro and in vivo assays. Fish. Physiol. Biochem. 2025, 51, 146. [Google Scholar] [CrossRef]
- Mohammed, A.S.A.; Naveed, M.; Jost, N. Polysaccharides; Classification, Chemical Properties, and Future Perspective Applications in Fields of Pharmacology and Biological Medicine (A Review of Current Applications and Upcoming Potentialities). J. Polym. Environ. 2021, 29, 2359–2371. [Google Scholar] [CrossRef]
- Ullah, S.; Khalil, A.A.; Shaukat, F.; Song, Y. Sources, Extraction and Biomedical Properties of Polysaccharides. Foods 2019, 8, 304. [Google Scholar] [CrossRef]
- Zeng, P.; Li, J.; Chen, Y.; Zhang, L. The structures and biological functions of polysaccharides from traditional Chinese herbs. Prog. Mol. Biol. Transl. Sci. 2019, 163, 423–444. [Google Scholar] [CrossRef]
- Wang, L.; Li, J.-Q.; Zhang, J.; Li, Z.-M.; Liu, H.-G.; Wang, Y.-Z. Traditional uses, chemical components and pharmacological activities of the genus Ganoderma P. Karst.: A review. RSC Adv. 2020, 10, 42084–42097. [Google Scholar] [CrossRef] [PubMed]
- Shi, M.; Zhang, Z.; Yang, Y. Antioxidant and immunoregulatory activity of Ganoderma lucidum polysaccharide (GLP). Carbohydr. Polym. 2013, 95, 200–206. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.; Li, P.; Chen, X.; Kang, Y.; Xie, Y.; Li, X.; Xie, T.; Zhang, Y. Effects of deproteinization methods on primary structure and antioxidant activity of Ganoderma lucidum polysaccharides. Int. J. Biol. Macromol. 2019, 126, 867–876. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Wang, H.; Pang, X.; Yao, W.; Gao, X. Characterization and antioxidant activity of two low-molecular-weight polysaccharides purified from the fruiting bodies of Ganoderma lucidum. Int. J. Biol. Macromol. 2010, 46, 451–457. [Google Scholar] [CrossRef]
- Negash, A. Gut microbiota ecology role in animal nutrition and health performance. J. Clin. Microbiol. Antimicrob. 2022, 6, 1–14. [Google Scholar]
- Bauer, E.; Williams, B.A.; Smidt, H.; Verstegen, M.W.; Mosenthin, R. Influence of the gastrointestinal microbiota on development of the immune system in young animals. Curr. Issues Intest. Microbiol. 2006, 7, 35–51. [Google Scholar]
- Kogut, M.H. The gut microbiota and host innate immunity: Regulators of host metabolism and metabolic diseases in poultry? J. Appl. Poult. Res. 2013, 22, 637–646. [Google Scholar] [CrossRef]
- Gao, Y.-Y.; Zhou, Y.-H.; Liu, X.-P.; Di, B.; He, J.-Y.; Wang, Y.-T.; Guo, P.-T.; Zhang, J.; Wang, C.-K.; Jin, L. Ganoderma lucidum polysaccharide promotes broiler health by regulating lipid metabolism, antioxidants, and intestinal microflora. Int. J. Biol. Macromol. 2024, 280, 135918. [Google Scholar] [CrossRef] [PubMed]
- Duda, D.; Jaszcza, K.; Bernaś, E. Macromycete Edible Fungi as a Functional Poultry Feed Additive: Influence on Health, Welfare, Eggs, and Meat Quality—Review. Molecules 2025, 30, 3241. [Google Scholar] [CrossRef] [PubMed]
- GB/T 42011-2022; Experimental Animals—General Guidelines for Welfare. Standardization Administration of China, State Administration for Market Regulation: Beijing, China, 2022.
- DB37/T 2784-2016; Feeding Standards for Commercial Meat Geese. Shandong Bureau of Quality and Technical Supervision: Jinan, China, 2016.
- Guan, Y.; Zheng, W.; Bai, Y.; Wu, B. Yupingfeng polysaccharide promote the growth of chickens via regulating gut microbiota. Front. Veter. Sci. 2024, 11, 1337698. [Google Scholar] [CrossRef]
- Liu, J.; Wang, H.; Luo, J.; Chen, T.; Xi, Q.; Sun, J.; Wei, L.; Zhang, Y. Synergism of fermented feed and ginseng polysaccharide on growth performance, intestinal development, and immunity of Xuefeng black-bone chickens. BMC Veter. Res. 2024, 20, 13. [Google Scholar] [CrossRef] [PubMed]
- Karimi, M.; Samadi, F.; Ahmadifar, M.; Nateghi, R.; Mashhadizadeh, N. The effects of artichoke aqueous extract on the growth performance, intestinal morphology, and blood metabolites in broiler chickens. Mod. Med. Lab. J. 2020, 3, 60–68. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, C.; Wang, X.; Wang, Z.; Wang, J.; Zhen, W.; Huang, S.; Li, T.; Fan, H.; Ma, Y.; et al. Effects of Glycyrrhiza polysaccharide on growth performance, appetite, and hypothalamic inflammation in broilers. J. Anim. Sci. 2023, 101, skad027. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ho Do, M.; Seo, Y.S.; Park, H.Y. Polysaccharides: Bowel health and gut microbiota. Crit. Rev. Food Sci. Nutr. 2021, 61, 1212–1224. [Google Scholar] [CrossRef]
- Tang, C.; Ding, R.; Sun, J.; Liu, J.; Kan, J.; Jin, C. The impacts of natural polysaccharides on intestinal microbiota and immune responses–a review. Food Funct. 2019, 10, 2290–2312. [Google Scholar] [CrossRef]
- Liu, T.; Zhou, J.; Li, W.; Rong, X.; Gao, Y.; Zhao, L.; Fan, Y.; Zhang, J.; Ji, C.; Ma, Q. Effects of sporoderm-broken spores of Ganoderma lucidum on growth performance, antioxidant function and immune response of broilers. Anim. Nutr. 2020, 6, 39–46. [Google Scholar] [CrossRef]
- Mohan, K.; Muralisankar, T.; Uthayakumar, V.; Chandirasekar, R.; Rajan, D.K. Dietary Ganoderma lucidum polysaccharides to enhance the growth, immune response and disease resistance of freshwater prawn Macrobrachium rosenbergii. Aquac. Rep. 2019, 14, 100203. [Google Scholar] [CrossRef]
- Li, X.; He, L.; Yang, Y.; Liu, F.; Cao, Y.; Zuo, J. Effects of extracellular polysaccharides of Ganoderma lucidum supplementation on the growth performance, blood profile, and meat quality in finisher pigs. Livest. Sci. 2015, 178, 187–194. [Google Scholar] [CrossRef]
- Chen, H.-W.; Yu, Y.-H. Effect of Ganoderma lucidum extract on growth performance, fecal microbiota, and bursal transcriptome of broilers. Anim. Feed. Sci. Technol. 2020, 267, 114551. [Google Scholar] [CrossRef]
- Rabasa, C.; Dickson, S.L. Impact of stress on metabolism and energy balance. Curr. Opin. Behav. Sci. 2016, 9, 71–77. [Google Scholar] [CrossRef]
- Dunislawska, A.; Pietrzak, E.; Kadawarage, R.W.; Beldowska, A.; Siwek, M. Pre-hatching and post-hatching environmental factors related to epigenetic mechanisms in poultry. J. Anim. Sci. 2021, 100, skab370. [Google Scholar] [CrossRef]
- Akhand, A.A.; Ahsan, N. Cells and organs of the immune system. In Immunology for Dentistry; Wiley: Hoboken, NJ, USA, 2023; pp. 1–12. [Google Scholar] [CrossRef]
- Martínez, Y.; Altamirano, E.; Ortega, V.; Paz, P.; Valdivié, M. Effect of Age on the Immune and Visceral Organ Weights and Cecal Traits in Modern Broilers. Animals 2021, 11, 845. [Google Scholar] [CrossRef]
- Li, C.-X.; Liu, Y.; Zhang, Y.-Z.; Li, J.-C.; Lai, J. Astragalus polysaccharide: A review of its immunomodulatory effect. Arch. Pharmacal Res. 2022, 45, 367–389. [Google Scholar] [CrossRef]
- Zheng, Y.; Ren, W.; Zhang, L.; Zhang, Y.; Liu, D.; Liu, Y. A Review of the Pharmacological Action of Astragalus Polysaccharide. Front. Pharmacol. 2020, 11, 349. [Google Scholar] [CrossRef]
- Liu, Z.; Liao, L.; Chen, Q.; Lin, S.; Luo, Y.; Qin, T.; Li, J.; Wang, Q.; Wu, B.; Huang, Y.; et al. Effects of Hericium erinaceus polysaccharide on immunity and apoptosis of the main immune organs in Muscovy duck reovirus-infected ducklings. Int. J. Biol. Macromol. 2021, 171, 448–456. [Google Scholar] [CrossRef]
- Huang, S.-Q.; Ning, Z.-X. Extraction of polysaccharide from Ganoderma lucidum and its immune enhancement activity. Int. J. Biol. Macromol. 2010, 47, 336–341. [Google Scholar] [CrossRef] [PubMed]
- Ayroldi, E.; Cannarile, L.; Migliorati, G.; Nocentini, G.; Delfino, D.V.; Riccardi, C. Mechanisms of the anti-inflammatory effects of glucocorticoids: Genomic and nongenomic interference with MAPK signaling pathways. FASEB J. 2012, 26, 4805–4820. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Chan, E.; Zhou, S. Immunomodulating Activities of Ganoderma, a Mushroom with Medicinal Properties. Food Rev. Int. 2004, 20, 123–161. [Google Scholar] [CrossRef]
- Huang, Q.; Li, L.; Chen, H.; Liu, Q.; Wang, Z. GPP (Composition of Ganoderma lucidum Poly-saccharides and Polyporus umbellatus Poly-saccharides) Enhances Innate Immune Function in Mice. Nutrients 2019, 11, 1480. [Google Scholar] [CrossRef]
- Elmore, S.A. Enhanced histopathology of the immune system: A review and update. Toxicol. Pathol. 2012, 40, 148–156. [Google Scholar] [CrossRef]
- Scott, T.R. Our current understanding of humoral immunity of poultry. Poult. Sci. 2004, 83, 574–579. [Google Scholar] [CrossRef]
- Rebelatto, M.C. Spleen, lymph nodes, and thymus. In Boorman’s Pathology of the Rat. Acad. Pre. 2018, 469–491. [Google Scholar] [CrossRef]
- Tuckermann, J.P.; Kleiman, A.; McPherson, K.G.; Reichardt, H.M. Molecular mechanisms of glucocorticoids in the control of inflammation and lymphocyte apoptosis. Crit. Rev. Clin. Lab. Sci. 2005, 42, 71–104. [Google Scholar] [CrossRef]
- Castañeda, J.; Hidalgo, Y.; Sauma, D.; Rosemblatt, M.; Bono, M.R.; Núñez, S. The Multifaceted Roles of B Cells in the Thymus: From Immune Tolerance to Autoimmunity. Front. Immunol. 2021, 12, 766698. [Google Scholar] [CrossRef]
- Liu, X.-F.; Shao, J.-H.; Liao, Y.-T.; Wang, L.-N.; Jia, Y.; Dong, P.-J.; Liu, Z.-Z.; He, D.-D.; Li, C.; Zhang, X. Regulation of short-chain fatty acids in the immune system. Front. Immunol. 2023, 14, 1186892. [Google Scholar] [CrossRef]
- Cai, L.; Chen, Q.; Hua, C.; Niu, L.; Kong, Q.; Wu, L.; Ni, Y. Chronic Dexamethasone Disturbs the Circadian Rhythm of Melatonin and Clock Genes in Goats. Animals 2025, 15, 115. [Google Scholar] [CrossRef]
- Chen, M.; Xiao, D.; Liu, W.; Song, Y.; Zou, B.; Li, L.; Li, P.; Cai, Y.; Liu, D.; Liao, Q.; et al. Intake of Ganoderma lucidum polysaccharides reverses the disturbed gut microbiota and metabolism in type 2 diabetic rats. Int. J. Biol. Macromol. 2020, 155, 890–902. [Google Scholar] [CrossRef]
- Chen, L.; Wang, X.; Sun, J.; Xue, J.; Yang, X.; Zhang, Y. Structural characteristics of a heteropolysaccharide from Ganoderma lucidum and its protective effect against Alzheimer’s disease via modulating the microbiota-gut-metabolomics. Int. J. Biol. Macromol. 2025, 297, 139863. [Google Scholar] [CrossRef]
- Alvarez-Sieiro, P.; Montalbán-López, M.; Mu, D.; Kuipers, O.P. Bacteriocins of lactic acid bacteria: Extending the family. Appl. Microbiol. Biotechnol. 2016, 100, 2939–2951. [Google Scholar] [CrossRef]
- Chassy, B.M.; Murphy, C.M. Lactococcus and lactobacillus. In Bacillus subtilis and Other Gram-Positive Bacteria: Biochemistry, Physiology, and Molecular Genetics; American Society for Microbiology: Washington, DC, USA, 1993; pp. 65–82. [Google Scholar] [CrossRef]
- Campos, G.M.; Américo, M.F.; Freitas, A.d.S.; Barroso, F.A.L.; Dutra, J.d.C.F.; Quaresma, L.S.; Cordeiro, B.F.; Laguna, J.G.; de Jesus, L.C.L.; Fontes, A.M.; et al. Lactococcus lactis as an Interleukin Delivery System for Prophylaxis and Treatment of Inflammatory and Autoimmune Diseases. Probiotics Antimicrob. Proteins 2023, 16, 352–366. [Google Scholar] [CrossRef]






| Items | Content (%) |
|---|---|
| Ingredients | |
| Corn | 67.92 |
| Soybean meal (43% crude protein) | 24.90 |
| Soybean oil | 2.00 |
| Lys (98%) | 0.09 |
| Met (98%) | 0.09 |
| Vitamin-mineral Premix 1 | 5.00 |
| Total | 100.00 |
| Nutrient level 2 | |
| CP | 16.00 |
| ME (MJ/kg)b | 12.40 |
| CF | 2.56 |
| Ca | 0.79 |
| P | 0.51 |
| Lys | 0.90 |
| Met | 0.45 |
| Thr | 0.63 |
| Cys | 0.21 |
| Genes | Primer Sequence 5′-3′ | Genbank |
|---|---|---|
| ZO-1 | F:CTAGCTAGCGTACAGTACAC | XM_013177404.1 |
| R:CTCTCTCATAGGCAGGAAAC | ||
| Occludin | F:GCTGGGCTACAACTACGGGT | XM_013199669 |
| R:ACGATGGAGGCGATGAGC | ||
| Claudin-1 | F:GGAAGATGACCAGGTGAAG | XM_013199194.1 |
| R:GGAAGATGACCAGGTGAAG | ||
| β-actin | F:TCCGTGACATCAAGGAGAAG | XM_013174886.1 |
| R:CATGATGGAGTTGAAGGTGG |
| Items | Groups | ||||
|---|---|---|---|---|---|
| Con | DEX | DEX + GLP | SEM | p-Value | |
| BW, g | |||||
| 14d | 547.89 | 549.50 | 548.72 | 3.99 | 0.969 |
| 21d | 1011.75 a | 675.25 b | 708.00 b | 14.37 | <0.01 |
| 35d | 2187.50 a | 1657.19 b | 1987.58 ab | 22.14 | <0.01 |
| ADFI, g/d | |||||
| 14–21d | 171.31 a | 45.99 b | 56.71 b | 10.93 | <0.01 |
| 21–35d | 272.55 b | 229.54 c | 301.94 a | 6.90 | <0.01 |
| 14–35d | 238.80 a | 168.36 b | 220.20 ab | 5.98 | <0.01 |
| ADG, g | |||||
| 14–21d | 66.27 a | 17.96 b | 22.75 b | 1.95 | <0.01 |
| 21–35d | 83.39 b | 70.14 c | 91.40 a | 1.15 | <0.01 |
| 14–35d | 78.08 a | 52.75 b | 68.52 ab | 1.01 | <0.01 |
| F/G | |||||
| 14–21d | 2.59 | 2.54 | 2.49 | 0.03 | 0.706 |
| 21–35d | 3.28 | 3.27 | 3.30 | 0.04 | 0.965 |
| 14–35d | 3.08 | 3.19 | 3.21 | 0.04 | 0.418 |
| Items | Groups | ||||
|---|---|---|---|---|---|
| Con | DEX | DEX + GLP | SEM | p-Value | |
| 21d | |||||
| Spleen index, g/kg | 1.38 a | 0.88 b | 1.04 b | 0.05 | <0.01 |
| Thymus index, g/kg | 1.80 a | 0.67 b | 0.71 b | 0.12 | <0.01 |
| Bursa of Fabricius index, g/kg | 1.02 a | 0.77 b | 0.61 b | 0.05 | 0.007 |
| 35d | |||||
| Spleen index, g/kg | 1.37 | 0.95 | 1.16 | 0.06 | 0.077 |
| Thymus index, g/kg | 1.44 | 1.18 | 1.36 | 1.35 | 0.529 |
| Bursa of Fabricius index, g/kg | 0.74 | 0.50 | 0.60 | 0.05 | 0.384 |
| Items | Groups | ||||
|---|---|---|---|---|---|
| Con | DEX | DEX + GLP | SEM | p-Value | |
| 21d | |||||
| TP, g/kg | 115.02 a | 99.77 bc | 95.10 c | 1.80 | <0.01 |
| ALB, g/kg | 58.13 a | 49.73 b | 48.60 b | 0.34 | 0.033 |
| GLOB, g/kg | 57.92 a | 50.68 b | 46.88 b | 1.23 | 0.001 |
| IL-6, pg/mL | 37.42 a | 28.79 b | 28.00 b | 1.23 | 0.004 |
| IL-10, pg/mL | 48.89 | 37.67 | 48.53 | 1.84 | 0.059 |
| IgA, μg/mL | 369.39 a | 330.07 ab | 293.48 b | 11.55 | 0.013 |
| IgG, g/L | 24.67 a | 18.59 b | 19.03 b | 0.78 | 0.004 |
| IgM, μg/mL | 1993.68 | 1501.72 | 1809.22 | 74.43 | 0.078 |
| 35d | |||||
| TP, g/kg | 115.81 a | 92.55 b | 108.55 a | 2.10 | <0.01 |
| ALB, g/kg | 58.58 a | 47.88 b | 51.76 ab | 1.26 | 0.005 |
| GLOB, g/kg | 57.05 a | 44.97 b | 57.62 a | 1.48 | 0.002 |
| IL-6, pg/mL | 40.95 | 33.35 | 38.04 | 0.90 | 0.078 |
| IL-10, pg/mL | 50.68 a | 39.64 b | 50.33 a | 1.55 | 0.017 |
| IgA, μg/mL | 363.13 | 305.64 | 327.58 | 9.80 | 0.227 |
| IgG, g/L | 23.02 a | 17.82 b | 21.19 ab | 0.69 | 0.047 |
| IgM, μg/mL | 1697.64 | 1546.24 | 1612.66 | 70.62 | 0.769 |
| Items | Groups | ||||
|---|---|---|---|---|---|
| Con | DEX | DEX + GLP | SEM | p-Value | |
| 21d | |||||
| Thymic Cortical/Medullary Area Ratio | 1.84 a | 0.99 b | 1.23 b | 0.07 | <0.01 |
| Lymphoid Follicle Count per Unit Area of Bursa of Fabricius (units/mm2) | 18.02 a | 10.23 b | 12.74 b | 0.61 | <0.01 |
| White Pulp Area Percentage of Spleen (%) | 20.12 | 17.23 | 18.23 | 0.59 | 0.745 |
| 35d | |||||
| Thymic Cortical/Medullary Area Ratio | 1.89 a | 1.25 b | 1.74 ab | 0.09 | <0.01 |
| Lymphoid Follicle Count per Unit Area of Bursa of Fabricius (units/mm2) | 22.69 a | 16.78 b | 23.14 a | 0.76 | 0.023 |
| White Pulp Area Percentage of Spleen (%) | 23.52 | 19.74 | 21.35 | 1.12 | 0.145 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Li, G.; Wang, X.; Gong, S.; He, D. Effects of Ganoderma lucidum Polysaccharides on Dexameth-Asone-Induced Immune Injury in Goslings. Animals 2025, 15, 3226. https://doi.org/10.3390/ani15213226
Wang H, Li G, Wang X, Gong S, He D. Effects of Ganoderma lucidum Polysaccharides on Dexameth-Asone-Induced Immune Injury in Goslings. Animals. 2025; 15(21):3226. https://doi.org/10.3390/ani15213226
Chicago/Turabian StyleWang, Huiying, Guangquan Li, Xianze Wang, Shaoming Gong, and Daqian He. 2025. "Effects of Ganoderma lucidum Polysaccharides on Dexameth-Asone-Induced Immune Injury in Goslings" Animals 15, no. 21: 3226. https://doi.org/10.3390/ani15213226
APA StyleWang, H., Li, G., Wang, X., Gong, S., & He, D. (2025). Effects of Ganoderma lucidum Polysaccharides on Dexameth-Asone-Induced Immune Injury in Goslings. Animals, 15(21), 3226. https://doi.org/10.3390/ani15213226
