Genetic Inheritance and the Impact of Low Birth Weight on the Incidence of Cryptorchidism in Hyperprolific Sows
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Semen Preparation and Insemination Techniques
2.3. Housing and General Management
2.4. Statistical Analysis
3. Results
3.1. Descriptive Data
3.2. Comparison of Reproductive Performance and Piglet Characteristics
3.3. Incidence of Cryptorchidism in Male Piglets
4. Discussion
4.1. Reproductive Performance of Conventional and HPS
4.2. Influence of Boar Phenotype on Litter Characteristics and Cryptorchid Piglets
4.3. Association Between Piglet Birth Weight and Cryptorchidism
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Klonisch, T.; Fowler, P.A.; Hombach-Klonisch, S. Molecular and genetic regulation of testis descent and external genitalia development. Dev. Biol. 2004, 270, 1–18. [Google Scholar] [CrossRef]
- Zimmermann, S.; Steding, G.; Emmen, J.M.; Brinkmann, A.O.; Nayernia, K.; Holstein, A.F.; Engel, W.; Adham, I.M. Targeted disruption of the Insl3 gene causes bilateral cryptorchidism. Mol. Endocrinol. 1999, 13, 681–691. [Google Scholar] [CrossRef]
- Amann, R.P.; Veeramachaneni, D.N.R. Cryptorchidism and associated problems in animals. Anim. Reprod. 2006, 3, 108–120. [Google Scholar]
- Fredeen, H.T.; Newman, J.A. Cryptorchid condition and selection for its incidence in Lacombe and Canadian Yorkshire pigs. Can. J. Anim. Sci. 1968, 48, 275–284. [Google Scholar] [CrossRef]
- Dolf, G.; Gaillard, C.; Schelling, C.; Hofer, A.; Leighton, E. Cryptorchidism and sex ratio are associated in dogs and pigs. J. Anim. Sci. 2008, 86, 2480–2485. [Google Scholar] [CrossRef]
- Scollo, A.; Martelli, P.; Borri, E.; Mazzoni, C. Pig surgery: Cryptorchidectomy using an inguinal approach. Vet. Rec. 2016, 178, 609. [Google Scholar] [CrossRef]
- Skelton, J.A.; Baird, A.N.; Hawkins, J.F.; Ruple, A. Cryptorchidectomy with a paramedian or inguinal approach in domestic pigs: 47 cases (2000–2018). J. Am. Vet. Med. Assoc. 2021, 258, 1130–1134. [Google Scholar] [CrossRef] [PubMed]
- Rothschild, M.F.; Christian, L.L.; Blanchard, W.K. Evidence for multigene control of cryptorchidism in swine. J. Hered. 1988, 79, 313–314. [Google Scholar] [CrossRef] [PubMed]
- Sittmann, K.; Woodhouse, B. Sex-limited and sex-modified genetic defects in swine—Cryptorchidism. Can. J. Genet. Cytol. 1977, 19, 487–502. [Google Scholar] [CrossRef] [PubMed]
- Sevillano, C.A.; Lopes, M.S.; Harlizius, B.; Hanenberg, E.H.; Knol, E.F.; Bastiaansen, J.W. Genome-Wide Association Study Using Deregressed Breeding Values for Cryptorchidism and Scrotal/Inguinal Hernia in Two Pig Lines. Genet. Sel. Evol. 2015, 47, 18. [Google Scholar] [CrossRef]
- Gutzwiller, A.; Ampuero Kragten, S. Suppression of boar taint in cryptorchid pigs using a vaccine against the gonadotropin-releasing hormone. Schweiz. Arch. Tierheilkd. 2013, 155, 677–680. [Google Scholar] [CrossRef]
- Carbonari, A.; Lillo, E.; Cicirelli, V.; Sciorsci, R.L.; Rizzo, A. The use of abdominal ultrasound to improve the cryptorchidectomy of pigs. Animals 2022, 12, 1763. [Google Scholar] [CrossRef]
- Yimpring, N.; Roytrakul, S.; Jaresitthikunchai, J.; Phaonakrop, N.; Krobthong, S.; Suriyaphol, G. Proteomic profiles of unilateral cryptorchidism in pigs at different ages using MALDI-TOF mass spectrometry and GeLC-MS/MS approaches. BMC Vet. Res. 2020, 16, 373. [Google Scholar] [CrossRef]
- Thonneau, P.F.; Gandia, P.; Mieusset, R. Cryptorchidism: Incidence, risk factors, and potential role of environment; An update. J. Androl. 2003, 24, 155–162. [Google Scholar] [CrossRef]
- Bräuner, E.V.; Hickey, M.; Hansen, Å.M.; Doherty, D.A.; Handelsman, D.J.; Juul, A.; Hart, R. In-utero exposure to maternal stressful life events and risk of cryptorchidism: The Raine Study. Front. Endocrinol. 2019, 10, 530. [Google Scholar] [CrossRef]
- Tummaruk, P.; De Rensis, F.; Kirkwood, R.N. Managing prolific sows in tropical environments. Mol. Reprod. Dev. 2023, 90, 533–545. [Google Scholar] [CrossRef] [PubMed]
- Oliviero, C. Offspring of hyper prolific sows: Immunity, birthweight, and heterogeneous litters. Mol. Reprod. Dev. 2023, 90, 580–584. [Google Scholar] [CrossRef]
- Matheson, S.M.; Walling, G.A.; Edwards, S.A. Genetic selection against intrauterine growth retardation in piglets: A problem at the piglet level with a solution at the sow level. Genet. Sel. Evol. 2018, 50, 46. [Google Scholar] [CrossRef] [PubMed]
- Van Ginneken, C.; Ayuso, M.; Van Bockstal, L.; Van Cruchten, S. Preweaning performance in intrauterine growth-restricted piglets: Characteristics and interventions. Mol. Reprod. Dev. 2023, 90, 697–707. [Google Scholar] [CrossRef] [PubMed]
- Ruggeri, R.; Bee, G.; Ollagnier, C. Review: Intrauterine growth restriction, diagnosis and physiological characterisation in pigs. Animal 2025, 19, 101590. [Google Scholar] [CrossRef]
- Chaiyapatmaetee, T.; Saenghinghoy, N.; Charuchinda, P.; Wichathippayananon, T.; Ruampatana, J.; Adi, Y.K.; Taechamaeteekul, P.; Tummaruk, P. Intrauterine Growth Restriction in Newborn Piglets Associated with Piglet Characteristics, Colostrum Intake, Litter Size and Parity Number in Prolific Sows. Theriogenology 2025, 240, 117416. [Google Scholar] [CrossRef] [PubMed]
- Meng, F.; Yao, M.; Li, S.; Tian, A.; Zhang, C.; Luo, X. The Impact of Impaired Intrauterine Growth on Male Fertility: A Systematic Review and Meta-Analysis. Andrology 2024, 12, 1651–1660. [Google Scholar] [CrossRef]
- Smit, M.N.; Spencer, J.D.; Almeida, F.R.C.L.; Patterson, J.L.; Chiarini-Garcia, H.; Dyck, M.K.; Foxcroft, G.R. Consequences of a Low Litter Birth Weight Phenotype for Postnatal Lean Growth Performance and Neonatal Testicular Morphology in the Pig. Animal 2013, 7, 1681–1689. [Google Scholar] [CrossRef]
- Kirkwood, R.N.; Langendijk, P.; Carr, J. Management strategies for improving survival of piglets from hyperprolific sows. Thai J. Vet. Med. 2021, 51, 1. [Google Scholar] [CrossRef]
- National Research Council (NRC). Nutrient Requirements of Swine, 11th ed.; The National Academy Press: Washington, DC, USA, 2012.
- Tummaruk, P.; Tantasuparuk, W.; Techakumphu, M.; Kunavongkrit, A. Influence of repeat-service and weaning-to-first-service interval on farrowing proportion of gilts and sows. Prev. Vet. Med. 2010, 96, 194–200. [Google Scholar] [CrossRef]
- Udomchanya, J.; Suwannutsiri, A.; Sripantabut, K.; Pruchayakul, P.; Juthamanee, P.; Nuntapaitoon, M.; Tummaruk, P. Association between the incidence of stillbirths and expulsion interval, piglet birth weight, litter size and carbetocin administration in hyperprolific sows. Livest. Sci. 2019, 227, 128–134. [Google Scholar] [CrossRef]
- Rydhmer, L.; Lundeheim, N.; Canario, L. Genetic correlations between gestation length, piglet survival and early growth. Livest. Sci. 2008, 115, 287–293. [Google Scholar] [CrossRef]
- Imboonta, N.; Kuhaaudomlarp, P. Genetic Associations between Stillbirth, Total Number of Piglets Born and Gestation Length in a Commercial Pig Farm. Thai J. Vet. Med. 2012, 42, 165–172. [Google Scholar] [CrossRef]
- Pietruszka, A.; Der, A.; Matysiak, B. Analysis of Gestation Length and Its Influence on the Reproductive Performance of Crossbred Sows Kept on a Large-Scale Pig Farm. Sci. Ann. Pol. Soc. Anim. Prod. 2020, 16, 29–36. [Google Scholar] [CrossRef]
- Shi, L.; Li, H.; Wang, L. Genetic Parameters Estimation and Genome Molecular Marker Identification for Gestation Length in Pigs. Front. Genet. 2023, 13, 1046423. [Google Scholar] [CrossRef]
- Adi, Y.K.; Kirkwood, R.N.; Tummaruk, P. Farrowing performance and piglet characteristics of highly prolific sows in a tropical environment. Thai J. Vet. Med. 2024, 54, 8. [Google Scholar] [CrossRef]
- Carman, G.M. Cryptorchidism in swine. J. Chem. Educ. 1952, 14, 21–23. [Google Scholar]
- Hutson, J.M.; Hasthorpe, S. Testicular descent and cryptorchidism: The state of the art in 2004. J. Pediatr. Surg. 2005, 40, 297–302. [Google Scholar] [CrossRef] [PubMed]
- Wise, T.; Roberts, A.J.; Christenson, R.K. Relationships of light and heavy fetuses to uterine position, placental weight, gestational age, and fetal cholesterol concentrations. J. Anim. Sci. 1997, 75, 2197–2207. [Google Scholar] [CrossRef] [PubMed]
- Bauer, R.; Walter, B.; Hoppe, A.; Gaser, E.; Lampe, V.; Kauf, E.; Zwiener, U. Body weight distribution and organ size in newborn swine—A study describing an animal model for asymmetrical intrauterine growth retardation. Exp. Toxicol. Pathol. 1998, 50, 59–65. [Google Scholar] [CrossRef]
- Pinart, E.; Sancho, S.; Briz, M.D.; Bonet, S.; García, N. Characterization of the semen quality of postpuberal boars with spontaneous unilateral abdominal cryptorchidism on the right side. Anim. Reprod. Sci. 1999, 55, 269–278. [Google Scholar] [CrossRef]
- Frankenhuis, M.T.; Wensing, C.J. Induction of spermatogenesis in the naturally cryptorchid pig. Fertil. Steril. 1979, 31, 428–433. [Google Scholar] [CrossRef]
- Chung, E.; Brock, G.B. Cryptorchidism and its impact on male fertility: A state-of-the-art review of current literature. Can. Urol. Assoc. J. 2011, 5, 210–214. [Google Scholar] [CrossRef]
- Li, J.; Wang, K.; Ma, J.; Sun, L.; Niu, L.; Zhao, Y.; Chen, L.; Zhou, L.; Xue, J.; Zhou, X.; et al. Intrauterine Growth-Restricted Pig-Associated Testicular Transcriptome Analysis Reveals microRNA-mRNA Regulatory Networks. Animals 2025, 15, 2486. [Google Scholar] [CrossRef]
- Ward, S.A.; Kirkwood, R.N.; Plush, K.J. Are larger litters a concern for piglet survival or an effectively manageable trait? Animals 2020, 10, 309. [Google Scholar] [CrossRef]
- Foxcroft, G.R.; Dixon, W.T.; Dyck, M.K.; Novak, S.; Harding, J.C.S.; Almeida, F.C.R.L. Prenatal programming of postnatal development in the pig. In Control of Pig Reproduction VIII; Rodriguez-Martinez, H., Vallet, J.L., Ziecik, A.J., Eds.; Nottingham University Press: Nottingham, UK, 2009; pp. 213–231. [Google Scholar]
| Parity Groups/ Boar Type | Sow | Litters | Piglets | Males | Females |
|---|---|---|---|---|---|
| First parity/ Cryptorchid boar | HPS | 108 | 1441 | 673 * | 768 |
| Conventional | 36 | 385 | 203 | 182 | |
| Second parity/ Normal boar | HPS | 100 | 1771 | 896 | 875 |
| Conventional | 32 | 406 | 217 | 189 | |
| Total | 276 | 4003 | 1989 | 2014 | |
| Variables | Genetic Lines | |
|---|---|---|
| Conventional | HPS | |
| Number of litters | 68 | 208 |
| Farrowing rate (%) | 89.5 | 90.8 |
| Gestation length (days) | 115.6 ± 0.3 a | 116.5 ± 0.2 b |
| Total number of piglets born per litter | 12.3 ± 0.8 a | 16.5 ± 0.5 b |
| Number of piglets born alive per litter | 11.6 ± 0.8 a | 15.4 ± 0.5 b |
| Stillborn piglets (%) | 3.3 ± 1.3 | 3.7 ± 0.8 |
| Mummified fetuses (%) | 1.9 ± 1.6 | 3.7 ± 0.9 |
| Piglets birthweight (kg) | 1.30 ± 0.02 a | 1.14 ± 0.01 b |
| Variables | Conventional | HPS | ||
|---|---|---|---|---|
| Normal | Cryptorchid | Normal | Cryptorchid | |
| Number of litters | 57 | 11 | 177 | 31 |
| Gestation length (days) | 116.1 ± 0.2 ab | 115.1 ± 0.5 a | 116.3 ± 0.1 ab | 116.7 ± 0.3 b |
| Total number of piglets born per litter | 12.4 ± 0.6 a | 12.3 ± 1.5 a | 16.6 ± 0.4 b | 16.4 ± 0.9 b |
| Number of piglets born alive per litter | 11.6 ± 0.6 a | 11.6 ± 1.4 a | 15.4 ± 0.4 b | 15.4 ± 0.9 b |
| Stillborn piglets (%) | 4.02 ± 1.02 a | 2.64 ± 2.32 a | 3.68 ± 0.58 a | 3.65 ± 1.38 a |
| Mummified fetuses (%) | 1.74 ± 1.30 a | 2.00 ± 2.96 a | 2.79 ± 0.74 a | 4.55 ± 1.76 a |
| Piglets birthweight (kg) | 1.28 ± 0.02 a | 1.31 ± 0.04 a | 1.18 ± 0.01 b | 1.11 ± 0.02 c |
| Boar Phenotype | Sow | Normal Male Piglets | Cryptorchid Piglets | Percentage |
|---|---|---|---|---|
| Cryptorchid boar | HPS | 635 | 37 | 5.8 |
| Conventional | 189 | 14 | 7.4 | |
| Total | 824 | 51 | 6.2 | |
| Normal boar | HPS | 891 | 5 | 0.6 |
| Conventional | 217 | 0 | 0 | |
| Total | 1108 | 5 | 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wathirunwong, T.; Tummaruk, P.; Porntrakulpipat, S.; Jiwakanon, J. Genetic Inheritance and the Impact of Low Birth Weight on the Incidence of Cryptorchidism in Hyperprolific Sows. Animals 2025, 15, 3105. https://doi.org/10.3390/ani15213105
Wathirunwong T, Tummaruk P, Porntrakulpipat S, Jiwakanon J. Genetic Inheritance and the Impact of Low Birth Weight on the Incidence of Cryptorchidism in Hyperprolific Sows. Animals. 2025; 15(21):3105. https://doi.org/10.3390/ani15213105
Chicago/Turabian StyleWathirunwong, Thanut, Padet Tummaruk, Sarthorn Porntrakulpipat, and Jatesada Jiwakanon. 2025. "Genetic Inheritance and the Impact of Low Birth Weight on the Incidence of Cryptorchidism in Hyperprolific Sows" Animals 15, no. 21: 3105. https://doi.org/10.3390/ani15213105
APA StyleWathirunwong, T., Tummaruk, P., Porntrakulpipat, S., & Jiwakanon, J. (2025). Genetic Inheritance and the Impact of Low Birth Weight on the Incidence of Cryptorchidism in Hyperprolific Sows. Animals, 15(21), 3105. https://doi.org/10.3390/ani15213105

