Effects of an Immunomodulatory Supplement and Evaporative Cooling on Immune Status, Mammary Gland Microstructure, and Gene Expression of Cows Exposed to Heat Stress During the Dry Period
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Treatments, Experimental Design, and Animals
2.2. Mammary Gland Biopsy and Histology
2.3. Cortisol and Prolactin Analysis
2.4. Statistical Analysis
3. Results
3.1. Hematology
3.2. Mammary Gland Cell Turnover and Microstructure
3.3. Mammary Gland Gene Expression
3.4. Cortisol and Prolactin Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dahl, G.E.; Tao, S.; Monteiro, A.P.A. Effects of late-gestation heat stress on immunity and performance of calves. J. Dairy Sci. 2016, 99, 3193–3198. [Google Scholar] [CrossRef] [PubMed]
- Fabris, T.F.; Laporta, J.; Corra, F.N.; Torres, Y.M.; Kirk, D.J.; McLean, D.J.; Chapman, J.; Dahl, G.E. Effect of nutritional immunomodulation and heat stress during the dry period on subsequent performance of cows. J. Dairy Sci. 2017, 100, 6733–6742. [Google Scholar] [CrossRef] [PubMed]
- Tao, S.; Bubolz, J.W.; Amaral, B.C.D.; Thompson, I.M.; Hayen, M.J.; Johnson, S.E.; Dahl, G.E. Effect of heat stress during the dry period on mammary gland development. J. Dairy Sci. 2011, 94, 5976–5986. [Google Scholar] [CrossRef]
- Fabris, T.F.; Laporta, J.; Skibiel, A.L.; Corra, F.N.; Senn, B.D.; Wohlgemuth, S.E.; Dahl, G.E. Effect of heat stress during early, late, and entire dry period on subsequent performance of dairy cattle. J. Dairy Sci. 2019, 102, 5647–5656. [Google Scholar] [CrossRef]
- Capuco, A.V.; Ellis, S.E.; Hale, S.A.; Long, E.; Erdman, R.A.; Zhao, X.; Paape, M.J. Lactation persistency: Insights from mammary cell proliferation studies. J. Anim. Sci. 2003, 81, 18–31. [Google Scholar] [CrossRef]
- Hurley, W.L. Mammary gland function during involution. J. Dairy Sci. 1989, 72, 1637–1646. [Google Scholar] [CrossRef]
- Capuco, A.V.; Akers, R.M.; Smith, J.J. Mammary growth in Holstein cows during the dry period: Quantification of nucleic acids and histology. J. Dairy Sci. 1997, 80, 477–487. [Google Scholar] [CrossRef]
- Fabris, T.F.; Laporta, J.; Skibiel, A.L.; Dado-Senn, B.; Wohlgemuth, S.E.; Dahl, G.E. Impact of heat stress during early, late and the entire dry period on mammary development in Holstein cattle. J. Dairy Sci. 2020, 103, 8576–8586. [Google Scholar] [CrossRef]
- Wilde, C.J.; Addey, V.P.C.; Li, P.; Fernig, D.G. Programmed cell death in bovine mammary tissue during lactation and involution. Exp. Physiol. 1997, 82, 943–953. [Google Scholar] [CrossRef]
- Sorensen, M.T.; Nørgaard, J.V.; Theil, P.K.; Vestergaard, M.; Sejrsen, K. Cell turnover and activity in mammary tissue during lactation and dry period in dairy cows. J. Dairy Sci. 2006, 89, 4632–4639. [Google Scholar] [CrossRef] [PubMed]
- Brandão, A.P.; Cooke, R.F.; Corrá, F.N.; Piccolo, M.B.; Gennari, R.; Leiva, T.; Vasconcelos, J.L. Physiologic, health, and production responses of dairy cows supplemented with an immunomodulatory feed ingredient during the transition period. J. Dairy Sci. 2016, 99, 5562–5572. [Google Scholar] [CrossRef]
- Dikmen, S.; Alava, E.; Pontes, E.; Fear, J.; Dikmen, B.; Olson, T.; Hansen, P. Differences in thermoregulatory ability between slick-haired and wild-type lactating Holstein cows in response to acute heat stress. J. Dairy Sci. 2008, 91, 3395–3402. [Google Scholar] [CrossRef]
- do Amaral, B.C.; Connor, E.E.; Tao, S.; Hayen, M.J.; Bubolz, J.W.; Dahl, G.E. Heat stress abatement during the dry period influences metabolic gene expression and improves immune status in the transition period of dairy cows. J. Dairy Sci. 2011, 94, 86–96. [Google Scholar] [CrossRef]
- Oliver, S.P.; Sordillo, L.M. Approaches to the manipulation of mammary involution. J. Dairy Sci. 1989, 72, 1647–1664. [Google Scholar] [CrossRef]
- Lasceiles, A.K. The immune system of the ruminant mammary gland and its role in the control of mastitis. J. Dairy Sci. 1979, 62, 1647–1664. [Google Scholar] [CrossRef]
- Wohlgemuth, S.E.; Ramirez-Lee, Y.; Tao, S.; Monteiro, A.P.A.; Ahmed, B.M.; Dahl, G.E. Short communication: Effect of heat stress on markers of autophagy in the mammary gland during the dry period. J. Dairy Sci. 2016, 99, 4875–4880. [Google Scholar] [CrossRef]
- Diez-Fraile, A.; Meyer, E.; Burvenich, C. Regulation of adhesion molecules on circulating neutrophils during coliform mastitis and their possible immunomodulation with drugs. Vet. Immunol. Immunopathol. 2002, 86, 1–10. [Google Scholar] [CrossRef]
- Medzhitov, R. Origin and physiological roles of inflammation. Nature 2008, 454, 428–435. [Google Scholar] [CrossRef]
- Steeber, D.A.; Campbell, M.A.; Basit, A.; Ley, K.; Tedder, T.F. Optimal selectin-mediated rolling of leukocytes during inflammation in vivo requires intercellular adhesion molecule-1 expression. Proc. Natl. Acad. Sci. USA 1998, 95, 7562–7567. [Google Scholar] [CrossRef] [PubMed]
- Paape, M.J.; Miller, R.H. Influence of involution on intramammary phagocytic defense mechanisms. J. Dairy Sci. 1992, 75, 1849–1856. [Google Scholar] [CrossRef] [PubMed]
- Dado-Senn, B.; Skibiel, A.L.; Fabris, T.F.; Dahl, G.E.; Laporta, J. Dry period heat stress induces microstructural changes in the lactating mammary gland. PLoS ONE 2019, 14, e0222120. [Google Scholar] [CrossRef]
- Holst, B.; Hurley, W.; Nelson, D. Involution of the bovine mammary gland: Histological and ultrastructural changes. J. Dairy Sci. 1987, 70, 935–944. [Google Scholar] [CrossRef]
- Seigneuric, R.; Mjahed, H.; Gobbo, J.; Joly, A.; Berthenet, K.; Shirley, S.; Garrido, C. Heat shock proteins as danger signals for cancer detection. Front. Oncol. 2011, 1, 37. [Google Scholar] [CrossRef]
- Skarda, J.; Urbanova, E.; Houdebine, L.M.; Delouis, C.; Bilek, J. Effects of insulin, cortisol and prolactin on lipid, protein and casein syntheses in goat mammary tissue in organ culture. Reprod. Nutr. Dev. 1982, 22, 379–386. [Google Scholar] [CrossRef] [PubMed]
- Tucker, H.A. Hormones, mammary growth, and lactation: A 41-year perspective. J. Dairy Sci. 2000, 83, 874–884. [Google Scholar] [CrossRef]
- Tonner, E.; Allan, G.J.; Flint, D.J. Hormonal control of plasmin and tissue-type plasminogen activator activity in rat milk during involution of the mammary gland. J. Endocrinol. 2000, 167, 265–273. [Google Scholar] [CrossRef]
- Accorsi, P.A.; Pacioni, B.; Pezzi, C.; Forni, M.; Flint, D.; Seren, E. Role of prolactin, growth hormone and insulin-like growth factor 1 in mammary gland involution in the dairy cow. J. Dairy Sci. 2002, 85, 507–513. [Google Scholar] [CrossRef]
- Skibiel, A.L.; Fabris, T.F.; Corra, F.N.; Torres, Y.M.; McLean, D.J.; Chapman, J.D.; Kirk, D.J.; Dahl, G.E.; Laporta, J. Effects of feeding an immunomodulatory supplement to heat-stressed or actively cooled cows during late gestation on postnatal immunity, health, and growth of calves. J. Dairy Sci. 2017, 100, 7659–7668. [Google Scholar] [CrossRef]







| Gene Name | Primer | Sequence (5′-3′) | |
|---|---|---|---|
| GAPDH | Forward | TGA CCC CTT CAT TGA CCT TC | NM_001034034.2 |
| Reverse | TAC TCA GCA CCA GCA TCA CC | ||
| RSP9 | Forward | GGA GAC CCT TCG AGA AGT CC | NW_021639847.1 |
| Reverse | CTT TCT CAT CCA GCG TCA GC | ||
| CASP3 | Forward | TGA AAT ACG AAG TCA GGA TTA AA | NM_001077840.1 |
| Reverse | GTC CGT TGG TTC CAA AAA TG | ||
| CASP8 | Forward | TTT AGC ATA GCA CGG AAG CA | NM_001045970.2 |
| Reverse | TAT CCA AAG CGT CTG CAT CA | ||
| HSF1 | Forward | CAG CTG ATG AAG GGG AAG CA | NM_001076809.1 |
| Reverse | TGG ATG AGC TTG TTG ACG ACT | ||
| HSP70 | Forward | GGG GAG GAC TTC GAC AAC AGG | NM_203322.3 |
| Reverse | CGG AAC AGG TCG GAG CAC AGC | ||
| HSP90 | Forward | AGG CAG AGG CTG ACA AGA ATG ACA | NM_001079637.1 |
| Reverse | AGC CAG AAG ACA GGA GAG CTG TTT | ||
| PRLR-SF | Forward | AGG TGA CAC TAT AGA ATA AGC AAC | NM_174155.3 |
| Reverse | GTA CGA CTC ACT ATA GGG AAA GGC | ||
| PRLR-LF | Forward | AAG GCC ATG TGG AAG ATT TG | NM_174155.3 |
| Reverse | GAT GAC TGT GAG GAC CAG CA | ||
| STAT5a | Forward | GAA ACA TCA CAA GCC CCA TT | NM_001012673.1 |
| Reverse | TGA AGC GCA ACA AGA AGG TA | ||
| BCL1 | Forward | GAT GGA ATA GGA ACC ACC AC | NM_001033627.2 |
| Reverse | AGT TGA GAA AGG CGA GAC AC | ||
| BCL2 | Forward | GAG TTC GGA GGG GTC ATG TG | NM_001166486.1 |
| Reverse | ACA AAG GCG TCC CAG CC | ||
| BAX | Forward | CAG GGT GGT TGG GAC GG | NM_173894.1 |
| Reverse | CTT CCA GAT GGT GAG CGA GG | ||
| FAS | Forward | GTT CCC CCA GCT CAA CGA A | AF479289.1 |
| Reverse | GGA CAT GCT GCT CAA AGG ATG | ||
| FASL | Forward | AGT CTG GCC TTT GAC ACC TG | NM_001098859.2 |
| Reverse | GTC CAC CCA GAA GAT TGG GG | ||
| MAP-LC3 | Forward | CTG AGG GGA GGC TGC AAA T | XM_005214696.2 |
| Reverse | GCT AGA TGA CAC AGT GAC G | ||
| ATG3 | Forward | GGT TGT TCG GCT ATG ATG AG | NM_001075364.1 |
| Reverse | GGG AGA TGA GGG TGA TTT TC | ||
| IGFR1 | Forward | GGG CTG AGT TGG TGG ATG | NM_001244612.1 |
| Reverse | CTC CAG CCT CCT CAG ATC AC |
| Variables | TRT | p-Value | |||||||
|---|---|---|---|---|---|---|---|---|---|
| CL | HT | CL + OMN | HT + OMN | SEM | T1 1 | T2 2 | DAY 3 | T1 × T2 4 | |
| Red blood cell (×106/µL) | 6.2 | 6.04 | 6.2 | 5.8 | 0.22 | 0.24 | 0.6 | <0.01 | 0.58 |
| Hematocrit (%) | 31.7 | 30 | 31.5 | 28.7 | 0.92 | 0.02 | 0.41 | 0.06 | 0.58 |
| Hemoglobin (g/dL) | 5.6 | 5.1 | 4.4 | 4.7 | 0.34 | 0.77 | <0.01 | <0.01 | 0.11 |
| Platelet count (103/µL) | 263.9 | 264.4 | 228.1 | 332.2 | 27.9 | 0.06 | 0.42 | 0.04 | 0.07 |
| Reticulocytes (103/µL) | 7 | 5.5 | 7.8 | 5.9 | 2.4 | 0.48 | 0.82 | 0.12 | 0.96 |
| White blood cell count (×103/µL) | 23.7 | 14.8 | 20 | 17.7 | 6 | 0.35 | 0.94 | 0.71 | 0.58 |
| Neutrophils (×103/µL) | 3.25 | 3.29 | 3.81 | 3.48 | 0.24 | 0.55 | 0.13 | <0.01 | 0.46 |
| Lymphocytes (×103/µL) | 9 | 8 | 9.3 | 8.5 | 3.05 | 0.78 | 0.9 | 0.02 | 0.98 |
| Eosinophils (×103/µL) | 0.71 | 0.52 | 0.52 | 0.78 | 0.1 | 0.73 | 0.74 | <0.01 | 0.04 |
| Monocytes (×103/µL) | 1.21 | 0.95 | 0.93 | 0.91 | 0.21 | 0.51 | 0.47 | 0.02 | 0.59 |
| Basophils (%) | 52.0 | 30.6 | 63.1 | 36.8 | 15.2 | 0.14 | 0.58 | 0.21 | 0.90 |
| DAY −43 | DAY −43 | DAY −39 | DAY −39 | p-VALUE | ||||||
|---|---|---|---|---|---|---|---|---|---|---|
| GENE * | CL (ddct) | HT (ddct) | OMN (ddct) | CON (ddct) | CL (ddct) | HT (ddct) | OMN (ddct) | CON (ddct) | TEMP | DIET |
| BECN1 | - | - | - | - | 3.32 | 2.11 | - | - | <0.10 | - |
| BECN2 | 5.58 | 6.11 | - | - | - | - | 6.52 | 5.79 | <0.10 | <0.10 |
| BAX | - | - | - | - | 6.31 | 7.00 | - | - | <0.10 | - |
| FAS | - | - | - | - | 2.90 | 3.70 | 3.84 | 2.80 | <0.10 | <0.05 |
| STAT5a | - | - | - | - | - | - | 5.05 | 4.43 | - | <0.05 |
| HSP70 | - | - | 4.28 | 5.11 | - | - | - | - | - | <0.05 |
| HSF1 | - | - | - | - | - | - | 5.44 | 5.05 | - | <0.01 |
| PRLR-SF | - | - | - | - | - | - | 5.61 | 4.89 | - | <0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fabris, T.F.; Laporta, J.; Corra, F.N.; Torres, Y.M.; Kirk, D.J.; Chapman, J.D.; Dahl, G.E. Effects of an Immunomodulatory Supplement and Evaporative Cooling on Immune Status, Mammary Gland Microstructure, and Gene Expression of Cows Exposed to Heat Stress During the Dry Period. Animals 2025, 15, 3113. https://doi.org/10.3390/ani15213113
Fabris TF, Laporta J, Corra FN, Torres YM, Kirk DJ, Chapman JD, Dahl GE. Effects of an Immunomodulatory Supplement and Evaporative Cooling on Immune Status, Mammary Gland Microstructure, and Gene Expression of Cows Exposed to Heat Stress During the Dry Period. Animals. 2025; 15(21):3113. https://doi.org/10.3390/ani15213113
Chicago/Turabian StyleFabris, Thiago F., Jimena Laporta, Fabiana N. Corra, Yazielis M. Torres, David J. Kirk, James D. Chapman, and Geoffrey E. Dahl. 2025. "Effects of an Immunomodulatory Supplement and Evaporative Cooling on Immune Status, Mammary Gland Microstructure, and Gene Expression of Cows Exposed to Heat Stress During the Dry Period" Animals 15, no. 21: 3113. https://doi.org/10.3390/ani15213113
APA StyleFabris, T. F., Laporta, J., Corra, F. N., Torres, Y. M., Kirk, D. J., Chapman, J. D., & Dahl, G. E. (2025). Effects of an Immunomodulatory Supplement and Evaporative Cooling on Immune Status, Mammary Gland Microstructure, and Gene Expression of Cows Exposed to Heat Stress During the Dry Period. Animals, 15(21), 3113. https://doi.org/10.3390/ani15213113

