The Effect of Oral Administration of Bisphenol A and AF on Their Deposition in the Body Organs of Growing Pigs and the Relationship to Growth Rate
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Diet
2.2. Slaughtering and Sampling
2.3. Equipment
2.4. GC-MS Analysis
2.5. Quality Control
2.6. Sample Preparation
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mikolajewska, K.; Stragierowicz, J.; Gromadzinska, J. Bisphenol A—Application, sources of exposure and potential risks in infants, children and pregnant women. Int. J. Occup. Med. Environ. Health 2015, 28, 209–241. [Google Scholar] [CrossRef]
- Liao, C.; Liu, F.; Guo, Y.; Moon, H.-B.; Nakata, H.; Wu, Q.; Kannan, K. Occurrence of eight bisphenol analogues in indoor dust from the United States and several Asian countries: Implications for human exposure. Environ. Sci. Technol. 2012, 46, 9138–9145. [Google Scholar] [CrossRef]
- Rocha, S.; Domingues, V.F.; Pinho, C.; Fernandes, V.C.; Delerue-Matos, C.; Gameiro, P.; Mansilha, C. Occurrence of bisphenol A, estrone, 17-estradiol and 17 β-ethinylestradiol in portugalese rivers. Bull. Environ. Contam. Toxicol. 2013, 90, 73–78. [Google Scholar] [CrossRef]
- Liao, C.; Kannan, K. A survey of bisphenol A and other bisphenol analogues in foodstuffs from nine cities in China. Food Addit. Contam. Part A 2014, 31, 319–329. [Google Scholar] [CrossRef]
- Karthikraj, R.; Lee, S.; Kannan, K. Biomonitoring of exposure to bisphenols, benzophenones, triclosan, and triclocarban in pet dogs and cats. Environ. Res. 2020, 180, 108821. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Yu, Y.; Ren, L.; Zhang, X.; Liu, G.; Yu, Y. Estimation of intake and uptake of bisphenols and triclosan from personal care products by dermal contact. Sci. Total Environ. 2018, 621, 1389–1396. [Google Scholar] [CrossRef] [PubMed]
- Michałowicz, J. Bisphenol A—Sources, toxicity and biotransformation. Environ. Toxicol. Pharmacol. 2014, 37, 738–758. [Google Scholar] [CrossRef] [PubMed]
- Szymanska, K.; Makowska, K.; Gonkowski, S. The influence of high and low doses of bisphenol A (BPA) on the enteric nervous system of the porcine ileum. Int. J. Mol. Sci. 2018, 19, 917. [Google Scholar] [CrossRef]
- Li, X.; Ying, G.G.; Su, H.C.; Yang, X.B.; Wang, L. Simultaneous determination and assessment of 4-nonylphenol, bisphenol A and triclosan in tap water, bottled water and baby bottles. Environ. Int. 2010, 36, 557–562. [Google Scholar] [CrossRef]
- Jiang, S.; Liu, H.; Zhou, S.; Zhang, X.; Peng, C.; Zhou, H.; Tong, Y.; Lu, Q. Association of bisphenol A and its alternatives bisphenol S and F exposure with hypertension and blood pressure: A cross-sectional study in China. Environ. Pollut. 2020, 257, 113639. [Google Scholar] [CrossRef]
- Wehbe, Z.; Nasser, S.A.; El-Yazbi, A.; Nasreddine, S.; Eid, A.H. Estrogen and bisphenol A in hypertension. Curr. Hypertens. Rep. 2020, 22, 23. [Google Scholar] [CrossRef]
- EFSA. 2023 Re-Evaluation of the Risk to Public Health from Bisphenol A (BPA) in Foodstuffs. Available online: https://cot.food.gov.uk/EFSA%202023%20re-evaluation%20of%20the%20risk%20to%20public%20health%20from%20bisphenol%20A%20(BPA)%20in%20foodstuffs (accessed on 5 October 2025).
- European Commission Bans Bisphenol A in Food Contact Materials. Available online: https://foodpackagingforum.org/news/european-commission-bans-bisphenol-a-in-food-contact-materials (accessed on 5 October 2025).
- Gramec Skledar, D.; Peterlin Mašič, L. Bisphenol A and its analogs: Do their metabolites have endocrine activity? Environ. Toxicol. Pharmacol. 2016, 47, 182–199. [Google Scholar] [CrossRef]
- Yu, X.; Xue, J.; Yao, H.; Wu, Q.; Venkatesan, A.K.; Halden, R.U.; Kannan, K. Occurrence and estrogenic potency of eight bisphenol analogs in sewage sludge from the US EPA targeted national sewage sludge survey. J. Hazard Mater. 2015, 299, 733–739. [Google Scholar] [CrossRef]
- Yang, J.; Li, H.Y.; Ran, Y.; Chan, K.M. Distribution and bioconcentration of endocrine disrupting chemicals in surface water and fish bile of the Pearl River Delta, South China. Chemosphere 2014, 107, 439–446. [Google Scholar] [CrossRef]
- Česen, M.; Lambropoulou, D.; Laimou-Geraniou, M.; Kosjek, T.; Blaznik, U.; Heath, D.; Heath, E. Determination of bisphenols and related compounds in honey and their migration from selected food contact materials. J. Agric. Food Chem. 2016, 64, 8866–8875. [Google Scholar] [CrossRef]
- Jin, H.; Zhu, J.; Chen, Z.; Hong, Y.; Cai, Z. Occurrence and partitioning of bisphenol analogues in adults’ blood from China. Environ. Sci. Technol. 2018, 52, 812–820. [Google Scholar] [CrossRef]
- Liao, C.; Kannan, K. Concentrations and profiles of bisphenol A and other bisphenol analogues in foodstuffs from the United States and their implications for human exposure. J. Agric. Food Chem. 2013, 61, 4655–4662. [Google Scholar] [CrossRef] [PubMed]
- Donoghue, L.J.; Neufeld, T.I.; Li, Y.; Arao, Y.; Coons, L.A.; Korach, K.S. Differential activation of a mouse estrogen receptor β isoform (mERβ2) with endocrine-disrupting chemicals (EDCs). Environ. Health Perspect. 2017, 125, 634–642. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Jiao, Z.; Shi, J.; Li, M.; Guo, Q.; Shao, B. Effects of bisphenol analogues on steroidogenic gene expression and hormone synthesis in H295R cells. Chemosphere 2016, 147, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Mokra, K.; Wozniak, K.; Bukowska, B.; Sicinska, P.; Michalowicz, J. Low-concentration exposure to BPA, BPF and BPAF induces oxidative DNA bases lesions in human peripheral blood mononuclear cells. Chemosphere 2018, 201, 119–126. [Google Scholar] [CrossRef]
- Wu, P.; Cai, Z.; Jin, H.; Tang, Y. Adsorption mechanisms of five bisphenol analogues on PVC misroplastics. Sci. Total Environ. 2019, 650, 671–678. [Google Scholar] [CrossRef]
- Deceuninck, Y.; Bichon, E.; Durand, S.; Bemrah, N.; Zendong, Z.; Morvan, M.L.; Marchand, P.; Dervilly-Pinel, G.; Antignac, J.P.; Leblanc, J.C.; et al. Development and validation of a specific and sensitive gas chromatography tandem mass spectrometry method for the determination of bisphenol A residues in a large set of food items. J. Chromatogr. A 2014, 1362, 241–249. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, M.; Qiang, L.; Wu, W.; Yang, J.; Zhu, L. Toxicokinetics and bioaccumulation characteristics of bisphenol analogues in common carp (Cyprinus carpio). Ecotoxicol. Environ. Saf. 2020, 191, 110183. [Google Scholar] [CrossRef]
- Makowska, K.; Staniszewska, M.; Bodziach, K.; Calka, J.; Gonkowski, S. Concentrations of bisphenol a (BPA) in fresh pork loin meat under standard stock-farming conditions and after oral exposure—A preliminary study. Chemosphere 2022, 295, 133816. [Google Scholar] [CrossRef]
- Wee, S.Y.; Aris, A.Z.; Yusoff, F.M.; Praveena, S.M. Tap water contamination: Multiclass endocrine disrupting compounds in different housing types in an urban settlement. Chemosphere 2021, 264, 128488. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.; Xie, J.; Mao, L.; Zhao, M.; Bai, X.; Wen, J.; Shen, T.; Wu, P. Bisphenol analogue concentrations in human breast milk and their associations with postnatal infant growth. Environ. Pollut. 2020, 259, 113779. [Google Scholar] [CrossRef] [PubMed]
- Balakrishnan, B.; Henare, K.; Thorstensen, E.B.; Ponnampalam, A.P.; Mitchell, M.D. Transfer of bisphenol A across the human placenta. Am. J. Obstet. Gynecol. 2010, 202, 393. [Google Scholar] [CrossRef]
- Tao, H.Y.; Zhang, J.; Shi, J.; Guo, W.; Liu, X.; Zhang, M.; Ge, H.; Li, X.Y. Occurrence and emission of phthalates, bisphenol A, and oestrogenic compounds in concentrated animal feeding operations in Southern China. Ecotoxicol. Environ. Saf. 2021, 207, 111521. [Google Scholar] [CrossRef] [PubMed]
- Maršálek, P.; Kovaříková, S.; Lueerssen, F.; Večerek, V. Determination of bisphenol A in commercial cat food marketed in the Czech Republic. J. Feline Med. Surg. 2021, 20, 160–167. [Google Scholar] [CrossRef]
- Champmartin, C.; Marquet, F.; Chedik, L.; Décret, M.J.; Aubertin, M.; Ferrari, E.; Grandelande, M.C.; Cosnier, F. Human in vitro percutaneous absorption of bisphenol S and bisphenol A: A comparative study. Chemosphere 2020, 252, 126525. [Google Scholar] [CrossRef]
- Kaddar, N.; Harthé, C.; Déschaud, H.; Mappus, E.; Pugeat, M. Cutaneous penetration of bisphenol A in pig skin. J. Toxicol. Environ. Health 2008, 71, 471–473. [Google Scholar] [CrossRef] [PubMed]
- Mu, X.; Suzhen, Q.; Wang, H.; Yuan, L.; Wang, C.; Li, Y.; Qiu, J. Bisphenol analogues induced metabolic effects through eliciting intestinal cell heterogeneous response. Environ. Inter. 2022, 165, 107287. [Google Scholar] [CrossRef]
- Gayrard, V.; Lacroix, M.Z.; Grandin, F.C.; Collet, S.H.; Mila, H.; Viguié, C.; Gély, C.A.; Rabozzi, B.; Bouchard, M.; Léandri, R.; et al. Oral Systemic Bioavailability of Bisphenol A and Bisphenol S in Pigs. Environ. Health Perspect. 2019, 127, 77005. [Google Scholar] [CrossRef]
- Lv, Z.; Xu, X.; Tang, Z.; Liang, Y.; Peng, C.; Wu, Y.; Sang, D.; Jia, G.; Hu, X.; Chen, Y.; et al. Chronic BPAF exposure differentially enhances fat deposition in mice fed normal or high-fat diets via lipid metabolism dysregulation. Front. Endocrinol. 2025, 16, 1571076. [Google Scholar] [CrossRef]
- Murakami, K.; Ohashi, A.; Hori, H.; Hibiya, M.; Shoji, Y.; Kunisaki, M.; Akita, M.; Yagi, A.; Sugiyama, K.; Shimozato, S.; et al. Accumulation of Bisphenol A in Hemodialysis Patients. Blood Purif. 2007, 25, 290–294. [Google Scholar] [CrossRef] [PubMed]
- Gramec Skledar, D.; Carino, A.; Trontelj, J.; Troberg, J.; Distrutti, E.; Marchianò, S.; Tomašič, T.; Zega, A.; Finel, M.; Fiorucci, S.; et al. Endocrine activities and adipogenic effects of bisphenol AF and its main metabolite. Chemosphere 2019, 215, 870–880. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Yang, Y.; Yang, Y.; Yin, J.; Zhang, J.; Feng, Y.; Shao, B. Biotransformation of Bisphenol AF to Its Major Glucuronide Metabolite Reduces Estrogenic. PLoS ONE 2013, 8, e83170. [Google Scholar] [CrossRef]
- Yoo, M.H.; Lee, A.R.; Kim, W.; Yu, W.J.; Lee, B.S. Bisphenol A is more potent than bisphenol S in influencing the physiological and pathological functions of lungs via inducing lung fibrosis and stimulating metastasis. Ecotoxicol. Environ. Saf. 2023, 264, 115479. [Google Scholar] [CrossRef]
- Berni, M.; Gigante, P.; Bussolati, S.; Grasselli, F.; Grolli, S.; Ramoni, R.; Basini, G. Bisphenol S, a Bisphenol A alternative, impairs swine ovarian and adipose cell functions. Domest. Anim. Endocrinol. 2019, 66, 48–56. [Google Scholar] [CrossRef]
| Group/Time | T0 1 | T14 1 | T28 1 | Σ |
|---|---|---|---|---|
| Control (n) | 12 | - | - | 12 |
| B-20 (n) | 4 | 4 | 4 | 12 |
| B-60 (n) | 4 | 4 | 4 | 12 |
| Σ | 20 | 8 | 8 | 36 |
| Analyte | RT (min) | Ions (m/z) | |
|---|---|---|---|
| Quantitative | Qualitative | ||
| BPAF | 10.97 | 411 | 480 |
| BPA-d16 | 13.38 | 368 | 369 |
| BPA | 13.48 | 357 | 358 |
| Compounds (µg/L) | Coefficient of Determination (R2) | LOD (µg/L) | LOQ |
|---|---|---|---|
| BPAF | 0.999 | 0.60 | 1.99 |
| BPA | 0.999 | 0.88 | 2.94 |
| Trait | Time | Control | B-20 | B-60 |
|---|---|---|---|---|
| Plasma | T0 | 5.73 ± 6.40 ᴬ | 23.12 ± 7.52 ᵃ | 55.07 ± 7.52 ᴮᵇ |
| T14 | 15.85 ± 8.23 | 27.35 ± 7.13 | ||
| T28 | 12.19 ±7.69 | 23.84 ± 7.69 | ||
| Liver | T0 | 7.16 ± 2.10 | 8.04 ± 3.55 | 10.78 ± 4.10 |
| T14 | 10.91 ± 4.39 | 9.25 ± 4.39 | ||
| T28 | 2.18 ± 0.62 | 3.20 ± 0.62 | ||
| Lungs | T0 | 8.68 ± 3.06 | 7.37 ± 1.86 | 5.76 ± 1.86 |
| T14 | 10.08 ± 10.46 | 12.70 ± 8.54 | ||
| T28 | 16.96 ± 9.12 | 16.98 ± 7.90 | ||
| Muscle | T0 | 9.55 ± 6.55 ab | 5.80 ± 3.32 a | 16.23 ± 3.32 b |
| T14 | 22.71 ± 16.16 | 33.09 ± 16.16 | ||
| T28 | 25.22 ± 6.41 | 8.86 ± 6.41 | ||
| Spleen | T0 | 14.34 ± 4.41 ᵃ | 19.82 ± 7.37 | 29.04 ± 6.38 |
| T14 | 20.81 ± 5.57 | 18.38 ± 6.83 | ||
| T28 | 33.46 ± 9.93 | 25.97 ± 8.60 | ||
| Fat | T0 | 0.57 ± 0.19 | 0.47 ± 0.27 | 0.69 ± 0.27 |
| T14 | 1.12 ± 0.26 | 1.31 ± 0.26 | ||
| T28 | 1.65 ± 0.31 | 1.17 ± 0.31 | ||
| Kidney | T0 | 16.96 ± 3.10 | 23.08 ± 5.90 | 16.96 ± 3.10 |
| T14 | 16.47 ± 5.29 | 29.84 ± 5.29 | ||
| T28 | 27.47 ± 5.40 | 24.16 ± 4.67 |
| Trait | Time | Control | B-20 | B-60 |
|---|---|---|---|---|
| Plasma | T0 | 0.17 ± 0.42 A | 10.28 ± 2.85 B | 9.48 ± 3.74 B |
| T14 | 6.80 ± 3.74 | 4.55 ± 2.85 | ||
| T28 | n.d. | 0.94 ± 0.51 | ||
| Liver | T0 | 0.12 ± 0.16 | 0.25 ± 0.20 | n.d. |
| T14 | n.d. | n.d. | ||
| T28 | n.d. | 0.71 ± 0.50 |
| Trait | Control | B-20 | B-60 |
|---|---|---|---|
| ADG | 455 ± 67 | 450 ± 61 | 421 ± 88 |
| Trait | Low ADG (Below 435/g Day) | High ADG (Over 435 g/Day) |
|---|---|---|
| ADG | 376 ± 30 | 486 ± 29 |
| Plasma | 13.64 ± 7.98 | 18.48 ± 9.61 |
| Liver | 2.73 ± 1.41 | 9.20 ± 7.7 |
| Lungs | 16.96 ± 18.94 | 8.28 ± 3.90 |
| Muscle | 30.83 ± 23.51 | 11.45 ± 13.76 |
| Spleen | 30.94 ± 25.52 | 21.57 ± 7.94 |
| Fat | 1.26 ± 0.54 | 0.99 ± 0.79 |
| Kidney | 25.15 ± 15.37 | 20.94 ± 3.68 |
| Trait | Low ADG (Below 435/g Day) | High ADG (Over 435 g/Day) |
|---|---|---|
| ADG | 352 ± 55 | 490 ± 52 |
| Plasma | 34.71 ± 18.42 | 36.13 ± 31.7 |
| Liver | 2.95 ± 1.56 | 12.89 ± 11.87 |
| Lungs | 7.52 ± 4.18 | 16.78 ± 17.02 |
| Muscle | 5.19 ± 4.91 | 33.60 ± 25.36 |
| Spleen | 36.26 ± 19.61 | 18.62 ± 8.73 |
| Fat | 1.31 ± 0.44 | 0.81 ± 0.80 |
| Kidney | 29.47 ± 8.56 | 18.99 ± 4.91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bahelka, I.; Stupka, R.; Zadinová, K.; Šprysl, M.; Čítek, J. The Effect of Oral Administration of Bisphenol A and AF on Their Deposition in the Body Organs of Growing Pigs and the Relationship to Growth Rate. Animals 2025, 15, 3214. https://doi.org/10.3390/ani15213214
Bahelka I, Stupka R, Zadinová K, Šprysl M, Čítek J. The Effect of Oral Administration of Bisphenol A and AF on Their Deposition in the Body Organs of Growing Pigs and the Relationship to Growth Rate. Animals. 2025; 15(21):3214. https://doi.org/10.3390/ani15213214
Chicago/Turabian StyleBahelka, Ivan, Roman Stupka, Kateřina Zadinová, Michal Šprysl, and Jaroslav Čítek. 2025. "The Effect of Oral Administration of Bisphenol A and AF on Their Deposition in the Body Organs of Growing Pigs and the Relationship to Growth Rate" Animals 15, no. 21: 3214. https://doi.org/10.3390/ani15213214
APA StyleBahelka, I., Stupka, R., Zadinová, K., Šprysl, M., & Čítek, J. (2025). The Effect of Oral Administration of Bisphenol A and AF on Their Deposition in the Body Organs of Growing Pigs and the Relationship to Growth Rate. Animals, 15(21), 3214. https://doi.org/10.3390/ani15213214

