A Preliminary Study on Species Identification of Immature Necrophagous Phorid Flies Based on FTIR Spectroscopy
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Insect
2.2. Sample Preparation
2.3. Collection of FTIR Spectra
2.4. Data Analysis
3. Results
3.1. FTIR Spectra of Three Necrophagous Phorid Flies at Different Developmental Stages
3.2. Discrimination Analysis of Three Necrophagous Phorid Flies at the Identical Developmental Time Points
3.3. Discrimination Analysis of Three Necrophagous Phorid Flies at the Same Developmental Stage
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Byrd, J.H.; Castner, J.L. Forensic Entomology: The Utility of Arthropods in Legal Investigations, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2010; p. 17. [Google Scholar]
- Cai, J.F. Forensic Entomology; People’s Medical Publishing House: Beijing, China, 2015; p. 19. [Google Scholar]
- Greenberg, B. Flies as forensic indicators. J. Med. Entomol. 1991, 28, 565–577. [Google Scholar] [CrossRef]
- Amendt, J.; Krettek, R.; Zehner, R. Forensic entomology. Naturwissenschaften 2004, 91, 51–65. [Google Scholar] [CrossRef]
- Amendt, J.; Bugelli, V.; Bernhardt, V. Time flies-age grading of adult flies for the estimation of the post-mortem interval. Diagnostics 2021, 11, 152. [Google Scholar] [CrossRef] [PubMed]
- Kotzé, Z.; Villet, M.H.; Weldon, C.W. Effect of temperature on development of the blowfly, Lucilia cuprina (Wiedemann) (Diptera: Calliphoridae). Int. J. Legal. Med. 2015, 129, 1155–1162. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, Y.N.; Liu, C.; Hu, G.L.; Wang, M.; Yang, L.J.; Chu, J.; Wang, J.F. Development of Aldrichina grahami (Diptera: Calliphoridae) at constant temperatures. J. Med. Entomol. 2018, 55, 1402–1409. [Google Scholar] [CrossRef]
- Feng, D.X.; Liu, G.C. Pupal age estimation of forensically important Megaselia spiracularis Schmitz (Diptera: Phoridae). Forensic Sci. Int. 2013, 231, 199–203. [Google Scholar] [CrossRef]
- Feng, D.X.; Liu, G.C. Pupal age estimation of forensically important Megaselia scalaris (Loew) (Diptera: Phoridae). Forensic Sci. Int. 2014, 236, 133–137. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.N.; Hu, G.L.; Wang, M.; Zhu, R.; Zhai, Y.S.; Sun, J.; Li, X.F.; Wang, L.H.; Wu, M.W.; et al. Development of Megaselia spiracularis (Diptera: Phoridae) at different constant temperatures. J. Therm. Biol. 2020, 93, 102722. [Google Scholar] [CrossRef]
- Zhang, Y.N.; Li, L.L.; Liao, M.Q.; Kang, C.T.; Hu, G.W.; Guo, Y.; Wang, Y.; Wang, J.F. Development of Megaselia scalaris at constant temperatures and its significance in estimating the time of death. Int. J. Legal. Med. 2024, 138, 97–106. [Google Scholar] [CrossRef]
- Han, W.; Feng, D.X.; Tang, Y.N. The effect of soil type and moisture on the development of forensically important Megaselia scalaris and Dohrniphora cornuta (Diptera: Phoridae). Insects 2024, 15, 666. [Google Scholar] [CrossRef]
- Ramos-Pastrana, Y.; Londoño, C.A.; Wolff, M. Intra-puparial development of Lucilia eximia (Diptera, Calliphoridae). Acta. Amaz. 2017, 47, 63–70. [Google Scholar] [CrossRef]
- Karabey, T.; Sert, O. The analysis of pupal development period in Lucilia sericata (Diptera: Calliphoridae) forensically important insect. Int. J. Leg. Med. 2018, 132, 1185–1196. [Google Scholar] [CrossRef] [PubMed]
- Flissak, J.C.; Moura, M.O. Intrapuparial development of Sarconesia chlorogaster (Diptera: Calliphoridae) for postmortem interval estimation (PMI). J. Med. Entomol. 2018, 55, 277–284. [Google Scholar] [CrossRef]
- Boehme, P.; Spahn, P.; Amendt, J.; Zehner, R. Differential gene expression during metamorphosis: A promising approach for age estimation of forensically important Calliphora vicina pupae (Diptera: Calliphoridae). Int. J. Legal Med. 2013, 127, 243–249. [Google Scholar] [CrossRef]
- Shang, Y.; Ren, L.; Yang, L.; Wang, S.; Chen, W.; Dong, J.; Ma, H.; Qi, X.; Guo, Y. Differential gene expression for age estimation of forensically important Sarcophaga peregrina (Diptera: Sarcophagidae) intrapuparial. J. Med. Entomol. 2020, 57, 65–77. [Google Scholar] [CrossRef]
- Chen, L.S. Chinese Necrophagous Flies; Guizhou Science and Technology Publishing House: Guiyang, China, 2013; pp. 35–216. [Google Scholar]
- Amendt, J.; Goff, M.L.; Campobasso, C.P.; Grassberger, M. Current Concepts in Forensic Entomology; Springer: Berlin, Germany, 2010; pp. 43–45. [Google Scholar]
- Nelson, L.A.; Wallman, J.F.; Dowton, M. Using COI barcodes to identify forensically and medically important blowflies. Med. Vet. Entomol. 2007, 21, 44–52. [Google Scholar] [CrossRef]
- Jordaens, K.; Sonet, G.; Richet, R.; Dupont, E.; Braet, Y.; Desmyter, S. Identification of forensically important Sarcophaga species (Diptera: Sarcophagidae) using the mitochondrial COI gene. Int. J. Legal. Med. 2013, 127, 491–504. [Google Scholar] [CrossRef]
- Meng, F.; Ren, L.; Wang, Z.; Deng, J.; Guo, Y.; Chen, C.; Finkelbergs, D.; Cai, J. Identification of forensically important blow flies (Diptera: Calliphoridae) in China based on COI. J. Med. Entomol. 2017, 54, 1193–1200. [Google Scholar] [CrossRef]
- Shang, Y.; Ren, L.; Chen, W.; Zha, L.; Cai, J.; Dong, J.; Guo, Y. Comparative mitogenomic analysis of forensically important sarcophagid flies (Diptera: Sarcophagidae) and implications of species identification. J. Med. Entomol. 2019, 2, 392–407. [Google Scholar] [CrossRef]
- Palevich, N.; Carvalho, L.; Maclean, P. Characterization of the complete mitochondrial genome of the New Zealand parasitic blowfly Calliphora vicina (Insecta: Diptera: Calliphoridae). Mitochondrial. DNA. B. Resour. 2021, 3, 1270–1272. [Google Scholar] [CrossRef]
- Dai, S.T.; Feng, D.X.; Sun, D.P. Characterization and phylogenetic analysis of the complete mitochondrial genomes of two tiny necrophagous phorid flies, Metopina sagittata and Puliciphora borinquenensis (Diptera: Phoridae). J. Med. Entomol. 2022, 59, 120–128. [Google Scholar] [CrossRef] [PubMed]
- Ye, G.; Li, K.; Zhu, J.; Zhu, G.; Hu, C. Cuticular hydrocarbon composition in pupal exuviae for taxonomic differentiation of six necrophagous flies. J. Med. Entomol. 2007, 44, 450–456. [Google Scholar] [CrossRef] [PubMed]
- Braga, M.V.; Pinto, Z.T.; de Carvalho Queiroz, M.M.; Matsumoto, N.; Blomquist, G.J. Cuticular hydrocarbons as a tool for the identification of insect species: Puparial cases from Sarcophagidae. Acta Trop. 2013, 128, 479–485. [Google Scholar] [CrossRef]
- Bayarı, S.H.; Özdemir, K.; Sen, E.H.; Araujo-Andrade, C.; Erdal, Y.S. Application of ATR-FTIR spectroscopy and chemometrics for the discrimination of human bone remains from different archaeological sites in Turkey. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 237, 118311. [Google Scholar] [CrossRef]
- Leskovar, T.; Zupanič Pajnič, I.; Jerman, I.; Črešnar, M. Separating forensic, WWII, and archaeological human skeletal remains using ATR-FTIR spectra. Int. J. Legal. Med. 2020, 134, 811–821. [Google Scholar] [CrossRef]
- Javier-Astete, R.; Melo, J.; Jimenez-Davalos, J.; Zolla, G. Classification of Amazonian fast-growing tree species and wood chemical determination by FTIR and multivariate analysis (PLS-DA, PLS). Sci. Rep. 2023, 13, 7827. [Google Scholar] [CrossRef]
- Ghosh, S.B.; Bhattacharya, K.; Nayak, S.; Mukherjee, P.; Salaskar, D.; Kale, S.P. Identification of different species of Bacillus isolated from Nisargruna Biogas Plant by FTIR, UV-Vis and NIR spectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 148, 420–426. [Google Scholar] [CrossRef]
- Barbosa, T.M.; de Lima, L.A.S.; Dos Santos, M.C.D.; Vasconcelos, S.D.; Gama, R.A.; Lima, K.M.G. A novel use of infra-red spectroscopy (NIRS and ATR-FTIR) coupled with variable selection algorithms for the identification of insect species (Diptera: Sarcophagidae) of medico-legal relevance. Acta Trop. 2018, 185, 1–12. [Google Scholar] [CrossRef]
- Pickering, C.L.; Hands, J.R.; Fullwood, L.M.; Smith, J.A.; Baker, M.J. Rapid discrimination of maggots utilising ATR-FTIR spectroscopy. Forensic Sci. Int. 2015, 249, 189–196. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, F.; Xiao, J.; Qu, H.; Jocelin, N.F.; Ren, L.; Guo, Y. Analysis and comparison of machine learning methods for species identification utilizing ATR-FTIR spectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2024, 308, 123713. [Google Scholar] [CrossRef]
- Reibe, S.; Madea, B. Use of Megaselia scalaris (loew) (Diptera: Phoridae) for post-mortem interval estimation indoors. Parasitol. Res. 2010, 106, 637–640. [Google Scholar] [CrossRef] [PubMed]
- Disney, R.H.L.; Garcia-Rojo, A.; Lindström, A.; Manlove, J.D. Further occurrences of Dohrniphora cornuta (Bigot) (Diptera, Phoridae) in forensic cases indicate likely importance of this species in future cases. Forensic Sci. Int. 2014, 241, 20–22. [Google Scholar] [CrossRef] [PubMed]
- Mariani, R.; García-Mancuso, R.; Varela, G.L.; Kierbel, I. New records of forensic entomofauna in legally buried and exhumed human infants remains in Buenos Aires, Argentina. J. Forensic. Leg. Med. 2017, 52, 215–220. [Google Scholar] [CrossRef] [PubMed]
- Pittner, S.; Bugelli, V.; Benbow, M.E.; Ehrenfellner, B.; Zissler, A.; Campobasso, C.P.; Oostra, R.J.; Aalders, M.C.G.; Zehner, R.; Lutz, L.; et al. The applicability of forensic time since death estimation methods for buried bodies in advanced decomposition stages. PLoS ONE 2020, 15, 243395. [Google Scholar] [CrossRef]
- Zou, T.L.; Feng, D.X.; Huang, G.Y.; Sun, D.P.; Dai, S.T. Species composition and succession of necrophagous insects on small buried baits in China. J. Med. Entomol. 2022, 59, 1182–1190. [Google Scholar] [CrossRef]
- Li, L.; Feng, D.X.; Wu, J. Research progress of carrion-breeding phorid flies for post-mortem interval estimation in forensic medicine. J. Forensic Med. 2016, 32, 363–366. [Google Scholar]
- Liu, G.C. A Taxonomic Study of Chinese Phorid flies Diptera: Phoridae; Northeastern University Press: Shenyang, China, 2001; pp. 93–103. [Google Scholar]
- Feng, D.X.; Wu, J.; Sun, D.P. Intrapuparial age estimation of forensically important Dohrniphora cornuta (Diptera: Phoridae). J. Med. Entomol. 2021, 58, 616–624. [Google Scholar] [CrossRef]
- Zhao, H.R.; Wang, X.Y.; Chen, G.H.; Wen, S.M. Identification of wheat varieties by Fourier transform infrared spectroscopy. Spectrosc. Spectr. Anal. 2004, 24, 1338–1341. [Google Scholar]
- Wei, X.; Yu, K.; Wu, H.; Shen, C.; Li, H.; Liu, R.; Sun, Q.; Wang, Z. Species identification of teeth of human and non-human. Forensic Sci. Int. 2022, 333, 111205. [Google Scholar] [CrossRef]
- Wei, X.; Yu, K.; Wu, D.; Huang, P.; Sun, Q.; Wang, Z. Species identification of semen stains by ATR-FTIR spectroscopy. Int. J. Legal. Med. 2021, 135, 73–80. [Google Scholar] [CrossRef]
- Zhang, R.; Gao, Y.; Hu, G.; Wang, Y.; Li, L.; Guo, Y.; Shao, S.; Liu, S.; Wang, Y. Age estimation of Phormia regina pupae based on ATR-FTIR and chemometrics. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2025, 325, 125175. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.R.; Zhou, J.; Zhou, J.Y.; Chen, X.S.; Liu, J.; Wang, B. Identification of textile artifacts using infrared spectroscopy and chemometrics. J. Zhejiang Sci.-Tech. Univ. Nat. Sci. 2022, 47, 490–495. [Google Scholar]
- Guo, S.; Wei, G.; Chen, W.; Lei, C.; Xu, C.; Guan, Y.; Ji, T.; Wang, F.; Liu, H. Fast and deep diagnosis using blood-based ATR-FTIR spectroscopy for digestive tract Cancers. Biomolecules 2022, 12, 1815. [Google Scholar] [CrossRef] [PubMed]
- Coutinho, C.P.; Sá-Correia, I.; Lopes, J.A. Use of Fourier transform infrared spectroscopy and chemometrics to discriminate clinical isolates of bacteria of the Burkholderia cepacia complex from different species and ribopatterns. Anal. Bioanal. Chem. 2009, 394, 2161–2171. [Google Scholar] [CrossRef]
- Manheim, J.; Doty, K.C.; McLaughlin, G.; Lednev, I.K. Forensic hair differentiation using attenuated total reflection fourier transform infrared (ATR FT-IR) spectroscopy. Appl. Spectrosc. 2016, 70, 1109–1117. [Google Scholar] [CrossRef]
- Thümmel, L.; Tintner-Olifiers, J.; Amendt, J. A methodological approach to age estimation of the intra-puparial period of the forensically relevant blow fly Calliphora vicina via Fourier transform infrared spectroscopy. Med. Vet. Entomol. 2025, 39, 22–32. [Google Scholar] [CrossRef]
- Zuha, R.M.; Omar, B. Developmental rate, size, and sexual dimorphism of Megaselia scalaris (Loew) (Diptera: Phoridae): Its possible implications in forensic entomology. Parasitol. Res. 2014, 113, 2285–2294. [Google Scholar] [CrossRef]
- da Silva, S.M.; Moura, M.O. Intrapuparial development of Hemilucilia semidiaphana (Diptera: Calliphoridae) and its use in forensic entomology. J. Med. Entomol. 2019, 56, 1623–1635. [Google Scholar] [CrossRef]
- Barros-Cordeiro, K.B.; Pujol-Luz, J.R.; Báo, S.N. A study of the pupal development of five forensically important flies (Diptera: Brachycera). J. Med. Entomol. 2021, 58, 1643–1653. [Google Scholar] [CrossRef]
- Yao, W.B. Biochemistry, 9th ed.; People’s Medical Publishing House: Beijing, China, 2022; pp. 88–90, 126–127. [Google Scholar]
- Jia, N.; Lin, S.; Yu, Y.; Zhang, G.; Li, L.; Zheng, D.; Liu, D. The effects of ethanol and Rutin on the structure and gel properties of whey protein isolate and related mechanisms. Foods 2022, 11, 3480. [Google Scholar] [CrossRef]
- Su, J.; Yang, S.; Wang, Y. Geographical origin identification of Dendrobium officinale based on FT-NIR and ATR-FTIR spectroscopy. J. Instr. Anal. 2025, 44, 1005–1015. [Google Scholar]
- Yang, M.; Yang, Y.; Mei, G.; Zhang, X.; Huang, L. Identification of 4 kinds of main Larimichthys crocea production areas based on Fourier transform infrared spectroscopy. J. Food Saf. Qual. 2024, 15, 121–129. [Google Scholar]









| Wavenumbers/cm−1 | Infrared Band Assignment |
|---|---|
| 1100–1000 | C-O asymmetric stretching vibration or symmetric stretching vibration: carbohydrates/DNA |
| 1180–1134 | C-O (H) stretching vibration: lipid |
| 1260–1180 | Amide III C-O bending vibration or C-N stretching vibration: protein |
| 1360–1336 | C-H2 rocking vibration |
| 1420–1370 | COO− symmetric stretching vibration: lipids/amino acids |
| 1480–1430 | C-H asymmetric bending vibration: lipids |
| 1580–1510 | Amide II C-N stretching vibration or N-H bending vibration: protein |
| 1680–1600 | Amide I C=O stretching vibration: protein |
| 1760–1730 | C=O stretching vibration: lipid |
| Developmental Stages | Developmental Time | Cross-Validation | Permutation Test | External Validation | |||
|---|---|---|---|---|---|---|---|
| R2X (cum) | R2Y (cum) | Q2 (cum) | R2 | Q2 | Accuracy | ||
| Egg | 0 h | 0.935 | 0.991 | 0.975 | 0.265 | −0.508 | 100% |
| 8 h | 0.818 | 0.983 | 0.958 | 0.345 | −0.613 | 100% | |
| 16 h | 0.857 | 0.973 | 0.913 | 0.324 | −0.55 | 100% | |
| Larva | 12 h | 0.916 | 0.987 | 0.96 | 0.304 | −0.539 | 100% |
| 60 h | 0.858 | 0.989 | 0.981 | 0.236 | −0.368 | 100% | |
| 84 h | 0.888 | 0.977 | 0.953 | 0.313 | −0.584 | 100% | |
| Pupa | 1 d | 0.766 | 0.984 | 0.971 | 0.241 | −0.447 | 100% |
| 5 d | 0.866 | 0.993 | 0.976 | 0.324 | −0.49 | 100% | |
| 10 d | 0.906 | 0.991 | 0.975 | 0.391 | −0.748 | 100% | |
| Dataset | Cross-Validation | Permutation Test | External Validation | |||
|---|---|---|---|---|---|---|
| R2X (cum) | R2Y (cum) | Q2 (cum) | R2 | Q2 | Accuracy | |
| 4000–400 cm−1 | 0.911 | 0.934 | 0.764 | 0.416 | −1.39 | 100% |
| 4000–400 cm−1 (VIP > 1) | 0.876 | 0.931 | 0.73 | 0.353 | −1.43 | 96.3% |
| 1800–900 cm−1 | 0.97 | 0.909 | 0.688 | 0.262 | −1.17 | 100% |
| 1800–900 cm−1 (VIP > 1) | 0.948 | 0.86 | 0.725 | 0.198 | −1.05 | 100% |
| Dataset | Cross-Validation | Permutation Test | External Validation | |||
|---|---|---|---|---|---|---|
| R2X (cum) | R2Y (cum) | Q2 (cum) | R2 | Q2 | Accuracy | |
| 4000–400 cm−1 | 0.942 | 0.95 | 0.796 | 0.489 | −1.29 | 100% |
| 4000–400 cm−1 (VIP > 1) | 0.85 | 0.878 | 0.708 | 0.285 | −0.96 | 100% |
| 1800–900 cm−1 | 0.991 | 0.973 | 0.89 | 0.361 | −1.6 | 100% |
| 1800–900 cm−1 (VIP > 1) | 0.975 | 0.934 | 0.826 | 0.253 | −1.27 | 100% |
| Dataset | Cross-Validation | Permutation Test | External Validation | |||
|---|---|---|---|---|---|---|
| R2X (cum) | R2Y (cum) | Q2 (cum) | R2 | Q2 | Accuracy | |
| 4000–400 cm−1 | 0.896 | 0.94 | 0.756 | 0.453 | −1.39 | 100% |
| 4000–400 cm−1 (VIP > 1) | 0.882 | 0.942 | 0.778 | 0.424 | −1.51 | 100% |
| 1800–900 cm−1 | 0.966 | 0.916 | 0.791 | 0.284 | −1.41 | 100% |
| 1800–900 cm−1 (VIP > 1) | 0.939 | 0.813 | 0.669 | 0.152 | −0.919 | 100% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, W.; Feng, D.; Tang, Y. A Preliminary Study on Species Identification of Immature Necrophagous Phorid Flies Based on FTIR Spectroscopy. Animals 2025, 15, 3110. https://doi.org/10.3390/ani15213110
Jia W, Feng D, Tang Y. A Preliminary Study on Species Identification of Immature Necrophagous Phorid Flies Based on FTIR Spectroscopy. Animals. 2025; 15(21):3110. https://doi.org/10.3390/ani15213110
Chicago/Turabian StyleJia, Wutong, Dianxing Feng, and Yanan Tang. 2025. "A Preliminary Study on Species Identification of Immature Necrophagous Phorid Flies Based on FTIR Spectroscopy" Animals 15, no. 21: 3110. https://doi.org/10.3390/ani15213110
APA StyleJia, W., Feng, D., & Tang, Y. (2025). A Preliminary Study on Species Identification of Immature Necrophagous Phorid Flies Based on FTIR Spectroscopy. Animals, 15(21), 3110. https://doi.org/10.3390/ani15213110
